T из уравнения найти радиус вектор

Кинематика материальной точки

Основные формулы кинематики материальной точки

Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.

Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где – единичные векторы (орты) в направлении осей x, y, z .

Скорость точки:
;
;
;
Единичный вектор в направлении касательной к траектории точки:
.
Вектор можно выбрать двумя способами во взаимно противоположных направлениях. Обычно его выбирают в направлении увеличения дуговой координаты. Тогда, наряду с модулем скорости , вводят алгебраическую величину скорости . При , вектор скорости сонаправлен с . При – имеет противоположное с направление.

Скорость и ускорение точки M

Тангенциальное (касательное) ускорение:
;
;
.
Здесь, как и для скорости, – это алгебраическое касательное ускорение, . Если , то вектор касательного ускорения сонаправлен с . При – имеет противоположное с направление.

Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.

Радиус кривизны траектории:
.

Далее приводится вывод этих формул и изложение теории кинематики материальной точки.

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами ( x, y, z ) . Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M – это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где – единичные векторы в направлении осей x, y, z .

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки – это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями

В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где – некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Скорость материальной точки

Согласно определению скорости и определению производной:

Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:

,
где
,
,

– проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.

Таким образом
.
Модуль скорости:
.

Касательная к траектории

С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории.

Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени – в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная – это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .

При стремлении , прямая стремится к касательной , а вектор – к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.

Введем направляющий вектор касательной единичной длины:
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.

Здесь мы направили вектор по направлению к вектору скорости, поскольку это более удобно. Но могут возникнуть случаи, когда точка останавливается и движется по той же траектории в обратном направлении. Чтобы не вводить для одной и той же точки траектории два единичных касательных вектора, нужно охватить случай, когда направлен противоположно скорости. Для этого вводят алгебраическую величину скорости:
.
Если направления векторов и совпадают, то . Если они противоположны, то .
– это проекция скорости на направление единичного вектора . Она равна скалярному произведению этих векторов:
.

Абсолютную величину (модуль) вектора скорости мы обозначаем символом с прямыми скобками, или символом без стрелки:
;
Алгебраическая величина скорости:
.

Тогда вектор скорости точки можно представить в следующем виде:
.

Ускорение материальной точки

Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.

Тангенциальное (касательное) и нормальное ускорения

Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.

Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?

Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают их скалярное произведение. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Скорость, касательное и нормальное ускорение точки M

Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты – касательную к траектории и перпендикулярную к ней.

Тангенциальное (касательное) ускорение

Также как и для скорости, введем алгебраическую величину вектора касательного ускорения :
.
Если , то вектор касательного ускорения сонаправлен с . Если , то эти векторы противоположны. Абсолютную величину касательного ускорения будем обозначать прямыми скобками: . Тогда
.

Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили: .
Отсюда видно, что алгебраическая величина тангенциального ускорения равна проекции полного ускорения на направление касательной к траектории. Она также равна производной по времени алгебраической величины скорости точки: .

Подставив , имеем:
.
Здесь мы учли, что .

Найдем производную по времени модуля скорости . Применяем правила дифференцирования:

;
.

Итак,
.
Отсюда следует, что если между векторами ускорения и скорости острый угол: , то движение ускоренное. Абсолютное значение скорости возрастает. Если между ними тупой угол: , то движение замедленное. Абсолютное значение скорости убывает.

Выразим ускорение через тангенциальное и нормальное: , и учтем, что . Получим:
.
Тогда предыдущую формулировку можно выразить посредством тангенциального ускорения. Если векторы касательного ускорения и скорости направлены в одну сторону, то движение ускоренное. Если их направления противоположны, то движение замедленное.

Радиус кривизны траектории

Теперь исследуем вектор .

Рассмотрим вектор в два момента времени – в момент времени t и в момент t 1 . Введем обозначения: . По определению производной:
.
Пусть в момент времени t , точка находится в положении M , а в момент t 1 – в положении M 1 (см. рисунок).

Рассмотрим случай, когда алгебраическая скорость положительна: . То есть направления векторов и совпадают. Тогда точка M 1 находится справа от M . Через точки и проведем плоскости, перпендикулярные векторам и . Пересечение этих плоскостей образует прямую. Она проходит через точку C перпендикулярно плоскости рисунка. MC – это перпендикуляр, опущенный из точки M на эту прямую.

При , точка стремится к точке , а длина отрезка CM стремится к радиусу кривизны траектории ρ . Поскольку и , то угол между отрезками и равен углу между векторами и . Отложим их для наглядности из одного центра.

Абсолютное значение производной:
.
Здесь мы учли, что .

Вектор , как указывалось выше, перпендикулярен . В данном случае он направлен вдоль единичного вектора главной нормали , направленной к центру кривизны C траектории. Поэтому при имеем:
.

