Связь определителя системы линейных уравнений

Связь определителя системы линейных уравнений

Системой m линейных уравнений с n неизвестными называется система вида

где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

  1. Система может иметь единственное решение.
  2. Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
  3. И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Рассмотрим способы нахождения решений системы.

МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче AX=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A: . Поскольку A -1 A = E и EX = X, то получаем решение матричного уравнения в виде X = A -1 B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B.

Примеры. Решить системы уравнений.

Найдем матрицу обратную матрице A.

,

Таким образом, x = 3, y = – 1.

Решите матричное уравнение: XA+B=C, где

Выразим искомую матрицу X из заданного уравнения.

Найдем матрицу А -1 .

Решите матричное уравнение AX+B=C, где

Из уравнения получаем .

Следовательно,

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

.

Далее рассмотрим коэффициенты при x2:

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений

Решите систему уравнений при различных значениях параметра p:

Система имеет единственное решение, если Δ ≠ 0.

. Поэтому .

  1. При
  2. При p = 30 получаем систему уравнений которая не имеет решений.
  3. При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений x=y,y Î R.

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.

Вернувшись к системе уравнений, будем иметь

Выпишем расширенную матрицу системы и сведем ее к треугольному виду.

Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.

Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.

Вернемся к системе уравнений.

Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.

Таким образом, система имеет бесконечное множество решений.

Определители второго и третьего порядков и их свойства с примерами решения

Содержание:

Определители второго порядка:

Под определителем (детерминантом) второго порядка понимается выражение

Числа

Формула (1) дает правило «развертывания» определителя второго порядка, а именно: определитель второго порядка равен разности произведений его элементов первой и второй диагоналей.

Определители второго порядка

С помощью определителей второго порядка удобно решать линейные системы двух уравнений с двумя неизвестными:

Такую линейную систему, в которой свободные члены находятся в правых частях, для определенности мы будем называть стандартной.

Под решением системы (2) понимается всякая пара чисел (х, у), обращающая эту систему в тождество. Если существует только одна такая пара, то решение называется единственным. Аналогично вводится понятие решения для системы, содержащей п неизвестных .

Для нахождения решений системы (2) применим метод исключения. Умножая первое уравнение системы (2) на , а второе — на — и складывая, будем иметь

Аналогично, умножая первое уравнение системы (2) на а2 второе — на складывая, получаем

Введем определитель системы

а также дополнительные определители

Заметим, что дополнительные определители Dx и Dy получаются из определителя системы D путем замены коэффициентов при указанном неизвестном на соответствующие свободные члены.

Уравнения (3) и (4) принимают вид

Если , то отсюда получаем, что система (2) имеет единственное решение

Замечание. Если определитель D = 0, то система (2) или не имеет решений (т. е. несовместна), или имеет бесконечно много решений (т. е. система неопределенная).

Пример:

Решение:

Имеем

Отсюда на основании формул Крамера (6) получаем

Геометрически решение (95; 110) представляет собой точку пересечения прямых (7).

Система двух однородных уравнений с тремя неизвестными

Рассмотрим однородную систему

Эта система всегда совместна, так как, очевидно, имеет нулевое решение х = 0, у = 0, z = 0. Однако интересно найти не н у л е в ы е решения (х, у, z) системы (1). Пусть, например, .

Тогда систему (1) можно переписать в виде

Отсюда, предполагая, что , получаем

Введем в рассмотрение матрицу коэффициентов системы (1)

Определители второго порядка , которые получаются из матрицы (5) путем вычеркивания соответствующего столбца, называются ее минорами. Таким образом, имеем

Используя эти обозначения, уравнения (3) и (4) можно переписать в следующем виде:

Равенства (6), очевидно, справедливы также и для нулевого решения.

Таким образом, имеем следующее правило: неизвестные однородной системы (1) пропорциональны соответствующим минорам ее матрицы коэффициентов, взятым с надлежащими знаками.

Обозначая через t коэффициент пропорциональности для отношений (6), получим полную систему решений системы (1):

При выводе формул (7) мы предполагали, что . Однако, как легко убедиться, формулы (7) будут справедливы, если любой (хотя бы один) из миноров отличен от нуля.

Замечание. Если все миноры равны нулю, то система (1) требует особого рассмотрения.

Пример:

Решение:

Составляя матрицу коэффициентов

находим ее миноры: На основании формулы (7) полная система решений системы (8) имеет вид

где

Простейшее ненулевое решение системы (1), получающееся при t — 1, есть х = -3, у = 18, z = 13.

Определители третьего порядка

Числа называются элементами определителя; они расположены в трех строках и трех столбцах его (ряды определителя). ,

Раскрывая определители второго порядка (миноры) в формуле (1) и собирая члены с одинаковыми знаками, получаем, что определитель третьего порядка представляет собой знакопеременную сумму шести слагаемых:

из которых три берутся со знаком плюс, а три — со знаком минус.

Пример:

Решение:

Используя формулу (1), имеем В дальнейшем мы укажем более удобные способы вычисления определителей третьего порядка.

Определение: Под минором элемента определителя третьего порядка понимается определитель младшего (второго) порядка, получающийся из данного определителя в результате вычеркивания строки и столбца, содержащих данный элемент.

Например, для определителя (3) минором его элемента 2, стоящего во второй строке и в первом столбце, является определитель В дальнейшем для краткости будем говорить, что элемент определителя третьего порядка занимает четное место, если сумма номеров его строки и его столбца есть число четное, и нечетное место, если эта сумма есть число нечетное.

Определение: Алгебраическим дополнением (минором со знаком) элемента определителя третьего порядка называется минор этого элемента, взятый со знаком плюс, если элемент занимает четное место у и со знаком минус, если его место нечетное.

Таким образом, если М есть минор элемента определителя, a i и j — соответственно номер строки и номер столбца, на пересечении которых находится данный элемент, то его алгебраическое дополнение есть

Например, для элемента с2 определителя (1), находящегося во второй строке и в третьем столбце, его алгебраическое дополнение есть

Соответствующие знаки, приписываемые при этом минорам элементов определителя, можно задать таблицей

В дальнейшем алгебраические дополнения элементов определителя с буквенными элементами условимся обозначать соответствующими прописными (большими) буквами.

Теорема Разложения: Определитель третьего порядка равен сумме парных произведений элементов какого-либо ряда его на их алгебраические дополнения (под рядом понимается строка или столбец).

Таким образом, для определителя (1) справедливы шесть разложений:

Легко проверить, что формулы (4) и (5) дают одно и то же выражение (2), принятое за определение.

Замечание. С помощью формул типа (4) или (5), по индукции, можно ввести определители высших порядков.

Основные свойства определителей

При формулировках мы не будем указывать порядок определителя, так как эти свойства справедливы для определителей любого порядка.

I. (Равноправность строк и столбцов.) Определитель не меняет своего значения при замене всех его строк соответствующими столбцами, т. е.

Действительно, разлагая первый определитель по элементам первой строки, а второй — по элементам первого столбца, в силу теоремы разложения мы получим один и тот же результат.

II. При перестановке двух параллельных рядов определителя его модуль сохраняет прежнее значение, а знак меняется на обратный.

Пусть, например, в определителе переставлены первая и вторая строки; тогда получим определитель Разлагая определитель D по элементам второй строки и учитывая, что при перестановке строк изменилась четность мест этих элементов, будем иметь

Аналогичное положение получается и в других случаях.

Следствие 1. Определитель, у которого два параллельных ряда одинаковы, равен нулю.

В самом деле, пусть, например,

Переставляя первую и вторую строки определителя, в силу теоремы получим определитель -D. Но очевидно, эта операция не изменяет определитель D, поэтому -D = D и, следовательно, D = 0.

Следствие 2. Сумма парных произведений элементов какого-либо ряда определителя на алгебраические дополнения соответствующих элементов параллельного ряда равна нулю, т. е. для определителя (2) имеем и т. д., а также и т. д. (всего таких соотношений можно написать двенадцать).

Левые части всех соотношений (3) и (4) представляют собой разложения соответствующих определителей третьего порядка, содержащих два одинаковых параллельных ряда и, следовательно, равны нулю. Например, (здесь разложение нужно производить во второй строке!).

III. Общий множитель элементов какого-либо ряда определителя можно выносить за знак определителя, т. е.

Это свойство непосредственно вытекает из разложения определителя по элементам соответствующего ряда.

Следствие 1. Если все элементы какого-либо ряда определителя равны нулю, то определитель равен нулю.

Следствие 2. Если элементы какого-либо ряда определителя пропорциональны соответствующим элементам параллельного ряда его, то определитель равен нулю.

Например, имеем

IV. Если элементы какого-либо ряда определителя представляют собой суммы двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.

Следствие. Величина определителя не изменится, если /с элементам какого-либо ряда его прибавить (или отнять) числа, пропорциональные соответствующим элементам параллельного ряда с одним и тем же коэффициентом пропорциональности (так называемые «элементарные преобразования определителя»).

Рассмотрим, например, определители

Используя свойства IV и III, будем иметь Элементарные преобразования дают удобный способ вычисления определителей.

Пример:

Вычислить симметричный определитель

Решение:

Вычитая из второй строки удвоенную первую строку, а из третьей строки утроенную первую строку, получим

Система трех линейных уравнений

Рассмотрим стандартную линейную систему трех уравнений

свободные члены которых находятся в правых частях. Под решением системы понимается всякая тройка чисел (х, у, г), удовлетворяющая этой системе. Введем определитель системы

а также дополнительные определители

Последовательно умножая уравнения системы (1) на алгебраические дополнения соответствующих элементов первого столбца определителя D, получим

Отсюда, применяя теорему разложения и следствие 2 к свойству II, будем иметь , т. е. Используя алгебраические дополнения элементов второго и третьего столбцов определителя D, аналогично находим

Если определитель системы , то из уравнений (5) и получаем единственное решение системы (1): Таким образом, имеем правило Крамера: неизвестные стандартной линейной системы (1) с ненулевым определителем представляют собой дроби, знаменатель которых есть определитель системы, а числители равны соответствующим дополнительным определителям.

