Свойства систем линейных алгебраических уравнений

Исследование СЛАУ. Общие сведения

В данной статье мы расскажем о методах, видах, условиях и определениях исследований решений систем линейных уравнений, что такое метод Кронекера-Капели, а также приведем примеры.

Общие сведения (определения, условия, методы, виды)

Системы линейных алгебраических уравнений с n неизвестными могут иметь:

  • единственное решение;
  • бесконечное множество решение (неопределенные СЛАУ);
  • ни одного решения (несовместные СЛАУ).

Пример 1

Система x + y + z = 1 2 x + 2 y + 2 z = 3 не имеет решений, поэтому она несовместна.

Система x + y = 1 2 x + 7 y = — 3 имеет единственное решение x = 2 ; y = 1 .

Система x + y = 1 2 x + 2 y = 2 3 x + 3 y = 3 имеет бесконечное множество решений x = t y = 1 — t при — ∞ t ∞ .

Перед решением системы уравнений необходимо исследовать систему, т.е. ответить на следующие вопросы:

  • Совместна ли система?
  • Если система совместна, то, какое количество решений она имеет — одно или несколько?
  • Как найти все решения?

Если система малоразмерна при m = n , то ответить на поставленные вопросы можно при помощи метода Крамера:

  • если основной определитель системы, то система совместна и имеет единственное решение, которое вычисляется методом Крамера;
  • если, и один из вспомогательных определителей, то система не является совместной, т.е. не имеет решений;
  • если и все, и один из коэффициентов СЛАУ, то система не является определенной и имеет бесконечное множество решений.

Ранг матрицы и его свойства

Бывают случаи, которые выбиваются из представленных вариантов решения СЛАУ, например, линейные уравнения с большим количеством уравнений и неизвестных.

Для такого варианта решения существует ранг матрицы, который представляет собой алгоритм действий в случае решения системы матрицы, когда

В математике выделяют следующие подходы к определению ранга матрицы:

  • при помощи понятия линейной зависимости/независимости строк/столбцов матрицы. Ранг равен максимальному количеству независимых строк (столбцов) матрицы
  • при помощи понятия минора матрицы в качестве наивысшего порядка минора, который отличается от нуля. Минор матрицы порядка k — определитель k-го порядка, составленный из элементов, которые стоят на пересечении вычеркиваемых k-строк и k-столбцов матрицы;
  • при помощи метода Гаусса. По завершении прямого хода ранг матрицы равняется количеству ненулевых строк.

Обозначение ранга матрицы: r ( A ) , r g ( A ) , r A .

Свойства ранга матрицы:

  1. квадратная невырожденная матрица обладает рангом, который отличается от нуля;
  2. если транспонировать матрицу, то ранг матрицы не изменяется;
  3. если поменять местами 2 параллельные строки или 2 параллельных столбца, ранг матрицы не изменяется;
  4. при удалении нулевого столбца или строки ранг матрицы не изменяется;
  5. ранг матрицы не изменяется, если удалить строку или столбец, которые являются линейной комбинацией других строк;
  6. при умножении все элементов строки/столбца на число k н е р а в н о н у л ю ранг матрицы не изменяется;
  7. ранг матрицы не больше меньшего из ее размеров: r ( А ) ≤ m i n ( m ; n ) ;
  8. когда все элементы матрицы равны нулю, то только тогда r ( A ) = 0 .

Пример 2

А 1 = 1 1 1 2 2 2 3 3 3 , B 1 = 1 0 0 0 0 0

r ( A 1 ) = 1 , r ( B 1 ) = 1

А 2 = 1 2 3 4 0 5 6 7 0 0 0 0 ; В 2 = 1 1 3 1 2 1 4 3 1 2 5 0 5 4 13 6

Системы линейных алгебраических уравнений

Системой линейных алгебраических уравнений с неизвестными называется система уравнений вида

Числа называются коэффициентами системы ; — свободными членами , — неизвестными . Количество уравнений в системе может быть меньше, больше или равно числу неизвестных.

