Связка плоскостей и ее уравнение

Связка плоскостей

Теорема 1. Для того чтобы четыре плоскости, заданные своими общими уравнениями относительно ПДСК принадлежали одной связке, необходимо и достаточно, чтобы

Теорема 2. Для того чтобы плоскость принадлежала связке плоскостей, необходимо и достаточно, чтобы левая часть ее общего уравнения являлась линейной комбинацией левых частей уравнения плоскостей, образующих связку.
Замечание: предполагается, что плоскости, образующие связку не принадлежат одному пучку.

Если страница помогла, сохраните её и поделитесь ссылкой с друзьями:

Лекция № 10

Ссылки

Глава IV. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

§12. УРАВНЕНИЯ ПОВЕРХНОСТИ И ЛИНИИ В ПРОСТРАНСТВЕ

12.1. Основные понятия

Поверхность и ее уравнение

Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию. Например, сфера радиуса R с центром в точке О1 есть геометрическое место всех точек пространства, находящихся от точки O1 на расстоянии R.

Прямоугольная система координат Oxyz в пространстве позволяет установить взаимно однозначное соответствие между точками простран­ства и тройками чисел х, у и z — их координатами. Свойство, общее всем точкам поверхности, можно записать в виде уравнения, связывающего ко­ординаты всех точек поверхности.

Уравнением данной поверхности в прямоугольной системе координат Oxyz называется такое уравнение F(x, у, z) = 0 с тремя переменны­ми х, у и z, которому удовлетворяют координаты каждой точки, лежащей на поверхности, и не удовлетворяют координаты точек, не лежащих на этой поверхности. Переменные х, у и z в уравнении поверхности называ­ются текущими координатами точек поверхности.

Уравнение поверхности позволяет изучение геометрических свойств поверхности заменить исследованием его уравнения. Так, для того, чтобы узнать, лежит ли точка M1(x1;y1;z1) на данной поверхности, достаточно подстав и ть координаты точки M1 в уравнение поверхности вместо пере­менных: если эти координаты удовлетворяют уравнению, то точка лежит на поверхности, если не удовлетворяют — не лежит.

Найдем уравнение сферы радиуса R с центром в точке O1(x0;y0;z0). Согласно определению сферы расстояние любой ее точки М(х; у; z) от центра O1(x0;y0;z0) равно радиусу R, т. е. O1M= R. Но , где . Следовательно,

Это и есть искомое уравнение сферы. Ему удовлетворяют координаты лю­бой ее точки и не удовлетворяют координаты точек, не лежащих на данной сфере.

Если центр сферы Ο1 совпадает с началом координат, то уравнение сферы принимает вид .

Если же дано уравнение вида F(x;y;z) = 0 , то оно, вообще говоря, определяет в пространстве некоторую поверхность.

Выражение «вообще говоря» означает, что в отдельных случаях уравнение F(x; y; z)=0 может определять не поверхность, а точку, линию или вовсе не определять никакой геометрический образ. Говорят, «поверхность вырождается».

Так, уравнению не удовлетворяют никакие дей­ствительные значения х, у, z. Уравнению удовлетворяют лишь координаты точек, лежащих на оси Ох (из уравнения следует: у = 0, z = 0, а х — любое число).

Итак, поверхность в пространстве можно задать геометрически и ана­литически. Отсюда вытекает постановка двух основных задач:

1. Дана поверхность как геометрическое место точек. Найти уравнение этой поверхности.

2. Дано уравнение F(x;y;z) = 0. Исследовать форму поверхности, определяемой этим уравнением.

Уравнения линии в пространстве

Линию в пространстве можно рассматривать как линию пересечения двух поверхностей (см. рис. 66) или как геометрическое место точек, об­щих двум поверхностям.

Если и — уравнения двух поверхностей, определяющих линию L, то координаты точек этой линии удовлетворяют системе двух уравнений с тремя неизвестными:

(12.1)

Сравнения системы (12.1) называются уравнениями линии в пространстве. Например, есть уравнения оси Ох.