Замечание. Если определитель системы D = 0, то система (1) или несовместна, или имеет бесконечно много решений.

Пример:

Решение:

Вычитая из второго столбца удвоенный первый столбец, а из третьего столбца утроенный первый столбец, получим

Для дополнительных определителей находим следующие значения: Используя правило Крамера, получаем решение системы:

Однородная система трех линейных уравнений

Рассмотрим линейную систему

свободные члены которой равны нулю. Такая линейная система называется однородной.

Однородная линейная система (1), очевидно, допускает нулевое решение х = 0, у = 0, z = 0 и, следовательно, всегда совместна.

Интересно выяснить случаи, когда однородная система имеет ненулевые решения.

Теорема: Линейная однородная система трех линейных уравнений с тремя неизвестными имеет ненулевые решения тогда и только тогда, когда ее определитель равен нулю, т. е.

Доказательство: Пусть система (1) имеет ненулевое решение Если определитель ее то на основании формул Крамера система (1) обладает только нулевым решением, что противоречит предположению. Следовательно, D = 0.

Пусть D = 0. Тогда линейная система (1) либо несовместна, либо имеет бесконечно много решений. Но наша система совместна, так как имеется нулевое решение. Следовательно, система (1) допускает бесконечно много решений, в том числе и ненулевые.

Замечание. Укажем способ нахождения ненулевых решений однородной системы (1) в типичном случае.

Пусть определитель системы D = 0, но не все его миноры второго порядка равны нулю.

Мы будем предполагать, что

(этого всегда можно добиться с помощью перестановки уравнений и изменения нумерации неизвестных).

Рассмотрим подсистему, состоящую из двух первых уравнений системы (1):

В силу решения этой системы имеют вид

где — соответствующие алгебраические дополнения. Подставляя эти числа в неиспользованное третье уравнение системы (1) и учитывая, что определитель D = 0, получаем

Следовательно, формулы (5), где t произвольно, дают все решения полной системы (1).

Геометрически уравнения системы (1) представляют собой уравнения трех плоскостей в пространстве Oxyz. Если определитель , то эти плоскости пересекаются в единственной точке 0(0, 0, 0); если же определитель D =0, но не все его миноры второго порядка равны нулю, то в нашем случае эти плоскости пересекаются по прямой линии (как «листы книги»). Без рассмотрения оставлен случай слияния трех плоскостей.

Система линейных уравнений с многими неизвестными. Метод Гаусса

Рассмотрим систему линейных уравнений с неизвестными:

Здесь для коэффициентов системы введена двойная индексация, а именно: у коэффициента первый индекс i обозначает номер уравнения, а второй j — номер неизвестного. Для удобства выкладок свободные члены обозначены через

Наиболее простой метод решения системы (1) — это метод исключения. Мы изложим его в форме схемы Гаусса (обычно называемой методом Гаусса).

Пусть для определенности — ведущий коэффициент». Разделив все члены первого уравнения на аи, будем иметь приведенное уравнение

Рассмотрим i-e уравнение системы (1):

Для исключения xx из этого уравнения умножим приведенное уравнение (2) на ап и полученное уравнение вычтем из уравнения (4). Тогда будем иметь

Таким образом, получаем укороченную систему

коэффициенты которой определяются по формулам (6).

Если ее ведущий коэффициент , то из системы (7) указанным выше приемом можно исключить неизвестное . причем новые коэффициенты будут вычисляться по формулам типа (6) и т.д. Эта часть вычислений называется прямым ходом метода Гаусса.

Для определения неизвестных Рассмотрим приведенные уравнения

Отсюда последовательно находим неизвестные (обратный ход) Заметим, что операции (9) выполняются без деления.

Если очередной ведущий коэффициент окажется равным нулю, то уравнения системы следует переставить надлежащим образом. Возможно, конечно, что система (1) несовместна. Тогда, естественно, метод Гаусса не допускает реализации.

Пример:

Методом Гаусса решить систему

Решение:

Составляем таблицу коэффициентов системы (10), рассматривая свободные члены ее как коэффициенты при :

Последний столбец содержит суммы элементов соответствующих строк таблицы; этот столбец служит для контроля вычислений.

Считая отмеченный коэффициент 2 ведущим и деля на этот коэффициент все элементы первой строки таблицы (включая и входящий в столбец ), получаем коэффициенты первого приведенного уравнения (см. табл.). Текущий контроль вычислений осуществляется тем, что элемент из столбца равен сумме всех остальных элементов этой строки. Этим заканчивается заполнение раздела I таблицы.

Далее, используя формулу (6), подсчитываем коэффициенты укороченной системы, не содержащей неизвестного xv Для наглядности будем называть строку, содержащую коэффициенты приведенного уравнения, приведенной, а столбец, содержащий ведущий элемент раздела, — ведущим. Тогда на основании формулы (6) справедливо правило: преобразованные коэффициенты схемы Гаусса, равны ее прежним коэффициентам минус произведение «проекций» их на соответствующие приведенную строку и ведущий столбец таблицы. Пользуясь этим, заполняем раздел II таблицы, включая контрольный столбец. Для удобства вычислении в качестве ведущего коэффициента раздела П берем элемент 8 (см. табл.).

Аналогично производится заполнение раздела III таблицы. Этим заканчивается прямой ход схемы Гаусса.

Неизвестные последовательно определяются из приведенных уравнений

(обратный ход). Результаты обратного хода помещены в разделе IV таблицы.

Заметим, что если в качестве свободных членов взять элементы столбца , то для неизвестных получатся значения превышающие на единицу значения неизвестных Этим обеспечивается заключительный контроль вычислений.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Метод Гаусса — определение и вычисление
  • Прямая линия на плоскости и в пространстве
  • Плоскость в трехмерном пространстве
  • Функция одной переменной
  • Ряды в математике
  • Дифференциальные уравнения с примерами
  • Обратная матрица — определение и нахождение
  • Ранг матрицы — определение и вычисление

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Системы линейных уравнений

Обозначим через $ \mathbb A_<> $ любое из множеств $ \mathbb Q_<>, \mathbb R_<> $ или $ \mathbb C_<> $.

Примеры систем уравнений над $ \mathbb R $.

Относительно числа $ m_<> $ уравнений не делается ни какого предположения: оно может быть меньше, больше или равно числу переменных $ n_<> $. Если $ m_<>>n $ то система называется переопределенной. Решением системы уравнений называется любой набор значений переменных $ x_1=\alpha_<1>,\dots, x_n = \alpha_n $, обращающий каждое из уравнений в истинное равенство. Система называется совместной если она имеет хотя бы одно решение и несовместной в противном случае.

Можно доказать (см. результаты ☟ НИЖЕ ), что все возможности для произвольной системы ограничиваются следующими вариантами:

1. система совместна и имеет единственное решение;

2. cистема совместна и имеет бесконечное множество решений;

3. cистема несовместна.

При этом все решения будут находиться в том же множестве $ \mathbb A_<> $, что и коэффициенты системы.

Матричная форма записи

Для системы линейных уравнений относительно переменных $ x_1,x_2,\dots,x_n $ $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=b_1,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=b_2,\\ \dots & & & & \dots \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=b_m. \end \right. $$ матрицей системы называется матрица $$ A=\left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>\\ a_ <21>& a_ <22>& \dots & a_ <2n>\\ \dots &&& \dots \\ a_ & a_ & \dots & a_ \end \right)_ \ ; $$ cтолбец $$ <\mathcal B>= \left( \begin b_ <1>\\ b_ <2>\\ \vdots \\ b_ \end \right) $$ называется столбцом правых частей системы, а столбец $$ X= \left( \begin x_ <1>\\ x_ <2>\\ \vdots \\ x_ \end \right) $$ — столбцом неизвестных. Используя правило умножения матриц, систему можно записать в матричном виде: $$ AX= <\mathcal B>\ . $$ Любое решение $ x_1=\alpha_1,\dots,x_n=\alpha_n $ системы можно также записать в виде столбца: $$ X=\left( \begin \alpha_1 \\ \vdots \\ \alpha_n \end \right) \in \mathbb A^n \ . $$ Матрица, составленная из всех коэффициентов системы уравнений: $$ [A \mid \mathcal B ]= \left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \dots & a_ <2n>& b_2 \\ \dots &&& & \dots \\ a_ & a_ & \dots & a_ & b_m \end \right)_ \ , $$ т.е. конкатенацией матрицы $ A_<> $ и столбца правых частей $ <\mathcal B>_<> $ называется расширенной матрицей системы л.у.

Исключение переменных (метод Гаусса)

метода достаточно проста.

Пример. Решить систему уравнений $$ \left\< \begin 2x_1&-3x_2&-x_3&=3 \\ 4x_1&-3x_2&-5x_3&=6 \\ 3x_1&+5x_2&+9x_3&=-8 \end \right. $$

Решение. Выразим из первого уравнения $ x_ <1>$ $$ x_1=\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3> <2>$$ и подставим в оставшиеся уравнения $$ 4 \left(\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>\right) -3\,x_2-5\,x_3=6 \ <\color\iff > \ 3x_2-3x_3 = 0 $$ $$ \ <\color\iff > \ x_2-x_3=0 \ ; $$ $$ 3 \left(\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>\right) +5x_2+9x_3=-8 \ <\color\iff > \ \frac<19> <2>x_2 +\frac<21><2>x_3=-\frac<25> <2>$$ $$ <\color\iff > 19x_2 +21x_3=-25 \ . $$ Два получившихся уравнения не зависят от неизвестной $ x_ <1>$ — она оказалась исключенной из этих уравнений. Иными словами, мы получили новую подсистему уравнений $$ \left\< \begin x_2&-x_3&=0 \\ 19x_2&+21x_3&=-25, \end \right. $$ которой должны удовлетворять неизвестные $ x_ <2>$ и $ x_ <3>$. Продолжаем действовать по аналогии: выразим из первого уравнения $ x_ <2>$ через $ x_ <3>$: $$x_2=x_3 $$ и подставим во второе: $$ 40 x_3 =-25 \ \iff \ x_3=-\frac<5> <8>\ . $$ Итак, значение одной компоненты решения получено. Для нахождения оставшихся подставим значение $ x_ <3>$ в полученные по ходу решения соотношения: $$ x_2=x_3=-\frac<5> <8>\ \Rightarrow \ x_1=\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>=\frac<1> <4>\ . $$

Ответ. $ x_<1>=1/4, x_2=-5/8, x_3=-5/8 $.