Решением системы называется упорядоченная совокупность чисел такая, что после замены неизвестных соответственно числами каждое уравнение системы превращается в верное числовое равенство. Система называется совместной , если она имеет хотя бы одно решение. Если система не имеет ни одного решения, то она называется несовместной .

Система (5.1) называется однородной , если все свободные члены равны нулю:

В отличие от однородной, систему общего вида (5.1) называют неоднородной .

Систему (5.1) принято записывать в матричной форме. Для этого из коэффициентов системы составляем матрицу системы

свободные члены записываем в столбец свободных членов

а неизвестные — в столбец неизвестных

Матричная запись неоднородной системы уравнений (5.1) имеет вид

Матричную запись (5.3) системы уравнений можно представить в эквивалентной форме

Тогда решение системы представляется столбцом и удовлетворяет равенству

т.е. столбец свободных членов является линейной комбинацией столбцов матрицы системы.

Относительно системы уравнений нас интересуют ответы на следующие вопросы:

1. Совместна система или нет?

2. Если система совместна, то имеет ли она единственное решение или нет?

3. Если решение единственное, то как его найти?

4. Если система имеет бесконечно много решений, то какова структура множества решений?

5. Как в бесконечном множестве решений системы определить одно решение, наилучшее с практической точки зрения?

6. Если система несовместна, то как определить ее приближенное решение?

Правило Крамера

Рассмотрим случай, когда число уравнений равно числу неизвестных , т.е. систему

где матрица системы — квадратная n-го порядка:

Ее определитель обозначим

Теорема 5.1 (правило Крамера). Если определитель матрицы системы линейных уравнений с неизвестными отличен от нуля, то система имеет единственное решение, которое находится по формулам

где — определитель матрицы, полученной из матрицы системы заменой i-го столбца столбцом свободных членов, т.е.

В самом деле, рассмотрим систему (5.6) как матричное уравнение . Так как определитель матрицы отличен от нуля, по теореме 4.2 заключаем, что матричное уравнение имеет единственное решение:

где — обратная матрица. Запишем i-й элемент столбца , учитывая, что в i-й строке присоединенной матрицы стоят алгебраические дополнения i-го столбца матрицы

Заметим, что в скобках записано разложение определителя по i-му столбцу, т.е. , что и требовалось доказать.

1. На практике при больших правило Крамера не применяется, так как вычисление определителя n-го порядка требует большого числа арифметических операций. Поэтому применяются более экономичные алгоритмы. Обычно, правило Крамера используется, когда нужно найти только несколько неизвестных (например, одну) среди многих. В теоретических исследованиях правило Крамера незаменимо и используется весьма продуктивно.

2. Если и хотя бы один определитель , то система несовместна. Если , то возможны два случая: либо система несовместна, либо имеет бесконечно много решений.

Пример 5.1. Решить систему линейных уравнений с помощью правила Крамера

Решение. Составим матрицу системы . Вычислим ее определитель

Так как определитель отличен от нуля, система имеет единственное решение (см. теорему 5.1). Находим определители и неизвестные

Условие совместности системы линейных уравнений

Рассмотрим систему (5.3) линейных уравнений с неизвестными. Составим блочную матрицу, приписав к матрице справа столбец свободных членов. Получим расширенную матрицу системы :

Эта матрица содержит всю информацию о системе уравнений, за исключением обозначений неизвестных.

Теорема 5.2 Кронекера-Капелли. Система совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы: .

Необходимость следует из равенства (5.5) и следствия 1 теоремы 3.3. Если система имеет решение, то столбец свободных членов есть линейная комбинация столбцов матрицы системы. Поэтому при вычеркивании столбца Ь из расширенной матрицы ее ранг не изменяется. Следовательно, .

Для доказательства достаточности нужно использовать теорему о базисном миноре. Из равенства следует, что базисный минор матрицы является базисным минором расширенной матрицы . Поэтому столбец является линейной комбинацией столбцов базисного минора матрицы , а, значит, и всех столбцов матрицы . Следовательно, существуют числа , удовлетворяющие условию (5.5), т.е. система совместна.