Линию в пространстве можно рассматривать как траекторию движения точки (см. рис. 67). В этом случае ее задают векторным уравнением

(12.2)

или параметрическими уравнениями

проекций вектора (12.2) на оси координат.

Например, параметрические уравнения винтовой линии имеют вид

Если точка Μ равномерно движется по образующей кругового цилиндра, а сам цилиндр равномерно вращается вокруг оси, то точка Μ описывает винтовую линию (см. рис. 68).

12.2. Уравнения плоскости в пространстве

Простейшей поверхностью является плоскость. Плоскость в пространстве Oxyz можно задать разными способами. Каждому из них соответствует определенный вид ее уравнения.

Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору

Пусть в пространстве Oxyz плоскость Q задана точкой и вектором , перпендикулярным этой плоскости (см. рис. 69). Выведем уравнение плоскости Q. Возьмем на ней произвольную точку и составим вектор . При любом расположении точки Μ на плоскости Q векторы и взаимно перпендикулярны, поэтому их скалярное произведение равно нулю: , т. е.

(12.3)

Координаты любой точки плоскости Q удовлетворяют уравнению (12.3), координаты точек, не лежащих на плоскости Q, этому уравнению не удовлетворяют (для них ).

Уравнение (12.3) называется уравнением плоскости, проходящей через данную точку перпендикулярно вектору . Оно первой степени относительно текущих координат x, y, z. Вектор называется нормальным вектором плоскости.

Придавая коэффициентам А, В и С уравнения (12.3) различные значения, можно получить уравнение любой плоскости, проходящей череp точку . Совокупность плоскостей, проходящих через данную точку, называется связкой плоскостей, а уравнение (12.3) — уравнением связки плоскостей.

Общее уравнение плоскости

Рассмотрим общее уравнение первой степени с тремя переменными х, у и z:

(12.4)

Полагая, что по крайней мере один из коэффициентов А, В или С не равен нулю, например , перепишем уравнение (12.4) в виде

(12.5)

Сравнивая уравнение (12.5) с уравнением (12.3), видим, что уравнения (12.4) и (12.5) являются уравнением плоскости с нормальным вектором , проходящей через точку .

Итак, уравнение (12.4) определяет в системе координат Oxyz некоторую плоскость. Уравнение (12.4) называется общим уравнением плоскости.

Частные случаи общего уравнения плоскости:

1. Если D = 0, то оно принимает вид . Этому уравнению удовлетворяет точка . Следовательно, в этом случае плос­кость проходит через начало координат.

2. Если С = 0, то имеем уравнение . Нормальный вектор перпендикулярен оси Οz. Следовательно, плоскость параллельна оси Οz; если B = 0 — параллельна оси Оу, А = 0 — параллельна оси Ох.

3. Если С = D = 0, то плоскость проходит через параллельно оси Οz, т. е. плоскость проходит через ось Οz. Аналогично, уравнениям и отвечают плоскости, проходящие соответственно через оси Ох и Оу.

4. Если А = В = 0, то уравнение (12.4) принимает вид , т. е. Плоскость параллельна плоскости Оху. Аналогично, уравнениям и отвечают плоскости, соответственно параллельные плоскостям Oyz и Οxz.

5. Если A = B = D = 0, то уравнение (12.4) примет вид , т. е. z = 0. Это уравнение плоскости Оху. Аналогично: у = 0 — уравнение плоскости Οxz; x = О — уравнение плоскости Oyz.

Уравнение плоскости, проходящей через три данные точки

Три точки пространства, не лежащие на одной прямой, определяют единственную плоскость. Найдем уравнение плоскости Q, проходящей через три данные точки M1(x1;y1;z1), М2(x2;y2;z2) и М33,y3,z3), не лежащие на одной прямой.

Возьмем на плоскости произвольную точку M(x;y;z) и составим век­торы , , . Эти векторы лежат на плоскости Q, следовательно, они компланарны. Используем условие компланарнос­ти трех векторов (их смешанное произведение равно нулю), получаем , т. е.