Теперь осталось формализовать изложенную идею метода (сформулировав допустимые правила действия над уравнениями — те, что в принципе, очевидны из здравого смысла ), а также исследовать возможные последствия его применения к системам общего вида.

Исключение переменных

Элементарными преобразованиями системы л.у. называются преобразования следующих трех типов:

1. перестановка двух уравнений;

2. умножение обеих частей уравнения на любое отличное от нуля число;

3. прибавление к одному уравнению любого другого, умноженного на произвольное число: пара уравнений $$ \begin a_x_1 +a_x_2+ \ldots+a_x_n &=&b_j,\\ a_x_1 +a_x_2+ \ldots+a_x_n &=&b_k \end $$ заменяется парой $$ \begin (a_+ <\color\lambda > a_) x_1 &+ (a_+ <\color\lambda > a_) x_2 &+ \ldots &+ (a_+ <\color\lambda > a_) x_n &=&b_j + <\color\lambda > b_k\, , \\ a_x_1 &+a_x_2&+ \ldots &+a_x_n &=&b_k \, . \end $$

Теорема. Любое элементарное преобразование системы л.у. переводит эту систему в ей эквивалентную, т.е. имеющую то же множество решений, что и исходная.

Задача. С помощью элементарных преобразований привести систему л.у. к наиболее простому виду: такому, из которого легко было бы установить множество решений.

Предположим, что первое уравнение системы содержит явно неизвестную $ x_ <1>$, т.е. $ a_<11>^<> \ne 0 $. Исключим эту неизвестную из всех оставшихся уравнений. С этой целью вычтем из второго уравнения первое, домноженное на $ a_<21>/a_<11>^<> $. Получим $$\left(a_<22>— \frac>> a_ <12>\right)x_2 + \dots + \left(a_<2n>— \frac>> a_ <1n>\right)x_n = b_2 — \frac>> b_1 \ , $$ Аналогичное преобразование — вычитание из третьего уравнения системы первого, умноженного на $ a_<31>/a_<11>^<> $, позволяет исключить $ x_ <1>$ из этого уравнения, т.е. заменить его на $$\left(a_<32>— \frac>> a_ <12>\right)x_2 + \dots + \left(a_<3n>— \frac>> a_ <1n>\right)x_n = b_3 — \frac>> b_1 \ . $$ Продолжаем процесс далее. В конечном итоге исключаем $ x_ <1>$ из всех уравнений кроме первого: $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=b_1,\\ &a_<22>^<[1]>x_2&+ \ldots&+a_<2n>^<[1]>x_n &=b_2^<[1]>,\\ &\dots & & & \dots \\ &a_^<[1]>x_2&+ \ldots&+a_^<[1]>x_n &=b_m^<[1]>. \end \right. \ \ npu \ \ \begin a_^ <[1]>&= & \displaystyle a_ — \fraca_<1k>>> ,\\ b_j^ <[1]>&= & \displaystyle b_j — \fracb_1>> . \end $$ Полученная система эквивалентна исходной системе, однако она имеет более простой вид: в ней выделилась подсиcтема $$ \left\< \begin a_<22>^<[1]>x_2&+ \ldots&+a_<2n>^<[1]>x_n &=b_2^<[1]>,\\ \dots & & & \dots \\ a_^<[1]>x_2&+ \ldots&+a_^<[1]>x_n &=b_m^<[1]>, \end \right. $$ которая не зависит от переменной $ x_ <1>$. К этой новой подсистеме можно применить те же рассуждения, что и к исходной системе, поставив теперь целью исключение переменной $ x_ <2>$.

Понятно, что процесс исключения может быть продолжен и далее. Теперь посмотрим, где он может прерваться. Может так случиться, что очередная, $ \ell_<> $-я подсистема имеет коэффициент $ a_<\ell \ell>^ <[\ell-1]>$ равным нулю, что не позволит алгоритму идти дальше — т.е. исключить переменную $ x_<\ell>^<> $ из оставшихся уравнений (в принципе, такое могло случиться уже на первом шаге, если бы коэффициент $ a_<11>^<> $ был бы равен нулю). Возможные варианты дальнейших действий:

1. если хотя бы один коэффициент при $ x_<\ell>^<> $ в одном из оставшихся уравнений отличен от нуля: $ a_^<[\ell-1]>\ne 0^<> $, то это уравнение переставляется с $ \ell_<> $-м;

2. если при всех $ j\ge \ell^<> $ коэффициенты $ a_^ <[\ell-1]>$ равны нулю, то переменная $ x_<\ell>^<> $ не входит ни в одно оставшееся уравнение, и можно перейти к исключению переменной $ x_<\ell+1>^<> $.

Поскольку число переменных конечно, то алгоритм исключения должен завершиться за конечное число шагов. Чем он может завершиться? Окончательная система должна иметь вид: $$ \left\< \begin a_<11>x_1 +&a_<12>x_2&+ \ldots& +a_<1 <\mathfrak r>>x_<\mathfrak r>& +a_ <1 ,<\mathfrak r>+1>x_<<\mathfrak r>+1>&+ \ldots + & a_<1n>x_n &=b_1,\\ &a_<22>^<[1]>x_2&+ \ldots& +a_<2 <\mathfrak r>>^ <[1]>x_<\mathfrak r>& +a_<2 ,<\mathfrak r>+1>^ <[1]>x_<<\mathfrak r>+1>&+ \ldots + & a_<2n>^ <[1]>x_n &=b_2^<[1]>,\\ & & \ddots & & & & & \dots \\ & & & a_ <<\mathfrak r><\mathfrak r>>^<[<\mathfrak r>-1]>x_ <\mathfrak r>& + a_ <<\mathfrak r>, <\mathfrak r>+1>^<[<\mathfrak r>-1]>x_<<\mathfrak r>+1>& + \ldots + & a_ <<\mathfrak r>,n>^<[<\mathfrak r>-1]>x_n &=b_<\mathfrak r>^<[<\mathfrak r>-1]>, \\ & & & & & & 0 &=b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>, \\ & & & & & & \dots & \\ & & & & & & 0 &=b_^<[<\mathfrak r>-1]>, \\ \end \right. $$ при $ <\mathfrak r>\le n_<> $. Заметим, что все коэффициенты этой системы будут принадлежать тому же множеству, что и коэффициенты исходной системы.

Предположение . Мы будем считать, что каждое из первых $ <\mathfrak r>_<> $ уравнений системы содержит в своей левой части хотя бы одну переменную с ненулевым коэффициентом.

Процесс получения системы такого вида из исходной системы уравнений называется прямым ходом метода Гаусса.

Исторический комментарий о Гауссе ☞ ЗДЕСЬ.

Установление множества решений

Теорема. Если хотя бы одно из чисел $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>,\dots , b_^<[<\mathfrak r>-1]> $ отлично от нуля, то исходная система линейных уравнений будет несовместной.

Для простоты мы будем иллюстрировать наши рассуждения на системах л.у. над $ \mathbb R_<> $, в этом же множестве искать решения. Каждое из преобразований метода Гаусса будем обозначать $ \to_<> $.

Пример. Решить систему л.у.

$$ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ 2\,x_1&+x_2&-2\, x_3 =& 1 \\ x_1&+x_2&+ x_3 =& 3 \\ x_1&+2\,x_2&-3\, x_3 =& 1. \end \right. $$

Решение. $$ \ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &x_2&=& 2 \end \right. \ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &&4\, x_3=& 5 \end \right. \ \to \ $$ $$ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &&0=& 1 \end \right. $$ Последнее равенство абсолютно противоречиво.

Ответ. Система несовместна.

Пусть теперь $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>=0,<>\dots, b_^<[<\mathfrak r>-1]>=0 $. Возможны два случая: $ <\mathfrak r>=n_<> $ и $ <\mathfrak r>предположения , имеем $ a_^ <[n-1]>\ne 0 $. Но тогда, поскольку система является конечной стадией прямого хода метода Гаусса, то и все коэффициенты $ a_^<[n-2]>, \dots, a_<22>^<[1]>, a_ <11>$ должны быть отличны от нуля — в противном случае метод Гаусса не остановился бы на системе такого вида; он называется треугольным: Из последнего уравнения системы можно однозначно установить значение $ x_ $: $$x_n=b_n^ <[n-1]>\big/ a_^ <[n-1]>\ .$$ Далее, подставляя это значение в $ (n-1) $-е уравнение системы, выражаем $ x_ $: $$ x_= \frac^ <[n-2]>— a_^<[n-2]>x_>< a_^<[n-2]>>= \frac< b_^ <[n-2]>— a_^ <[n-2]>b_n^ <[n-1]>\Big/ a_^<[n-1]>>< a_^<[n-2]>> . $$ Подставляем полученные значения для $ x_ $ и $ x_ $ в $ (n-2)_<> $-е уравнение системы, выражаем $ x_ $, и т.д., в конце концов приходим к первому уравнению, из которого выражаем $ x_ <1>$ если ранее уже получены выражения для $ x_2,\dots,x_ $.

Теорема. Если прямой ход метода Гаусса заканчивается треугольной системой, т.е. $ \mathfrak r = n_<> $ и $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>=0,<>\dots, b_^<[<\mathfrak r>-1]>=0 $, то исходная система линейных уравнений имеет единственное решение.