Замечание 5.2. Теорема Кронекера-Капелли дает лишь критерий существования решения системы, но не указывает способа отыскания этого решения.

Пример 5.2. Определить, имеет ли система уравнений решения

Решение. Составим матрицу системы и расширенную матрицу системы

Ранг матрицы равен 2, так как она имеет не равные нулю миноры второго порядка и третья строка этой матрицы равна сумме первых двух строк. Следовательно, третью строку можно вычеркнуть, при этом ранг матрицы не изменится. Ранг расширенной матрицы равен трем, так как она имеет не равный нулю минор третьего порядка, например, минор, составленный из первого, второго и последнего столбцов расширенной матрицы

Следовательно, . Поэтому система несовместна (не имеет решений).

Система линейных алгебраических уравнений. Основные термины. Матричная форма записи.

Определение системы линейных алгебраических уравнений. Решение системы. Классификация систем.

Под системой линейных алгебраических уравнений (СЛАУ) подразумевают систему

содержащую $m$ уравнений и $n$ неизвестных ($x_1,x_2,\ldots,x_n$). Прилагательное «линейных» означает, что все неизвестные (их еще называют переменными) входят только в первой степени.

Параметры $a_$ ($i=\overline<1,m>$, $j=\overline<1,n>$) называют коэффициентами, а $b_i$ ($i=\overline<1,m>$) – свободными членами СЛАУ. Иногда, чтобы подчеркнуть количество уравнений и неизвестных, говорят так «$m\times n$ система линейных уравнений», – тем самым указывая, что СЛАУ содержит $m$ уравнений и $n$ неизвестных.

Если все свободные члены $b_i=0$ ($i=\overline<1,m>$), то СЛАУ называют однородной. Если среди свободных членов есть хотя бы один, отличный от нуля, СЛАУ называют неоднородной.

Решением СЛАУ (1) называют всякую упорядоченную совокупность чисел ($\alpha_1, \alpha_2,\ldots,\alpha_n$), если элементы этой совокупности, подставленные в заданном порядке вместо неизвестных $x_1,x_2,\ldots,x_n$, обращают каждое уравнение СЛАУ в тождество.

Любая однородная СЛАУ имеет хотя бы одно решение: нулевое (в иной терминологии – тривиальное), т.е. $x_1=x_2=\ldots=x_n=0$.

Если СЛАУ (1) имеет хотя бы одно решение, ее называют совместной, если же решений нет – несовместной. Если совместная СЛАУ имеет ровно одно решение, её именуют определённой, если бесконечное множество решений – неопределённой.

Имеем систему линейных алгебраических уравнений, содержащую $3$ уравнения и $5$ неизвестных: $x_1$, $x_2$, $x_3$, $x_4$, $x_5$. Можно, сказать, что задана система $3\times 5$ линейных уравнений.

Коэффициентами системы (2) есть числа, стоящие перед неизвестными. Например, в первом уравнении эти числа таковы: 3, -4, 1, 7, -1. Свободные члены системы представлены числами 11, -65, 0. Так как среди свободных членов есть хотя бы один, не равный нулю, то СЛАУ (2) является неоднородной.

Упорядоченная совокупность $(4;-11;5;-7;1)$ является решением данной СЛАУ. В этом несложно убедиться, если подставить $x_1=4$, $x_2=-11$, $x_3=5$, $x_4=-7$, $x_5=1$ в уравнения заданной системы:

Естественно, возникает вопрос том, является ли проверенное решение единственным. Вопрос о количестве решений СЛАУ будет затронут в соответствующей теме.