(12.6)

Уравнение (12.6) есть уравнение плоскости, проходящей через три данные точки.

Уравнение плоскости в отрезках

Пусть плоскость отсекает на осях Ох, Оу и Оz соответственно отрезки a, b и c, т. е. проходит через три точки A(a;0;0), B(0;b;0) и C(0;0;c) (см.рис. 70). Подставляя координаты этих точек в уравнение (12.6), получаем

Раскрыв определитель, имеем , т. е. или

(12.7)

Уравнение (12.7) называется уравнением плоскости в отрезках на осях. Им удобно пользоваться при построении плоскости.

Нормальное уравнение плоскости

Положение плоскости Q вполне определяется заданием единичного вектора , имеющего направление перпендикуляра ОК, опущенного на

плоскость из начала координат, и длиной p этого перпендикуляра (см. рис. 71).

Пусть ОК = p, а α, β, g — углы, образованные единичным вектором ё с осями Ох, Оу и Οz. Тогда . Возьмем на плоскости произвольную точку М(х; у; z) и соединим ее с началом координат. Образуем вектор . При любом положении точки Μ на плоскости Q проекция радиус-вектора на направление вектора всегда равно р: , т. е. или

(12.8)

Уравнение (12.8) называется нормальным уравнением плоскости в векторной форме. Зная координаты векторов f и e , уравнение (12.8) перепишем в виде

(12.9)

Уравнение (12.9) называется нормальным уравнением плоскости в координатной форме.

Отметим, что общее уравнение плоскости (12.4) можно привести к нормальному уравнению (12.9) так, как это делалось для уравнения прямой на плоскости. А именно: умножить обе части уравнения (12.4) на норми­рующий множитель , где знак берется противоположным знаку свободного члена D общего уравнения плоскости.

12.3. Плоскость. Основные задачи

Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей

Пусть заданы две плоскости Q1 и Q2:

Под углом между плоскостями Q1 и Q2 понимается один из двугран­ных углов, образованных этими плоскостями.

Угол j между нормальными векторами и плоскостей Q1 и Q2 равен одному из этих углов (см. рис. 72).

Для нахождения острого угла следует взять модуль правой части.

Если плоскости Q1 и Q2 перпендикулярны (см. рис. 73, а), то таковы же их нормали, т. е. (и наоборот). Но тогда , т. е. . Полученное равенство есть условие перпендикулярности двух плоскостей Q1 и Q2.

Если плоскости Q1 и Q2 параллельны (см. рис. 73, б), то будут параллельны и их нормали и (и наоборот). Но тогда, как известно координаты векторов пропорциональны: . Это и есть уcловиє параллельности двух плоскостей Q1 и Q2.

Расстояние от точки до плоскости

Пусть задана точка и плоскость Q своим уравнением . Расстояние d от точки до плоскости Q находится по формуле

Вывод этой формулы такой же, как вывод формулы расстояния от точки до прямой .

Расстояние d от точки M0 до плоскости Q равно модулю проекции вектора , где — произвольная точка плоскости Q, на направление нормального вектора (см. рис. 74). Следовательно,

А так как точка принадлежит плоскости Q, то

Поэтому . Отметим, что если плоскость Q задана уравнением , то расстояние от точки до плоскости Q может быть найдено по формуле

Уравнение плоскости, проходящей через три заданные точки

— уравнение плоскости, проходящей через три заданные точки.

Нормальное уравнение плоскости

Пусть задана плоскость α и пусть — единичный, вектор нормали к плоскости α проведенный из начала координат. Обозначим р — расстояние от начала координат до плоскости α.

Для любой точки М(х,у,z) α

=p

Так как = (х,у,z),

= (cosα, cosβ, cosγ), где α, β, γ – углы, образованные вектором соответственно с осями OX, OY и 0Z, то отсюда получаем

нормальное равнение плоскости.