Теперь рассмотрим случай, когда алгебраическое значение скорости отрицательно: . В этом случае, вектор скорости противоположен . Получается тот же рисунок, только точка располагается слева от M . В результате абсолютное значение производной остается прежней:
.
Но ее направление меняется на противоположное:
.
Поскольку , то формула сохраняет прежний вид и в этом случае:
.

Нормальное ускорение

Теперь находим нормальное ускорение:
.
Перепишем результат в следующем виде:
,
где ; – единичный вектор в направлении главной нормали траектории – то есть вектор, направленный к мгновенному центру кривизны перпендикулярно касательной к траектории. Поскольку , то также является модулем нормального ускорения. Для него не нужно вводить алгебраическое значение, как мы это делали для скорости и касательного ускорения.
Нормальное ускорение всегда направлено к центру кривизны траектории.

Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.

Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.

Выпишем еще раз следующую формулу:
.
Отсюда видно, что нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории.

Радиус кривизны траектории:
.

И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.

Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.

Автор: Олег Одинцов . Опубликовано: 09-02-2016 Изменено: 27-01-2020

Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

T из уравнения найти радиус вектор

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО КИНЕМАТИКЕ

7.1. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.2. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.3. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки:

,

,

.

,

,

Модуль полного ускорения:

.

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.4. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.5. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки по осям :

,

,

Ускорения точки по осям:

,

,

.

Модуль касательного ускорения точки:

, а модуль нормального ускорения .

Нормальное ускорение и радиус кривизны траектории связаны соотношением .

7.6. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки по осям :

,

,

Ускорения точки по осям:

,

,

.

Модуль касательного ускорения точки:

,

а модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением .

7.7. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.8. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

.

,

,

Модуль полного ускорения:

.

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.9. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , , .

Решение: Скорости точки :

,

,

.

,

,

Модуль полного ускорения:

.

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.10. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.11. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.12. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.13. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.14. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Найти: , , .

Решение: Скорости точки по осям :

,

,

,

Ускорения точки по осям:

,

,

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.15. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.16. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.17. Определить касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , , .

Решение: Скорости точки :

,

,

,

,

Модуль полного ускорения:

Модуль касательного ускорения точки:

,

А модуль нормального ускорения:

.

Нормальное ускорение и радиус кривизны траектории связаны соотношением:

.

7.18. Дан закон движения точки по окружности радиусом r . Определить:

1) скорость и ускорение точки при и ;

2) моменты остановки точки;

3) путь, пройденный точкой за 10секунд.

Дано: , , , .

Найти: , , , , , , П.

Решение: 1. На траектории отметим точку О – начало отсчета координаты s и укажем положительное направление отсчета этой координаты. Отметим положение точки в заданные моменты времени: При :

;

При :

.

Проведем из этих точек естественные оси координат.

Определим проекцию скорости на касательную:

.

При : ;

При : .

Векторы и совпадают со своими проекциями. Определим проекции ускорения на естественнее оси координат :

; , Полное ускорение точки .

При :

,

и

.

При :

,

и

.

2. Чтобы найти время остановки надо найти время, когда скорость точки равна нулю:

, получим и .

3. Поскольку за 10 секунд точка сделала две остановки, пройденный ею путь за 10с можно найти как сумму пути, пройденного от начала до первой остановки, от первой до второй остановки и от второй до момента времени :

,

; ; ; .

Путь пройденный точкой за 10 секунд:

.

7.19. Определить скорость, касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

Дано: , (1)

( x и y – в см , t и t 1 – в с).

Найти: 1) вид траектории;

2) для t = t 1 положение точки на траектории;

3) .

Решение: 1) Уравнение движения (1) можно рассматривать как параметрические уравнения траектории точки. Чтобы получить уравнения траектории в координатной форме, исключаем время t из уравнений (1).

Возводя обе части равенств в квадрат, а затем складывая равенства, получаем , т.е. траекторией точки М является окружность радиуса 2, показанная на рис.1.

2) Определяем положение точки М в заданный момент времени t =1 с :

Вектор скорости точки

. (2)

(3)

Здесь – орты осей и ; – проекции скорости и ускорения точки на оси координат.

Найдем их, дифференцируя по времени уравнения движения (1):

По найденным проекциям определяем модуль скорости:

, (4)

,

,

и модуль ускорения точки:

, (5)

Модуль касательного ускорения точки

, (6)

; (7)

выражает проекцию ускорения точки на направление ее скорости. Знак «+» при означает, что движение точки ускоренное, направление и совпадают; знак «–» – что движение замедленное.