Система (3) является СЛАУ, содержащей $5$ уравнений и $3$ неизвестных: $x_1$, $x_2$, $x_3$. Так как все свободные члены данной системы равны нулю, то СЛАУ (3) является однородной. Несложно проверить, что совокупность $(0;0;0)$ является решением данной СЛАУ. Подставляя $x_1=0$, $x_2=0$, $x_3=0$, например, в первое уравнение системы (3), получим верное равенство:

$$4x_1+2x_2-x_3=4\cdot 0+2\cdot 0-0=0.$$

Подстановка в иные уравнения делается аналогично.

Матричная форма записи систем линейных алгебраических уравнений.

С каждой СЛАУ можно связать несколько матриц; более того – саму СЛАУ можно записать в виде матричного уравнения. Для СЛАУ (1) рассмотрим такие матрицы:

Матрица $A$ называется матрицей системы. Элементы данной матрицы представляют собой коэффициенты заданной СЛАУ.

Матрица-столбец $B$ называется матрицей свободных членов, а матрица-столбец $X$ – матрицей неизвестных.

Используя введённые выше обозначения, СЛАУ (1) можно записать в форме матричного уравнения: $A\cdot X=B$.

Матрицы, связанные с системой, можно записать различными способами: всё зависит от порядка следования переменных и уравнений рассматриваемой СЛАУ. Но в любом случае порядок следования неизвестных в каждом уравнении заданной СЛАУ должен быть одинаков (см. пример №4).

Записать СЛАУ $ \left \ < \begin& 2x_1+3x_2-5x_3+x_4=-5;\\ & 4x_1-x_3=0;\\ & 14x_2+8x_3+x_4=-11. \end \right. $ в матричной форме и указать расширенную матрицу системы.

Имеем четыре неизвестных, которые в каждом уравнении следуют в таком порядке: $x_1$, $x_2$, $x_3$, $x_4$. Матрица неизвестных будет такой: $\left( \begin x_1 \\ x_2 \\ x_3 \\ x_4 \end \right)$.

Свободные члены данной системы выражены числами -5, 0, -11, посему матрица свободных членов имеет вид: $B=\left( \begin -5 \\ 0 \\ -11 \end \right)$.

Перейдем к составлению матрицы системы. В первую строку данной матрицы будут занесены коэффициенты первого уравнения: 2, 3, -5, 1.

Во вторую строку запишем коэффициенты второго уравнения: 4, 0, -1, 0. При этом следует учесть, что коэффициенты системы при переменных $x_2$ и $x_4$ во втором уравнении равны нулю (ибо эти переменные во втором уравнении отсутствуют).

В третью строку матрицы системы запишем коэффициенты третьего уравнения: 0, 14, 8, 1. Учитываем при этом равенство нулю коэффициента при переменной $x_1$ (эта переменная отсутствует в третьем уравнении). Матрица системы будет иметь вид:

$$ A=\left( \begin 2 & 3 & -5 & 1\\ 4 & 0 & -1 & 0 \\ 0 & 14 & 8 & 1 \end \right) $$

Чтобы была нагляднее взаимосвязь между матрицей системы и самой системой, я запишу рядом заданную СЛАУ и ее матрицу системы:

В матричной форме заданная СЛАУ будет иметь вид $A\cdot X=B$. В развернутой записи:

$$ \left( \begin 2 & 3 & -5 & 1\\ 4 & 0 & -1 & 0 \\ 0 & 14 & 8 & 1 \end \right) \cdot \left( \begin x_1 \\ x_2 \\ x_3 \\ x_4 \end \right) = \left( \begin -5 \\ 0 \\ -11 \end \right) $$

Запишем расширенную матрицу системы. Для этого к матрице системы $ A=\left( \begin 2 & 3 & -5 & 1\\ 4 & 0 & -1 & 0 \\ 0 & 14 & 8 & 1 \end \right) $ допишем столбец свободных членов (т.е. -5, 0, -11). Получим: $\widetilde=\left( \begin 2 & 3 & -5 & 1 & -5 \\ 4 & 0 & -1 & 0 & 0\\ 0 & 14 & 8 & 1 & -11 \end \right) $.