Расстояние от точки до плоскости

Обозначим через d расстояние от точки M0(x0,y0,z0) до плоскости α, заданной общим уравнением вида (*).

Взаимное расположение двух плоскостей

Пусть плоскости α1 и α2 заданы уравнениями:

Теорема. Тогда и только тогда плоскости α1 и α2:

2) параллельны и различны, когда

A1=λA2, В1=λВ2, С1=λС2, D1 λD2;

3)пересекаются, когда коэффициенты А1, В1, С1 не пропорциональны коэффициентам А2, В2, С2

Пучок и связка плоскостей

Пучком плоскостей называется множество всех плоскостей, проходящих через некоторую прямую, называемую осью пучка.

Пусть в системе координат ОХУZ заданы две пересе-кающиеся плоскости α1 и α2 .

Тогда уравнение пучка имеет вид

А1х + B1y + C1z + D1 + λ(A2x + B2y + C2z + D2) = 0, где λ R.

Связкой плоскостей называется множество всех плоскостей, проходящих через некоторую точку, называемую центром связки. Если S0 (x0,y0,z0) – центр связки, то уравнение связки с центром в точке S0 имеет вид

где А, В и С – произвольные действительные числа, одновременно не равные нулю.

Угол между двумя плоскостями

Пусть даны плоскости α1 и α2 своими общими уравнениями. Тогда под углом φ между плоскостями α1 и α2 понимают наименьший угол, на который надо повернуть одну из плоскостей до ее совпадения с другой плоскостью. Поэтому . Очевидно, что либо φ=( ^, ), либо φ= (- ^, ), где и — нормальные векторы плоскостей α1 и α2 соответственно. В любом случае

В частности, если φ = π/2, то

условие перпендикулярности двух плоскостей.

IV ПРЯМАЯ В ПРОСТРАНСТВЕ.

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ

Уравнение прямой в пространстве

Очевидно, что прямую в пространстве можно задать как линию пересечения двух плоскостей α1 и α2. Тогда в произвольной афинной системе координат прямая задается системой двух линейных уравнений

(1)

общее уравнение прямой или уравнение прямой в общем виде.

Пусть l – прямая. Тогда ее положение в пространстве однозначно определяется заданием ее направляющего вектора =(m,n,р) и точкой М0(х0,у0,z0), через которую прямая проходит. Возьмем произвольную точку М(х,у,z) l. Тогда и, значит,

Переходя к координатам, получим

параметрические уравнение прямой.

Выражая параметр t, получим

каноническое уравнение прямой, проходящей через точку М00 y0,z0) параллельно вектору =(m,m,р).

Последнее уравнение равносильно

общее уравнение прямой.

уравнение прямой, проходящей через две заданные точки.

Наоборот, пусть задано общее уравнение прямой.

каноническое уравнение прямой.

Взаимное расположение двух прямых в пространстве

Пусть прямые l1 и l2 заданы каноническими уравнениями

Обозначим = = (х2x1,y2у1,z2z1), =(m1,n1,р),

= (m2,n2,р2).

1) если прямые совпадают, то все три вектора , , коллинеарны.

2) если прямые параллельны и не совпадают, то вектора и коллинеарны, а вектор им не коллинеарен.

3) если пряже пересекаются, то никакие два из векторов , , не коллинеарны, и все три вектора компланарны

4) ecли прямые скрещиваются, то векторы , , некомпланарны.

Отметим, что условия параллельности и перпендикулярности прямых l1 и l2 равносильны условиям коллинеарности и ортогональности их направляющих векторов и .

необходимое и достаточное условие параллельности двух прямых.

необходимое и достаточное условие перпендикулярности двух прямых.

Если прямые l1 и l2 пересекаются, то величина угла φ между ними равно либо ( ^, ) либо (- ^, ). Следовательно,


источники:

http://mathland.narod.ru/Course_1/lect/lect1-10.htm

http://zdamsam.ru/a33619.html