Вычисляем модуль касательного ускорения для заданного момента времени

Модуль нормального ускорения точки

. (8)

Если радиус кривизны траектории в рассматриваемой точке неизвестен, то нормальное ускорение можно определить по формуле

. (9)

При движении точки в плоскости формула (9) принимает вид

.

Модуль нормального ускорения можно определить и следующим образом:

. (10)

Воспользуемся в нашем случае формулой (10)

Радиус кривизны траектории в рассматриваемой точке определим из выражения:

. (11)

Тогда

На рис. 1 показано положение точки М в заданный момент времени. Вектор строим по составляющим и , причем этот вектор должен по направлению совпадать с касательной к траектории. Вектор строим по составляющим и и затем раскладываем на составляющие и . Совпадение величин и , найденных из чертежа, с их значениями, полученными аналитически, служит контролем правильности решения.

7.20. Определить скорость, касательное и нормальное ускорения, радиус кривизны траектории точки для заданного момента времени.

( x и y – в см , t и t 1 – в с).

Найти: 1) вид траектории;

2) .

Указания. Задача — относится к кинематике точки и решается с помощью формул, по которым определяются скорость и ускорение точки в декартовых координатах (координатный способ задания движения точки), а также формул, по которым определяются скорость, касательное и нормальное ускорения точки при естественном способе задания ее движения. В задаче все искомые величины нужно определить только для момента времени t 1 = 1 с .

1. Для определения уравнения траектории точки исключим из заданных уравнений движения время t :

Отсюда окончательно находим уравнение траектории точки (параболы, см. рисунок):

2. Скорость точки найдем по ее проекциям на координатные оси:

V = и при t 1 = 1 с,

3. Аналогично найдем ускорение точки:

а =

4. Касательное ускорение найдем, дифференцируя по времени равенство:

. (3)

ч исловые значения всех величин, входящих в правую часть выражения (3), определены и даются равенствами (1) и (2).

Подставив в (3) эти числа, найдем сразу, что при t 1 = 1 с

=7,49 см/с 2 .

5. Нормальное ускорение точки:

a n = .

Подставляя сюда найденные числовые значения a 1 и a 1 τ , получим, что при t 1= 1 с

6. Радиус кривизны траектории ρ = V 2 / a n .

Подставляя сюда числовые значения V 1 и a 1 n , найдем, что при t 1 = 1 с

Ответ: V 1= 8 ,54 см/с, а 1 =8 см/с 2 , =7,49 см/с 2 , a 1 n =2,81 см/с 2 , ρ1 =25,95 см.

7.21. Точка движется по дуге окружности радиуса R =1 м по закону ( s – в метрах, t – в секундах), где s = AM (см. рисунок).

Найти: скорость и ускорение точки в момент времени t 1 =1 с .

Определяем скорость точки:

V = ds / dt = .

При t 1 =1 с получим = -1,26 м/ с .

Ускорение находим по его касательной и нормальной составляющим:

,

п ри t 1 = 1 с получим , учтя, что R = 1 м

,

тогда ускорение точки при t 1 =1 с будет:

=1,59 м/с 2 .

Изобразим на рисунке векторы , , учитывая знак V 1 и считая положительным направление от А к М.

7.22. По заданным уравнениям движения точки М установить вид её траектории и для момента времени t = t 1(с) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а так же радиус кривизны траектории.

Дано: , , t 1=1 сек ( x и y – в см , t и t 1 – в с).

Найти: 1) вид траектории;

2) .

1) Найдём траекторию движения:

Для этого исключим параметр t .

Возведём во вторую степень, получившиеся уравнения, а затем сложим, таким образом, исключится t . Получим:

Это окружность с центром в точке с координатами (-1;0) и радиусом

2) Найдём положение точки на траектории в момент времени t = t 1:

3) Определим скорость токи:

Для нахождения вектора полной скорости необходимо сложить 2 вектора:

Найдём модуль полной скорости:

для момента времени t 1:

4) Определим ускорение точки:

для момента времени t 1:

для момента времени t 1:

Найдём полное ускорение:

Найдём модуль полного ускорения:

для момента времени t 1:

Определим касательное ускорение :

или,

для момента времени t :

Определим нормальное ускорение an :

для момента времени t 1:

5) Из полученных результатов можно найти радиус кривизны траектории , в момент времени t 1:

Действительно, этот радиус совпадает с радиусом окружности (траектории).

7.23. Точка М движется согласно уравнений ; ; ( x , y — в метрах, t — в секундах). Определить уравнение траектории точки, для момента времени t =1с, найти положение точки, а также скорость, полное, касательное, нормальное ускорения точки и радиус кривизны траектории.