Пример. Решить систему л.у.

$$ \left\< \begin x_1&+3\,x_2&+ x_3 =&5 \\ 2\,x_1&+x_2&+ x_3 =& 2 \\ x_1&+x_2&+ 5\,x_3 =& -7 \\ 2\,x_1&+3\,x_2&-3\, x_3 =& 14. \end \right. $$

Ответ. $ x_1=1,\, x_<2>=2,\, x_3=-2 $ .

Исследуем теперь случай $ <\mathfrak r>1) : На основании предположения , в $ <\mathfrak r>$-м уравнении этой системы имеется хотя бы один ненулевой коэффициент в левой части, пусть $ a_ <<\mathfrak r><\mathfrak s>>^<[<\mathfrak r>-1]>\ne 0 $ — первый из них. Если $ <\mathfrak s>=n $, то из этого уравнения однозначно определится $ x_ $ $$ x_n=\alpha_n = b_<\mathfrak r>^<[<\mathfrak r>-1]> \big/ a_ <<\mathfrak r>n>^<[<\mathfrak r>-1]> \ . $$ Если же $ <\mathfrak s>предположения , в этом уравнении имеется хотя бы один ненулевой коэффициент в левой части; пусть $ a_<<\mathfrak r>-1, <\mathfrak k>>^<[<\mathfrak r>-2]>\ne 0_<> $ — первый из них. Поскольку мы преположили, что система является конечной стадией прямого хода метода Гаусса, то $ <\mathfrak k>по крайней мере две переменные, значения которых еще не были зафиксированы на предыдущих шагах. Это следует из предположения, что число уравнений $ <\mathfrak r>_<> $ меньше числа неизвестных $ n_<> $. Такое уравнение допускает бесконечное число решений, любое из которых в ходе дальнейших шагов может быть «доделано» до решения системы.

Теорема. Если прямой ход метода Гаусса заканчивается трапециевидной системой, т.е. $ \mathfrak r 2) матрицы $ A_<> $ (третьего порядка). Понятие определителя распространяется и на квадратные матрицы бóльших порядков; образно говоря, определитель — это функция элементов матрицы, отвечающая за единственность решения системы уравнений.

Дальнейший матричный анализ метода Гаусса ☞ ЗДЕСЬ.

Формулы Крамера

Рассмотрим систему линейных уравнений с квадратной матрицей $ A_<> $, т.е. такую, у которой число уравнений совпадает с числом неизвестных.

Теорема. Cистема

$$ \left\<\begin a_<11>x_1 +a_<12>x_2+\ldots+a_<1n>x_n &=&b_1\\ a_<21>x_1 +a_<22>x_2+\ldots+a_<2n>x_n &=&b_2\\ \ldots& & \ldots \\ a_x_1 +a_x_2+\ldots+a_x_n &=&b_n \end\right. $$ имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля: $$ \left| \begin a_ <11>& a_ <12>& \dots & a_ <1n>\\ a_ <21>& a_ <22>& \dots & a_ <2n>\\ \dots &&& \dots \\ a_ & a_ & \dots & a_ \end \right| \ne 0 \ . $$ В этом случае решение можно вычислить по формулами Крамера 3) : $$ x_k =\frac<\det \left[ A_<[1]>|\dots|A_<[k-1]>|<\mathcal B>|A_<[k+1]>|\dots|A_ <[n]>\right]> <\det A>\quad npu \quad k\in \ < 1,\dots,n \>\ . $$ Для получения значения $ x_ $ в числитель ставится определитель, получающийся из $ \det A_<> $ заменой его $ k_<> $-го столбца на столбец правых частей ( здесь $ <> | $ означает конкатенацию).

Доказательство ☞ ЗДЕСЬ

Пример. Решить систему уравнений

$$ \left\<\begin 2x_1& +3x_2&+11x_3&+5x_4 &=& \color2,\\ x_1& +x_2&+5x_3&+2x_4 &=& \color1 ,\\ 2x_1& +x_2&+3x_3&+2x_4 &=&\color<-3>,\\ x_1& +x_2&+3x_3&+4x_4 &=&\color<-3>. \end\right. $$

Решение. $$ x_1=\frac<\left|\begin \color2 & 3&11&5 \\ \color1 & 1&5&2 \\ \color<-3>& 1&3&2 \\ \color <-3>& 1&3&4 \end\right|> <\left|\begin 2& 3&11&5 \\ 1& 1&5&2 \\ 2& 1&3&2 \\ 1& 1&3&4 \end\right|>=\frac<-28><14>=-2, x_2=\frac<\left|\begin 2& \color2&11&5 \\ 1& \color1&5&2 \\ 2& \color<-3>&3&2 \\ 1& \color<-3>&3&4 \end\right|> <\left|\begin 2& 3&11&5 \\ 1& 1&5&2 \\ 2& 1&3&2 \\ 1& 1&3&4 \end\right|>=\frac<0><14>=0, \dots $$ Найдите оставшиеся компоненты решения. ♦

Решение системы линейных уравнений с квадратной матрицей $ A_<> $ является непрерывной функцией коэффициентов этой системы при условии, что $ \det A_<> \ne 0 $.

Кроме того, формулы Крамера начинают конкурировать по вычислительной эффективности с методом Гаусса в случае систем, зависящих от параметра. Подробнее ☞ ЗДЕСЬ.

Еще один способ решения системы основан на построении обратной матрицы: $$ AX= <\mathcal B>\quad \Rightarrow \quad X=A^<-1> <\mathcal B>\ . $$ Этот способ малоэффективен при фиксированных числовых $ A_<> $ и $ <\mathcal B>_<> $.

Найти достаточное условие существования общего решения систем уравнений:

$$ A_1 X = <\mathcal B>_1 \quad u \quad A_2 Y = <\mathcal B>_2 \ , $$ при квадратных матрицах $ A_1 $ и $ A_2 $ одинакового порядка.

Теорема Кронекера-Капелли

Матрица, получающаяся конкатенацией матрицы $ A_<> $ и столбца правых частей $ <\mathcal B>_<> $ $$ [ A| <\mathcal B>] = \left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \dots & a_ <2n>& b_2 \\ \dots &&& & \dots \\ a_ & a_ & \dots & a_ & b_m \end \right)_ $$ называется расширенной матрицей системы линейных уравнений $ AX= <\mathcal B>$.

Теорема [Кронекер, Капелли]. Система $ AX= <\mathcal B>$ совместна тогда и только тогда, когда ранг матрицы этой системы совпадает с рангом ее расширенной матрицы:

$$ \operatorname\, A = \operatorname\, [ A| <\mathcal B>] \ . $$ При выполнении этого условия, система имеет единственное решение, если число неизвестных $ n_<> $ совпадает с общим значением ранга $ \mathfrak r_<> $, и бесконечное множество решений, если $ n_<> $ больше этого значения.

Доказательство необходимости. Пусть существует решение $ x_1=\alpha_1,\dots,x_n=\alpha_n $ системы, тогда $$\alpha_1 A_<[1]>+\dots+\alpha_n A_<[n]>= <\mathcal B>\ ,$$ т.е. столбец $ <\mathcal B>$ линейно выражается через столбцы $ A_<[1]>,\dots,A_ <[n]>$. Но тогда $$ \operatorname \,\dots,A_<[n]>\>=\operatorname \,\dots,A_<[n]>,<\mathcal B>\> .$$ Следовательно $ \operatorname\, A = \operatorname\, [ A| <\mathcal B>] $.

Доказательство достаточности проводится в следующем пункте. ♦

Пример. Исследовать совместность системы уравнений

Решение. В этом примере число уравнений совпадает с числом неизвестных. Это обстоятельство несколько облегчает рассуждения. Обратимся к замечанию из предыдущего пункта: система л.у. с числом уравнений, совпадающем с числом неизвестных, как правило, совместна. Тогда попробуем установить условия, обеспечивающие противоположное свойство — несовместность. Оно, фактически, единственно: за все отвечает определитель системы $ \det A_<> $. Если он отличен от нуля — система совместна. $$\det A = \left| \begin<\color<\lambda>> &1&1&1 \\ 1&<\color<\lambda>>&1&1 \\ 1&1&<\color<\lambda>>&1 \\ 1&1&1&<\color<\lambda>> \end \right|= \left| \begin (<\color<\lambda>>-1) &(1-<\color<\lambda>>)&0&0 \\ 0&(<\color<\lambda>>-1)&(1-<\color<\lambda>>)&0 \\ 0&0&(<\color<\lambda>>-1)&(1-<\color<\lambda>>) \\ 1&1&1&<\color<\lambda>> \end \right| =(<\color<\lambda>>-1)^3 \left| \begin 1 &-1&0&0 \\ 0&1&-1&0 \\ 0&0&1&-1 \\ 1&1&1&<\color<\lambda>> \end \right|= $$ $ =(<\color<\lambda>>-1)^3(<\color<\lambda>>+3) $. По теореме Крамера при $ <\color<\lambda>>\ne 1 $ и при $ <\color<\lambda>>\ne -3 $ решение системы единственно: $$x_1=x_2=x_3=x_4=1/(<\color<\lambda>>+3) \ .$$

Осталось исследовать критические случаи: $ <\color<\lambda>>=1_<> $ и $ <\color<\lambda>>= -3 $: определитель системы обращается в нуль, но система может оказаться совместной. Придется вычислять ранги, но, к счастью, уже числовых матриц (а не зависящих от параметра, как исходная!). При $ <\color<\lambda>>= 1_<> $ имеем $$ \operatorname \left( \begin 1 &1&1&1 \\ 1&1&1&1 \\ 1&1&1&1 \\ 1&1&1&1 \end \right)= \operatorname \left( \begin 1&1&1&1&1 \\ 1&1&1&1&1 \\ 1&1&1&1&1 \\ 1&1&1&1&1 \end \right)=1 \ , $$ и система совместна. Она эквивалентна единственному уравнению $$x_1+x_2+x_3+x_4=1 \ ,$$ которое имеет бесконечно много решений.