Записать СЛАУ $ \left \ <\begin& 3y+4a=17;\\ & 2a+4y+7c=10;\\ & 8c+5y-9a=25; \\ & 5a-c=-4. \end\right.$ в матричной форме и указать расширенную матрицу системы.

Как видите, порядок следования неизвестных в уравнениях данной СЛАУ различен. Например, во втором уравнении порядок таков: $a$, $y$, $c$, однако в третьем уравнении: $c$, $y$, $a$. Перед тем, как записывать СЛАУ в матричной форме, порядок следования переменных во всех уравнениях нужно сделать одинаковым.

Упорядочить переменные в уравнениях заданной СЛАУ можно разными способами (количество способов расставить три переменные составит $3!=6$). Я разберу два способа упорядочивания неизвестных.

Введём такой порядок: $c$, $y$, $a$. Перепишем систему, расставляя неизвестные в необходимом порядке: $\left \ <\begin& 3y+4a=17;\\ & 7c+4y+2a=10;\\ & 8c+5y-9a=25; \\ & -c+5a=-4. \end\right.$

Матрица системы имеет вид: $ A=\left( \begin 0 & 3 & 4 \\ 7 & 4 & 2\\ 8 & 5 & -9 \\ -1 & 0 & 5 \end \right) $. Матрица свободных членов: $B=\left( \begin 17 \\ 10 \\ 25 \\ -4 \end \right)$. При записи матрицы неизвестных помним о порядке следования неизвестных: $X=\left( \begin c \\ y \\ a \end \right)$. Итак, матричная форма записи заданной СЛАУ такова: $A\cdot X=B$. В развёрнутом виде:

$$ \left( \begin 0 & 3 & 4 \\ 7 & 4 & 2\\ 8 & 5 & -9 \\ -1 & 0 & 5 \end \right) \cdot \left( \begin c \\ y \\ a \end \right) = \left( \begin 17 \\ 10 \\ 25 \\ -4 \end \right) $$

Расширенная матрица системы такова: $\left( \begin 0 & 3 & 4 & 17 \\ 7 & 4 & 2 & 10\\ 8 & 5 & -9 & 25 \\ -1 & 0 & 5 & -4 \end \right) $.

Введём такой порядок: $a$, $c$, $y$. Перепишем систему, расставляя неизвестные в необходимом порядке: $\left \ < \begin& 4a+3y=17;\\ & 2a+7c+4y=10;\\ & -9a+8c+5y=25; \\ & 5a-c=-4. \end\right.$

Матрица системы имеет вид: $ A=\left( \begin 4 & 0 & 3 \\ 2 & 7 & 4\\ -9 & 8 & 5 \\ 5 & -1 & 0 \end \right)$. Матрица свободных членов: $B=\left( \begin 17 \\ 10 \\ 25 \\ -4 \end \right)$. При записи матрицы неизвестных помним о порядке следования неизвестных: $X=\left( \begin a \\ c \\ y \end \right)$. Итак, матричная форма записи заданной СЛАУ такова: $A\cdot X=B$. В развёрнутом виде:

$$ \left( \begin 4 & 0 & 3 \\ 2 & 7 & 4\\ -9 & 8 & 5 \\ 5 & -1 & 0 \end \right) \cdot \left( \begin a \\ c \\ y \end \right) = \left( \begin 17 \\ 10 \\ 25 \\ -4 \end \right) $$

Расширенная матрица системы такова: $\left( \begin 4 & 0 & 3 & 17 \\ 2 & 7 & 4 & 10\\ -9 & 8 & 5 & 25 \\ 5 & -1 & 0 & -4 \end \right) $.

Как видите, изменение порядка следования неизвестных равносильно перестановке столбцов матрицы системы. Но каким бы этот порядок расположения неизвестных ни был, он должен совпадать во всех уравнениях заданной СЛАУ.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).


источники:

http://mathhelpplanet.com/static.php?p=sistemy-linyeinykh-algebraicheskikh-uravnenii

http://math1.ru/education/sys_lin_eq/terms.html