1) Найдем уравнение траектории точки. Для определения уравнения траектории исключим из уравнений движения время . Из первого уравнения движения точки найдем

Из второго уравнения движения найдем

Возведя полученные значения ( правую и левую стороны уравнения ) в квадрат и складывая их находим:

.

Следовательно, траекторией точки является эллипс с центром в точке с координатами (3;1).

Вид траектории показан на рисунке.

2) Найдем положение точки в момент времени t =1с

; .

Положение точки М 1 показано на рисунке.

3) Найдем скорость точки М

,

Где , или в момент времени t1=1c

, или в момент времени t1=1c

4) Найдём ускорение точки.

,

где , или ,

, или

5) Найдем касательное ускорение точки M,

6) Найдём нормальное ускорение точки M ,

7) Найдем радиус кривизны траектории точки М,

,

Направление векторов показано на рисунке.

Ответ: =7.85м/ c ; = 4.93 м/ c 2 ; =0; = 4.93 м/ c 2 ; м

7.24. Пусть точка М движется в плоскости xOy в соответствии с уравнениями . Для момента времени = 0,5 с найти положение точки М на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Решение: Заданный закон движения точки в координатной форме можно рассматривать как параметрические уравнения траектории точки. Исключим время t из уравнений движения и получим уравнение траектории точки в виде:

.

Таким образом, траекторией точки М является эллипс со смещенным центром, изображенный на рис. Отметим на траектории положение точки М 1 ( x 1, y 1) в момент времени t 1 = 0,5 c

;

.

Вектор скорости точки представим в виде:

,

где – орты координатных осей О x и О y ; – проекции вектора скорости точки на координатные оси, которые равны 1-м производным от соответствующих координат по времени

В момент времени t 1 = 0,5 c

Вектор скорости точки строим по двум взаимно перпендикулярным проекциям и в соответствии с выбранным масштабом

.

Полученный вектор должен быть направлен по касательной к траектории точки в сторону движения. Модуль скорости точки определим по уже найденным проекциям

Вектор ускорения точки представим в виде:

,

где – орты координатных осей О x и О y ; – проекции вектора скорости точки на координатные оси, которые равны 1-м производным от проекций вектора скорости или 2-м производным от соответствующих координат по времени:

В момент времени t 1 = 0,5 c

Вектор ускорения точки строим по двум взаимно перпендикулярным проекциям и в соответствии с выбранным масштабом

.

Полученный вектор ускорения точки в общем случае должен отклоняться от вектора скорости в сторону вогнутости траектории, а при движении по эллипсовидной траектории – проходить через центр эллипса. Модуль ускорения точки определим по уже найденным проекциям

Вектор полного ускорения точки можно также представить в виде геометрической суммы его проекций на оси естественной системы отсчета

,

где и – единичные орты касательной и главной нормали; и – соответственно проекции вектора ускорения на касательную и главную нормаль. Касательную М 1 t направляем по касательной к траектории в сторону движения точки движения, а главную нормаль М1 n – перпендикулярно касательной в сторону вогнутости траектории. При вычислении касательного ускорения удобно воспользоваться формулой, устанавливающей связь между координатным и естественным способами задания движения точки

.

В момент времени t 1 = 0,5 c

.

Значение касательного ускорения имеет отрицательный знак, следовательно, в данный момент времени движение точки замедленное и вектор касательного ускорения направлен в противоположную сторону направлению вектора скорости точки .

Нормальное ускорение вычислим по формуле , если известен радиус кривизны траектории. Например, если точка движется по окружности радиусом R, то в любой точке траектории . Если же траекторией движения точки является прямая, то , следовательно, . В данном случае радиус кривизны траектории заранее не известен, поэтому нормальное ускорение определяем по формуле:

.

В момент времени t 1 = 0,5 c

.

Построим векторы и в соответствии с уже выбранным масштабом, а затем сложим их геометрически. В результате получим тот же вектор полного ускорения точки , который ранее уже был получен геометрической суммой составляющих и . Этот факт служит контролем правильности решения.

Радиус кривизны траектории в рассматриваемой точке определим по формуле

.

В момент времени t 1 = 0,5 c

.

Ответ: =8,82 см; =2,59 см; =4,44 см/ c ; =2,22 см/ c ; =4,96 см/с; =6,97 см/с 2 ; =3,49 см/с 2 ; =7,79 см/с 2 ; =4,67 см/с 2 ; =6,23 см/с 2 ; =3,95 см (радиус кривизны траектории в точке ).

Адрес: Россия, 450071, г.Уфа, почтовый ящик 21


источники:

http://artsybashev.ru/zadachki-s-resheniem/vektor-skorosti-i-uskoreniya-materialnoi-tochki/

http://www.teoretmeh.ru/primerkinematika4.htm