При $ <\color<\lambda>>= -3 $: $$ \operatorname \left( \begin -3 &1&1&1 \\ 1&-3&1&1 \\ 1&1&-3&1 \\ 1&1&1&-3 \end \right)=3,\quad \operatorname \left( \begin -3 &1&1&1&1 \\ 1&-3&1&1&1 \\ 1&1&-3&1&1 \\ 1&1&1&-3&1 \end \right)=4 $$ и система несовместна.

Ответ. Система несовместна при $ <\color<\lambda>> = -3 $; она имеет бесконечное множество решений при $ <\color<\lambda>> = 1_<> $ и единственное решение при $ <\color<\lambda>> \not\in \ <-3,1\>$.

Система однородных уравнений

$$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=0,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=0,\\ \dots & & & \dots & \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=0 \end \right. $$ всегда совместна: она имеет тривиальное решение $ x_1=0,\dots,x_n=0 $. Для того, чтобы у нее существовало еще и нетривиальное решение необходимо и достаточно, чтобы определитель ее матрицы был равен нулю.

Пример. Найти условие, при котором три точки плоскости с координатами $ (x_1,y_1), (x_2,y_2) $ и $ (x_3,y_<3>) $ лежат на одной прямой.

Решение. Будем искать уравнение прямой в виде $ ax+by+c=0 $ при неопределенных коэффициентах $ a,b,c_<> $. Если точки лежат на прямой, то получаем для определения этих коэффициентов систему линейных уравнений: $$ \left\< \begin ax_1+by_1+c & =0\\ ax_2+by_2+c & =0\\ ax_3+by_3+c & =0 \end \right. $$ Получившаяся система является однородной, условие существования у нее нетривиального решения (т.е. набора $ (a,b,c)_<> $ при хотя бы одном из чисел отличном от нуля): $$ \left|\begin x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end \right|=0 . $$ ♦

Доказать, что для совместности системы

$$ \left\< \begin a_<11>x_1+a_<12>x_2+a_<13>x_3 &=& b_1 \\ a_<21>x_1+a_<22>x_2+a_<23>x_3 &=& b_2 \\ a_<31>x_1+a_<32>x_2+a_<33>x_3 &=& b_3 \\ a_<41>x_1+a_<42>x_2+a_<43>x_3 &=& b_4 \end \right. $$ необходимо, чтобы было выполнено условие $$ \left| \begin a_<11>&a_<12>& a_ <13>& b_1 \\ a_<21>&a_<22>& a_ <23>& b_2 \\ a_<31>&a_<32>& a_ <33>& b_3 \\ a_<41>&a_<42>& a_ <43>& b_4 \end \right|=0 \quad . $$ Является ли это условие достаточным для совместности?

An elementary treatise on determinants

в следующей формулировке.

Теорема. Для того чтобы система $ n_<> $ неоднородных уравнений была совместна, необходимо и достаточно, чтобы порядок наибольшего отличного от нуля минора был одинаков в расширенной и нерасширенной матрице системы.

Додсон — один из самых знаменитых математиков мира. Назовите его псевдоним.

Ответ ☞ ЗДЕСЬ

Общее решение

Пусть выполнено условие теоремы Кронекера-Капелли: $ \operatorname (A)=\operatorname[A\mid \mathcal B ] =\mathfrak $. По определению ранга матрицы, в матрице $ A $ существует минор порядка $ \mathfrak $, отличный от нуля; этот же минор останется и минором расширенной матрицы $ [ A\mid \mathcal B ] $. Пусть, для определенности, ненулевой минор находится в левом верхнем углу матрицы 4) : $$ \Delta = A\left( \begin 1 & 2 & \dots & \mathfrak \\ 1 & 2 & \dots & \mathfrak \end \right) = \left| \begin a_ <11>& a_ <12>& \dots & a_<1\mathfrak> \\ a_ <21>& a_ <22>& \dots & a_<2\mathfrak> \\ \dots &&& \dots \\ a_<\mathfrak1> & a_<\mathfrak2> & \dots & a_ <\mathfrak\mathfrak> \end \right| \ne 0 \ . $$ Тогда первые $ \mathfrak $ строк матрицы $ A $ линейно независимы, а остальные будут линейно выражаться через них. Это же утверждение будет справедливо и для строк матрицы $ [A\mid \mathcal B] $. Умножая первые $ \mathfrak $ уравнений системы на соответствующие числа и складывая их, получим любое оставшееся уравнение. Таким образом, система уравнений может быть заменена эквивалентной ей системой из первых $ \mathfrak $ уравнений: $$ \left\< \begin a_<11>x_1+\dots+a_<1\mathfrak>x_<\mathfrak>&+a_<1,\mathfrak+1>x_<\mathfrak+1>+ \dots +a_<1n>x_n&=&b_1, \\ \dots & & & \dots \\ a_<\mathfrak1>x_1+\dots+a_<\mathfrak\mathfrak>x_<\mathfrak>& +a_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<\mathfrakn>x_n&=&b_\mathfrak \end \right. \quad \iff \quad A^ <\prime>X=<\mathcal B>^ <\prime>$$ Если $ \mathfrak=n $, то матрица $ A^ <\prime>$ квадратная. По предположению $ \det A^ <\prime>\ne 0 $. По теореме Крамера решение такой системы единственно.

Пусть теперь $ \mathfrak произвольных фиксированных значениях $ x_<\mathfrak+1>,\dots,x_n $: $$ x_j=\frac< \left| \begin a_ <11>& \dots &a_ <1,j-1>&\left[ b_1-(a_<1,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<1n>x_n) \right] &a_<1,j+1>& \dots &a_<1\mathfrak> \\ \dots &&&\dots&&& \dots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & \left[ b_<\mathfrak>- (a_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<\mathfrakn>x_n) \right] &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right| > <\Delta>$$ $$ \mbox <при>\ j\in \<1,\dots, \mathfrak\> . $$ Таким образом, в этом случае система имеет бесконечное множество решений. Используя свойство линейности определителя по столбцу (см. свойство 5 ☞ ЗДЕСЬ ), формулы можно переписать в виде $$ x_j=\beta_j + \gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \ <1,\dots, \mathfrak\> \ . $$ Здесь $$ \beta_j =\frac<1> <\Delta>\left| \begin a_ <11>& \dots &a_ <1,j-1>& b_1 &a_<1,j+1>& \dots &a_<1\mathfrak> \\ \vdots &&&\vdots&&& \vdots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & b_<\mathfrak> &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right|\, , $$ $$ \gamma_ = -\frac<1> <\Delta>\left| \begin a_ <11>& \dots &a_ <1,j-1>& a_ <1k>&a_<1,j+1>& \dots &a_<1\mathfrak> \\ \vdots &&&\vdots&&& \vdots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & a_<\mathfrakk> &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right| \ . $$ Эти формулы называются общим решением системы $ A X=\mathcal B $. Участвующие в них переменные $ x_<\mathfrak+1>,\dots,x_n $ называются основными (или свободными), а $ x_1,\dots,x_<\mathfrak> $ — зависимыми. Решение, получающееся из общего решения фиксированием значений основных переменных, называется частным решением системы уравнений.

Пример. Исследовать совместность и найти общее решение системы уравнений:

Решение проведем двумя способами, соответствующими двум способам вычисления ранга матрицы. Вычисляем сначала ранг матрицы $ A $ по методу окаймляющих миноров: $$ |2| \ne 0,\quad \left| \begin 2 & 1 \\ 6 & 2 \end \right| \ne 0, \quad \left| \begin 2 & 1 & 2 \\ 6 & 2 & 4 \\ 4 & 1 & 1 \end \right|=2 \ne 0 \ , $$ а все миноры, окаймляющие последний, равны нулю. Итак, $ \operatorname (A) =3 $. Для нахождения ранга расширенной матрицы $ [A\mid \mathcal B] $ достаточно проверить окаймление найденного ненулевого минора третьего порядка с помощью элементов взятых из столбца правых частей. Имеется всего один такой минор, и он равен нулю. Следовательно $ \operatorname[ A\mid \mathcal B ] =3 $, система совместна, и имеет бесконечное множество решений.

Ненулевой минор третьего порядка (базисный минор) находится в первой, второй и четвертых строках, что означает линейную независимость соответствующих уравнений. Третье уравнение линейно зависит от остальных, и может быть отброшено. Далее, указанный базисный минор образован коэффициентами при $ x_1,x_3 $ и $ x_4 $. Следовательно оставшиеся уравнения могут быть разрешены относительно этих переменных, т.е. они — зависимые, а $ x_2 $ и $ x_5 $ — основные. Использование формулы дает общее решение $$ \begin x_1&=&\frac<\left| \begin 2 & 1 & 2 \\ 3 & 2 & 4 \\ 1 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin -1 & 1 & 2 \\ -3 & 2 & 4 \\ -2 & 1 & 1 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 3 & 1 & 2 \\ 5 & 2 & 4 \\ 2 & 1 & 1 \end \right|> <\displaystyle 2>=-\frac<1><2>+\frac<1><2>x_2+\frac<1><2>x_5, \\ & & \\ x_3&=&\frac<\left| \begin 2 & 2 & 2 \\ 6 & 3 & 4 \\ 4 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin 2 & -1 & 2 \\ 6 & -3 & 4 \\ 4 & -2 & 1 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 2 & 3 & 2 \\ 6 & 5 & 4 \\ 4 & 2 & 1 \end \right|><\displaystyle 2>=3-4x_5, \\ & & \\ x_4 &=&\frac<\left| \begin 2 & 1 & 2 \\ 6 & 2 & 3 \\ 4 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin 2 & 1 & -1 \\ 6 & 2 & -3 \\ 4 & 1 & -2 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 2 & 1 & 3 \\ 6 & 2 & 5 \\ 4 & 1 & 2 \end \right|> <\displaystyle 2>= 0. \end $$ Решим теперь ту же задачу, воспользовавшись методом Гаусса исключения переменных в системе линейных уравнений: $$ \left\< \begin 2x_1&-x_2&+x_3&+2x_4&+3x_5&=&2, \\ &&x_3&+2x_4&+4x_5&=&3, \\ &&&x_4&&=&0 \end \right. $$ Используя обратный ход метода Гаусса, снова приходим к полученным формулам.

Ответ. Общее решение системы: $ x_1=1/2 (x_2+x_5-1),\ x_3=3-4\,x_5,\ x_4=0 $.

Проанализируем теперь полученные общие формулы для общего решения. В этих формулах $ \beta_j $ представляет решение системы, получаемое при $ x_<\mathfrak+1>=0,\dots,x_n=0 $. Величины же коэффициентов $ \gamma_ $ вовсе не зависят от правых частей системы и будут одинаковыми при любых значениях $ b_1,\dots,b_m $. В частности, если $ b_1=0,\dots,b_m=0 $, то в формулах величины $ \beta_j $ обращаются в нуль и эти формулы превращаются в $$ x_j=\gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \<1,\dots, \mathfrak\> \ . $$

Вывод. Формула общего решения системы $ A X=\mathcal B $: $$ x_j=\beta_j + \gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \ <1,\dots, \mathfrak\> $$ состоит из двух частей: слагаемые, не содержащие свободных переменных, определяют частное решение неоднородной системы: $$ x_1= \beta_1,\dots, x_<\mathfrak>= \beta_<\mathfrak>,x_<\mathfrak+1>=0,\dots,x_n=0 \ ; $$ оставшиеся после их отбрасывания формулы задают общее решение системы $ AX=\mathbb O $. Этот результат обобщается в следующей теореме.

Теорема. Общее решение системы уравнений $ A X=\mathcal B $ представимо в виде суммы какого-то частного решения этой системы и общего решения соответствующей однородной системы $ A X=\mathbb O $.

Доказательство тривиально если система $ A X=\mathcal B $ имеет единственное решение. Если же решений бесконечно много, то выбрав какое-то одно частное $ X=X_1 $ мы получаем, что любое другое частное решение $ X=X_2 $ должно быть связано с первым соотношением $$ A(X_2-X_1)=\mathbb O , $$ т.е. разность частных решений неоднородной системы обязательно является решением однородной системы уравнений $ AX=\mathbb O $. ♦

Теперь посмотрим как можно описать общее решение однородной системы.

Система однородных уравнений

Система линейных уравнений называется однородной, если все коэффициенты правых частей равны нулю: $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=0,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=0,\\ \dots & & & \dots & \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=0. \end \right. $$ или, в матричном виде: $$ A_X=<\mathbb O>_ $$

Задача ставится о поиске нетривиального решения. Оно не всегда существует. Так, к примеру, если матрица $ A_<> $ системы — квадратная и имеет ненулевой определитель, то, согласно теореме Крамера, нетривиальных решений у однородной системы нет. Теорема Кронекера-Капелли утверждает, что условие $ \det (A_<>) = 0 $ является и достаточным для существования нетривиального решения.

Теорема 1. Для того, чтобы система однородных уравнений с квадратной матрицей $ A_<> $ имела нетривиальное решение необходимо и достаточно, чтобы $ \det (A_<>) = 0 $.

Для произвольной (не обязательно квадратной) матрицы $ A_<> $ имеет место следующий общий результат.

Теорема 2. Если $ \operatorname (A)=\mathfrak r 5) $ A_^<> $.

Теорема 3. Множество решений системы однородных уравнений образует линейное подпространство пространства $ \mathbb A^ $. Размерность этого подпространства равна $ n-\mathfrak r $, а фундаментальная система решений образует его базис.

Пусть матрица системы $ AX=\mathbb O $ квадратная и

$$ \operatorname (A) =n_<>-1 \, .$$ Доказать, что если ненулевой минор матрицы порядка $ n_<>-1 $ соответствует какому-нибудь элементу $ j_<> $-й строки, то система алгебраических дополнений к элементам $ a_,\dots,a_^<> $ этой строки составляет ФСР для $ AX=\mathbb O_<> $. Например, для системы $$ \left\< \begin a_<11>x_1 +a_<12>x_2+a_<13>x_3&=0,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3&=0 \end \right. $$ ФСР состоит из решения $$ x_1=\left| \begin a_ <12>& a_ <13>\\ a_ <22>& a_ <23>\end \right| , \ x_2=-\left| \begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right| , \ x_3=\left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \ , $$ если только хотя бы один из миноров отличен от нуля.

Теперь обсудим способы нахождения ФСР.

1. Первый из них получается из общего метода решения системы линейных уравнений, рассмотренного в предыдущем пункте. Так же, как и в том пункте, сделаем упрощающее обозначения предположение, что зависимыми переменными являются первые $ x_<1>,\dots,x_ <\mathfrak r>$, т.е. общее решение задается формулами $$ x_j=\gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \<1,\dots, \mathfrak\> \ . $$ Иными словами, вектор столбец $$ X=\left(\begin \gamma_<1,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<1n>x_n \\ \gamma_<2,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<2n>x_n \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<\mathfrakn>x_n \\ x_<\mathfrak+1> \\ x_<\mathfrak+2> \\ \vdots \\ x_ \end\right) $$ будет решением однородной системы при любых наборах значений основных переменных $ x_<\mathfrak+1>,\dots,x_ $. Представим этот вектор в виде суммы векторов: $$ =x_<\mathfrak+1> \underbrace< \left(\begin \gamma_<1,\mathfrak+1> \\ \gamma_<2,\mathfrak+1> \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+1> \\ 1 \\ 0 \\ \vdots \\ 0 \end\right)>_ + x_<\mathfrak+2> \underbrace<\left(\begin \gamma_<1,\mathfrak+2> \\ \gamma_<2,\mathfrak+2> \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+2> \\ 0 \\ 1 \\ \vdots \\ 0 \end\right)>_+\dots+ x_ \underbrace<\left(\begin \gamma_ <1n>\\ \gamma_ <2n>\\ \vdots \\ \gamma_<\mathfrakn> \\ 0 \\ 0 \\ \vdots \\ 1 \end\right)>_> \ . $$ Таким образом, любое решение однородной системы представимо в виде линейной комбинации $ n_<>— \mathfrak r $ фиксированных решений. Именно эти решения и можно взять в качестве ФСР — их линейная независимость очевидна (единицы в нижних частях каждого вектора $ X_ $ расположены на разных местах, и ни какая линейная комбинация столбцов $ \ < X_1,\dots,X_\> $ не сможет обратить их одновременно в нуль).

Оформим этот способ построения ФСР в теорему:

Теорема 4. Если система уравнений $ AX=\mathbb O $ имеет структуру матрицы $ A_<> $ вида:

$$ A = \left[ E_ <\mathfrak r>\mid P_ <\mathfrak r \times (n-\mathfrak r)>\right] \ , $$ то ее ФСР состоит из столбцов матрицы $$ \left[ \begin — P^ <\top>\\ \hline E_ \end \right] \ . $$

Пример. Найти ФСР для системы уравнений

Решение. Приводим систему к трапециевидному виду: $$ \left\< \begin x_1-&x_2+&x_3-&x_4=&0, \\ &&x_3+&4x_4=&0 \end \right. $$ В качестве зависимых переменных можно взять, например, $ x_ <1>$ и $ x_ <3>$. $$ \begin x_1 & x_3 & x_2 & x_4 \\ \hline 1 & 0 & 1 & 0 \\ 5 & -4 & 0 & 1 \end $$

2. Этот способ напоминает вычисление обратной матрицы методом приписывания единичной матрицы. Транспонируем матрицу $ A_<> $ системы и припишем к ней справа единичную матрицу порядка $ n_<> $: $$ \left[ A^ <\top>| E_n \right] = \left(\begin a_ <11>& a_ <21>& \dots & a_ & 1 & 0 & 0 & \dots & 0 \\ a_ <12>& a_ <22>& \dots & a_ & 0 & 1 & 0 & \dots & 0 \\ a_ <13>& a_ <23>& \dots & a_ & 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \vdots & \vdots & & & \ddots & \vdots \\ a_ <1n>& a_ <2n>& \dots & a_ & 0 & 0 & 0 & \dots & 1 \end \right) \ ; $$ здесь $ <> |_<> <> $ означает конкатенацию. Получившуюся матрицу элементарными преобразованиями строк приводим к форме: $$ \left( \begin \hat A & K \\ \mathbb O & L \end \right) = \left(\begin \color <\star>& * & * & \dots & * & * & * & * & * & * & * & \dots & * \\ 0 & \color <\star>& * & \dots & * & * & * & * & * & * & * & \dots & * \\ 0 & 0 & \color <\star>& \dots & * & * & * & * & * & * & * & \dots & * \\ \vdots & & & \ddots & & \vdots & & & \vdots & & & & \vdots \\ 0 & 0 & \dots & & 0 & \color <\star>& * & * & * & * & * & \dots & * \\ \hline 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & \Box & \Box & \Box & \dots & \Box \\ \vdots & & & & & \vdots & & & \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & \Box & \Box & \Box & \dots & \Box \end \right) \begin \left.\begin \\ \\ \\ \\ \\ \end\right\> \mathfrak r \\ \left. \begin \\ \\ \\ \end\right\> n — \mathfrak r \end \ . $$ Элементы трапециевидной матрицы $ \hat A $, обозначенные $ \color <\star>$, могут быть равны нулю, но $ \operatorname(\hat A)= \mathfrak r_<> $. В этом случае строки матрицы $ L_<> $, образовавшейся в правом нижнем углу (ее элементы обозначены $ \Box $), составляют ФСР для системы $ AX=\mathbb O $.

Пример. Найти ФСР для системы уравнений

$$ \left\< \begin x_1 &+2\,x_2&+ x_3&+3\,x_4&-x_5&+2\,x_6=&0,\\ -3x_1 &-x_2&+ 2\,x_3&-4\,x_4&+x_5&-x_6=&0,\\ x_1 &+x_2&+ 3\,x_3&+2\,x_4&+x_5&+3\,x_6=&0,\\ -8\,x_1 &-7\,x_2&+ 4\,x_3&-15\,x_4&+6\,x_5&-5\,x_6=&0,\\ 6x_1 &+5\,x_2& +5\,x_3&+11\,x_4 &&+9\,x_6=&0. \end \right. $$ Решение. Преобразуем матрицу $ \left[ A^ <\top>| E_6 \right] $

$$ \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 2 & -1 & 1 & -7 & 5 & & 1 \\ 1 & 2 & 3 & 4 & 5 & & & 1 \\ 3 & -4 & 2 & -15 & 11 &&&& 1 \\ -1 & 1 & 1 & 6 & 0 &&&&& 1 \\ 2 & -1 & 3 & -5 & 9 &&&&&& 1 \end \right)_ <6\times 11>$$ к трапециевидной форме с помощью элементарных преобразований строк: $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 5 & 2 & 12 & -1 &-1 &0 & 1 \\ 0 & 5 & -1 & 9 & -7 &-3&0&0& 1 \\ 0 & -2 & 2 & -2 & 6 &1&0&0&0& 1 \\ 0 & 5 & 1 & 11 & -3 &-2&0&0&0&0& 1 \end \right)\rightarrow $$ $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 0 & 3 & 3 & 6 &1 &-1 & 1 \\ 0 & 0 & 0 & 0 & 0 &-1&-1&0& 1 \\ 0 & 0 & 8/5 & 8/5 & 16/5 &1/5&2/5&0&0& 1 \\ 0 & 0 & 2 & 2 & 4 &0&-1&0&0&0& 1 \end \right)\rightarrow $$ $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 0 & 3 & 3 & 6 &1 &-1 & 1 \\ 0 & 0 & 0 & 0 & 0 &-1&-1&0& 1 \\ 0 & 0 & 0 & 0 & 0 &-1/3&14/15&-8/15&0& 1 \\ 0 & 0 & 0 & 0 & 0 &-2/3&-1/3&-2/3&0& 0 & 1 \end \right) $$

3. Еще один способ построения ФСР основан на теореме Гамильтона-Кэли.

Теорема. Пусть матрица системы $ AX=\mathbb O $ квадратная и $ \operatorname (A) = <\mathfrak r>$. Тогда характеристический полином матрицы $ A_<> $ имеет вид:

Пример. Найти ФСР для системы уравнений

Решение. Здесь $$ A= \left( \begin 1 & 1 & -1 & -1 \\ 2 & 3 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end \right), \quad \det (A-\lambda E) = \lambda^2(\lambda^2-4\lambda+1), $$ $$ A^2-4A+E= \left( \begin 0 & 0 & 4 & 1 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end \right) $$

Блок-схемы зависимости множества решений системы уравнений $ AX= \mathcal B $ от комбинации чисел $ n, \mathfrak r $ ☞ ЗДЕСЬ.

Геометрическая интерпретация

Геометрический смысл введенных определений поясним на примере $ \mathbb R^ <3>$. Уравнение $$ a_1x_1+a_2x_2+a_3x_3=b $$ — при фиксированных вещественных коэффициентах $ a_1,a_2,a_3 $ (хотя бы один из них считаем отличным от нуля) и $ b_<> $ — задает плоскость. Если, к примеру, $ a_1\ne 0 $, то из уравнения получаем выражение для $ x_ <1>$ как функции $ x_2,x_3 $: $$ x_1=\frac-\fracx_2-\fracx_3 \ . $$ В этом представлении переменные $ x_ <2>$ и $ x_ <3>$ могут принимать любые вещественные значения независимо друг от друга, а вот переменная $ x_ <1>$ полностью определяется заданием $ x_ <2>$ и $ x_ <3>$. С одной стороны, последняя формула определяет общее решения системы линейных уравнений (которая в нашем частном случае состоит из одного-единственного уравнения); переменные $ x_ <2>$ и $ x_ <3>$ выбраны основными, а $ x_ <1>$ оказывается зависимой. Строго говоря, координаты любой точки плоскости можно представить формулами $$x_1=\frac-\fract-\fracu,\ x_2=t,\ x_3=u \quad npu \quad \\subset \mathbb R \ , $$ которые называются параметрическим представлением плоскости. Таким образом, получили геометрическую интерпретацию общего решения системы уравнений. Идем далее: представим последние формулы в векторной форме: $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)= \left( \begin b/a_1- t\, a_2/a_1- u\, a_3/a_1 \\ t \\ u \end \right)= \left( \begin b/a_1\\ 0 \\ 0 \end \right)+ t \left( \begin -a_2/a_1\\ 1 \\ 0 \end \right) + u \left( \begin -a_3/a_1\\ 0 \\ 1 \end \right) \ . $$ Какой геометрический смысл имеет каждое из слагаемых? Первое слагаемое $$ X_0=\left( \begin b/a_1\\ 0 \\ 0 \end \right) $$ получается при задании $ t=0,u=0_<> $ в общем решении. Это — частное решение нашего уравнения и определяет точку, через которую проходит плоскость. Два оставшихся столбца $$ X_1=\left( \begin -a_2/a_1\\ 1 \\ 0 \end \right) \quad u \quad X_2=\left( \begin -a_3/a_1\\ 0 \\ 1 \end \right) $$ не задают решения нашего уравнения — если только $ b\ne 0_<> $. Но оба удовлетворяют однородному уравнению $$ a_1x_1+a_2x_2+a_3x_3=0 , $$ Последнее также определяет плоскость — параллельную исходной и проходящую через начало координат. Первая плоскость получается из второй сдвигом (параллельным переносом) на вектор $ \vec $: и этот факт составляет геометрическую интерпретацию теоремы, сформулированной в конце ☞ ПУНКТА:

Теорема. Общее решение системы уравнений $ A X=\mathcal B $ представимо в виде суммы какого-то частного решения этой системы и общего решения соответствующей однородной системы $ A X=\mathbb O $.

Координаты произвольной точки плоскости $ a_1x_1+a_2x_2+a_3x_3=0 $ задаются соотношениями $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)=tX_1+uX_2 \ . $$ Векторы пространства $ \vec $ и $ \vec $ являются базисными векторами плоскости — любой вектор $ \vec $, лежащий в плоскости, через них выражается и они линейно независимы. Но $ X_ <1>$ и $ X_ <2>$ определяют фундаментальную систему решений однородного уравнения. Таким образом, мы получили геометрическую интерпретацию для ФСР: она задает базисные векторы плоскости, проходящей через начало координат.

Теперь рассмотрим систему из двух уравнений: $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&b_1,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&b_2. \end\right. $$ Ее можно интерпретировать как пересечение двух плоскостей в $ \mathbb R^ <3>$. Здесь уже возможны варианты: пересечение может оказаться как пустым так и непустым. От чего это зависит? — В соответствии с теоремой Кронекера-Капелли, надо сравнить два числа $$ \operatorname \left( \begin a_ <11>& a_ <12>& a_ <13>\\ a_ <21>& a_ <22>& a_ <23>\end \right) \quad u \quad \operatorname \left( \begin a_ <11>& a_ <12>& a_ <13>& b_1 \\ a_ <21>& a_ <22>& a_ <23>& b_2 \end \right) \ . $$ Очевидно, ни одно из них не может быть большим $ 2_<> $. Если оба равны $ 2_<> $ и этот факт обеспечен, например, условием $$ \left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \ne 0, $$ то решения системы определяют прямую в пространстве. Действительно, при таком условии систему можно разрешить относительно неизвестных $ x_ <1>$ и $ x_ <2>$ и представить общее решение в виде: $$ x_1= \frac<\left|\begin b_1 & a_ <12>\\ b_2 & a_ <22>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>+ \frac<\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>x_3 \ , \quad x_2= \frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>- \frac<\left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>x_3 \ . $$ В этих формулах переменная $ x_ <3>$ принимает любое значение, а значения переменных $ x_ <1>$ и $ x_ <2>$ линейно выражаются через $ x_ <3>$. Общее решение фактически задает прямую в параметрическом виде: координаты произвольной ее точки определяются формулами $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)=X_0+tX_1 \ , $$ где вектор $$ \quad X_0 = \left(\frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|> , \ \frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>,\ 0\right)^ <\top>$$ задает координаты точки, лежащей на прямой (т.е. принадлежащей пересечению плоскостей), а вектор $$ X_1= \left(\frac<\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>,\ — \frac<\left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>, \ 1 \right)^ <\top>$$ является направляющим для прямой. С тем же успехом мы могли бы взять в качестве направляющего вектор, получающийся растяжением $ X_ <1>$: $$ \tilde X_1 = \left(\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|,\ — \left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|, \ \left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \right)^ <\top>\ . $$ Очевидно, что любой из векторов $ X_ <1>$ или $ \tilde X_1 $ задает фундаментальную систему решений однородной системы уравнений 10) $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&0,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&0. \end\right. $$ Последняя определяет прямую в $ \mathbb R^3 $, проходящую через начало координат. Мы снова получаем интерпретацию теоремы: общее решение неоднородной системы получается сдвигом (параллельным переносом) общего решения однородной системы на вектор $ \vec $.

Мы рассмотрели пока только случай пересекающихся плоскостей в пространстве. Его можно считать общим, т.е. случаем «как правило»: две случайным образом выбранные плоскости в $ \mathbb R^ <3>$ пересекаться будут. Исследуем теперь исключительный случай — параллельности плоскостей. Исключительность этого случая может быть проверена и аналитикой. Для несовместности системы из двух уравнений необходимо, чтобы ранг ее матрицы $$ \left( \begin a_ <11>& a_ <12>& a_ <13>\\ a_ <21>& a_ <22>& a_ <23>\end \right) $$ оказался меньшим $ 2_<> $. Это равносильно тому, что все миноры второго порядка этой матрицы обращаются в нуль: $$ \left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|=0,\ \left| \begin a_ <12>& a_ <13>\\ a_ <22>& a_ <23>\end \right| =0,\ \left| \begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|=0 \ . $$ Эти условия можно переписать в виде $$ \frac>>=\frac>>=\frac>> \ ; $$ и, если обозначить общую величину последний отношений через $ \tau_<> $, то получаем: $$ (a_<11>,a_<12>,a_<13>)=\tau (a_<21>,a_<22>,a_<23>) . $$ Если вспомнить, что каждый из этих наборов коэффициентов задает вектор $ \vec> $ в $ \mathbb R^ <3>$, перпендикулярный соответствующей плоскости, то, в самом деле, плоскости, определяемые уравнениями, оказываются параллельными. Пересекаться они, как правило, не будут: для пересечения необходимо, чтобы расширенная матрица системы $$ \left( \begin a_ <11>& a_ <12>& a_ <13>& b_1 \\ a_ <21>& a_ <22>& a_ <23>& b_2 \end \right) $$ имела ранг меньший $ 2_<> $. Это возможно только при условии когда коэффициенты правых частей удовлетворяют соотношению $$ b_1 = \tau b_2 $$ при величине $ \tau_<> $ определенной выше. При выполнении этого условия второе уравнение получается из первого домножением на $ \tau_<> $ и соответствующие плоскости попросту совпадают.

Перейдем теперь к системе из трех уравнений: $$ \left\< \begin a_<11>x_1 +&a_<12>x_2+&a_<13>x_3=&b_1, \\ a_<21>x_1 +&a_<22>x_2+&a_<23>x_3=&b_2, \\ a_<31>x_1 +&a_<32>x_2+&a_<33>x_3=&b_3. \end \right. $$ Вариантов взаимного расположения трех плоскостей в $ \mathbb R^ <3>$ уже значительно больше. Какой из них будет самым распространенным, то есть случаем «как правило»? Геометрически ответ очевиден: если пересечение двух плоскостей определяет, как правило, прямую, то эта прямая пересекается с третьей плоскостью, как правило, в одной-единственной точке. И алгебра подтверждает геометрию: в комментарии к теореме Крамера говорится, что система, число уравнений которой совпадает с числом неизвестных, как правило, имеет единственное решение. Условие для этого случая «как правило» дается той же теоремой Крамера: $$ \left| \begin a_ <11>& a_ <12>& a_<13>\\ a_ <21>& a_ <22>& a_ <23>\\ a_ <31>& a_ <32>& a_ <33>\end \right| \ne 0 . $$

Теорема Кронекера-Капелли в этом случае не нужна — нет, она остается справедливой! — но проверка условия на ранги матриц тривиальна: они оба равны $ 3_<> $. Если же указанный определитель обращается в нуль, то этот факт эквивалентен тому, что три строки определителя линейно зависимы. Например, возможно, что строка $ (a_<31>,a_<32>, a_<33>) $ может быть представлена в виде линейной комбинации первых двух строк. Вспомним геометрический смысл этих строк: они задают координаты векторов, перпендикулярных соответствующим плоскостям. Если система уравнений $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&b_1,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&b_2 \end\right. $$ определяет прямую в $ \mathbb R^ <3>$, то оба вектора $ \vec> $ и $ \vec> $ при $ A^<[1]>= (a_<11>,a_<12>, a_<13>) $ и $ A^<[2]>= (a_<21>,a_<22>, a_<23>) $ перпендикулярны этой прямой; любая их комбинация также перпендикулярна этой прямой, а, следовательно, плоскость $$ a_<31>x_1 +a_<32>x_2+a_<33>x_3 =b_3 $$ будет ей параллельна.

Статья не закончена!

Ортогональность

Геометрические соображения из предыдущего пункта могут быть обобщены на случай когда размерности рассматриваемых пространств увеличиваются, и мы говорим о точках и векторах многомерных пространств. В последующих пунктах нам потребуются понятия линейной оболочки, линейного пространства, размерности, базиса и координат применительно к векторам-столбцам или векторам-строкам. Их можно найти ☞ ЗДЕСЬ.

Задача решения системы линейных уравнений $$ \left\< \begin 3x_1&+4x_2&-x_3&=2, \\ x_1&-2x_2&+3x_3&=1 \end \right. $$ может быть рассмотрена с двух точек зрения. С одной стороны, переписав систему в виде $$ x_1\left(\begin 3 \\ 1 \end \right)+ x_2\left(\begin 4 \\ -2 \end \right)+ x_3\left(\begin -1 \\ 3 \end \right)= \left(\begin 2 \\ 1 \end \right) \ , $$ можно говорить о поиске линейной комбинации столбцов $$ \left(\begin 3 \\ 1 \end \right),\ \left(\begin 4 \\ -2 \end \right),\ \left(\begin -1 \\ 3 \end \right) $$ равной заданному столбцу $$ \left(\begin 2 \\ 1 \end \right) \ . $$ В случае произвольной системы, записанной в матричном виде $$ A_X=\mathcal B_ \ $$ совместность системы интерпретировать в смысле принадлежности столбца $ \mathcal B $ линейной оболочке столбцов $ A_<[1]>,\dots,A_ <[n]>$: $$ \mathcal B=x_1 A_<[1]>+\dots+x_nA_ <[n]>\quad \iff \quad \mathcal B \in \mathcal L (A_<[1]>,\dots,A_<[n]>) \ . $$ В случае положительного ответа числа $ x_<1>,\dots,x_n $ интерпретируются как координаты столбца $ \mathcal B $ в системе столбцов 11) $ \,\dots,A_<[n]>\> $.

С другой стороны, к той же задаче решения системы уравнений, в предыдущем ПУНКТЕ мы подошли с другой стороны. Первое из уравнений системы $$ 3\,x_1+4\,x_2-x_3=2 $$ можно интерпретировать так: скалярное произведение векторов $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OX>> $ равно фиксированному числу $ 2_<> $. Здесь вектора рассматриваются в пространстве строк $ \mathbb R_<>^ <3>$; считается, что каждый вектор имеет начало в начале координат $ \mathbf O=[0,0,0] $, а конец — в точке с координатами $ [3,4,-1] $ или, соответственно, $ [x_1,x_2,x_3] $. Если скалярное произведение векторов обозначать скобками $ \langle <> \mbox < >\rangle $, то систему уравнений можно переписать в виде $$ \langle \vec<<\mathbf OA>^<[1]>> ,\ \vec<<\mathbf OX>> \rangle=2,\ \langle \vec<<\mathbf OA>^<[2]>> ,\ \vec<<\mathbf OX>> \rangle=1 \quad npu \quad A^ <[1]>= [3,4,-1], A^<[2]>=[1,-2,3] $$ — строках матрицы $ A_<> $. И задачу решения такой системы понимать в смысле: найти координаты всех векторов-строк $ [x_1,x_2,x_3] $ которые обеспечат нам заданные значения скалярных произведений с двумя фиксированными векторами.

Геометрическая интерпретация еще более упрощается если рассмотреть случай однородной системы уравнений. Так, решить систему уравнений $$ \left\< \begin 3x_1&+4x_2&-x_3&=0, \\ x_1&-2x_2&+3x_3&=0 \end \right. $$ означает подобрать вектор $ \vec<<\mathbf OX>> $ перпендикулярный (ортогональный) одновременно обоим векторам $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OA>^<[2]>> $. Очевидно, что таких векторов в $ \mathbb R^ <3>$ бесконечно много — найдя хотя бы один такой вектор $ \vec<<\mathbf OX>> $, другие получим его растяжением: $ \alpha \cdot \vec<<\mathbf OX>> $ остается перпендикулярным векторам $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OA>^<[2]>> $ при $ \forall \alpha \in \mathbb R $.

Все эти геометрические соображения обобщаются в произвольное пространство $ \mathbb R_<>^ $ строк или столбцов, состоящих из $ n_<> $ вещественных чисел (компонент). Для этого приходится обобщать понятие скалярного произведения. В общем случае оно вводится аксиоматически (и, более того, в одном и том же множестве может быть определено разными способами, см. ☞ ЕВКЛИДОВО ПРОСТРАНСТВО ). Мы сейчас не будем залезать так глубоко в эту аксиоматику, а просто определим скалярное произведение двух строк $ X=[x_1,x_2,\dots,x_n] $ и $ Y=[y_1,y_2,\dots,y_n] $ формулой $$ \langle X,Y \rangle=x_1y_1+x_2y_2+\dots+x_ny_n \ $$ и продекларируем без обоснований, что все привычные нам по случаям $ \mathbb R^ <2>$ и $ \mathbb R^ <3>$ свойства скалярного произведения будут выполнены.

В терминах скалярного произведения, задачу решения системы линейных уравнений можно переформулировать как поиск строки $ X=[x_1,x_2,\dots,x_n] $, ортогональной всем строкам матрицы $ A_<> $: $$ \langle A^<[1]>,X \rangle=0, \langle A^<[2]>,X \rangle=0,\dots, \langle A^<[m]>,X \rangle=0 \ . $$ Множество таких строк образует линейное подпространство пространства $ \mathbb R_<>^ $, это подпространство является ортогональным дополнением линейной оболочки $ \mathcal L ( A^<[1]>, A^<[2]>,\dots, A^ <[m]>) $ в пространстве $ \mathbb R_<>^ $. Это подпространство называется нуль-пространством матрицы или ядром матрицы $ A_<> $ и обозначается 12) $ <\mathcal K>er (A) $. Фундаментальная система решений системы $ AX=\mathbb O $ составляет базис этого подпространства. Для произвольного линейного пространства количество векторов его базиса называется размерностью пространства и обозначается $ \operatorname $. Во введенных обозначениях теорема из ☞ ПУНКТА переформулируется так:

Теорема. $ \operatorname \left( <\mathcal K>er (A) \right)=n- \mathfrak r $, где $ n_<> $ — количество столбцов матрицы $ A_<> $, а $ \mathfrak r=\operatorname (A) $ — ее ранг.


источники:

http://www.evkova.org/opredeliteli-vtorogo-i-tretego-poryadkov-i-ih-svojstva

http://vmath.ru/vf5/algebra2/linearsystems