Тема квадратное уравнение и его корни 8 класс

Урок математики в 8 классе по теме «Квадратное уравнение и его корни »
план-конспект урока по алгебре (8 класс) по теме

Урок обощения и систематизации материала. Направленность урока: игровой замысел. Организационные формы общения: групповая, индивидуальная.

Скачать:

ВложениеРазмер
urok_8klass.docx16.66 КБ

Предварительный просмотр:

Урок математики ( алгебра) 8 класс

Тема: Квадратное уравнение и его корни.

Цель урока: Обобщение и систематизация материала по данной теме. Проведение диагностики усвоения системы знаний и умений и ее применение для выполнения практических заданий стандартного уровня с переходом на более высокий уровень. Развитие познавательных процессов: памяти, воображения, мышления, внимания, наблюдательности.

Организационные формы общения: групповая, индивидуальная.

Направленность урока: игровой замысел.

—Актуализация опорных знаний.

1) Конкурс «Т» (теория)

( вопросы задаются каждой команде поочередно)

  1. Определение квадратного уравнения.
  2. Виды квадратных уравнений.
  3. Что называется дискриминантом квадратного уравнения?
  4. От чего зависит количество корней квадратного уравнения?
  5. Каковы формулы для нахождения корней квадратного уравнения?
  6. Формулировка теоремы Виета.

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Формирование мотива, желания работать на уроке.

Повторение необходимых теоретических сведений, применение наработанных умений и навыков в изученном материале (рассматриваемом в новой теме), развитие умений говорить и слушать.

Ввести понятие квадратного уравнения и сводящегося к нему, научить определять коэффициенты, научить записывать квадратное уравнение по заданным значениям коэффициентов, ввести понятие полного и неполного квадратного уравнения, научить решать уравнения вида х² = d

Обобщить результаты работы за урок, выставить оценки, прокомментировать домашнее задание

Приготовьте все необходимое к уроку: учебник, тетрадь, дневник. Сегодня…..число. Тема сегодняшнего урока «Квадратное уравнение и его корни»

Сегодня мы начинаем изучать новую, очень важную тему из курса алгебры. Одну из основных. Будьте внимательны и не стесняйтесь задавать вопросы, если вам что-то непонятно.

Проверка домашнего задания ( если оно задавалось по предыдущей теме)

Актуализация имеющихся знаний и умений учащихся

Для того, чтобы изучение новой темы было достаточно последовательным, нам необходимо с вами повторить некоторые темы, которые участвуют в формировании новых понятий.

Введение новых понятий и первичная отработка полученных знаний

Я прошу вас подготовить в тетради 4 столбика.

В ходе самостоятельной работы ученики пробуют самостоятельно классифицировать уравнения по степени неизвестного. В рабочей тетради записать номера уравнений в четыре столбика.

1 группа – равенства, не содержащие неизвестного

Вывод: — все остальные равенства это уравнения.

Повторить определение уравнения.

2 группа – линейные уравнения

— Каков общий вид линейного уравнения? (ах + с = 0)

— Как называются числа а и с, какие значения они могут принимать? ( Это коэффициенты уравнения, они могут быть любыми, кроме случая, когда а = 0)

3 группа- уравнения, в которых переменная возведена во вторую степень

4 группа- уравнения, в которых переменная возведена в более высокую степень.

На сегодняшнем уроке мы с вами подробно изучим уравнения вида, представленного в третьей группе.

Отметить хорошо видимый признак такого рода уравнений

– переменная во второй степени.

Ввести определение квадратного уравнения, квадратного трехчлена, стандартного вида квадратного уравнения, название коэффициентов.

Квадратным уравнением называется уравнение вида ах2 + bх + с = 0, где а, b, с – заданные числа, а ≠ 0.

Числа a, b,c – это коэффициенты квадратного уравнения. Число а называют первым или старшим коэффициентом, b — вторым коэффициентом, а c-свободным членом.

Работа с учебником: №401, 402 (устно)

Далее работа со слайдом:

-Всегда ли возможно определить коэффициенты квадратного уравнения по его записи?

-Какое из предложенных уравнений записано в стандартном виде?

-Какие уравнения необходимо преобразовать, для того, чтобы привести к стандартному виду и как это сделать? Определить значения коэффициентов в полученных уравнениях.

Работа на доске и в тетрадях с проверкой результата по слайду.

Так же мы должны научиться не только уметь считывать значения коэффициентов, но и записывать квадратные уравнения с заданными значениями коэффициентов.

Записать на доске полученные уравнения.

Во время работы мы с вами выяснили, что коэффициенты b и с могут быть равными нулю. Попробуем изучить вид квадратного уравнения в таких случаях. Приведем примеры таких уравнений (записать на доске).

Вернуться к уравнениям на доске, еще раз проговорить коэффициенты каждого уравнения.

Для чего нам необходима такая классификация? Для того, чтобы научиться решать такого вида уравнения. Существует несколько способов решения таких уравнений. Но для этого мы должны четко понимать, что значит решить уравнение и каков должен быть результат нашей работы.

— Дайте определение корня уравнения. ( Корень уравнения – это такое число, при подстановке которого в уравнение получается верное числовое равенство)

— А что значит решить уравнение? ( Решить уравнение – найти все его корни или установить, что их нет)

Как проверить, является ли число корнем уравнения?

Работа по учебнику №405(1,3-устно, 5 письменно на доске)

Рассмотрим способы решения квадратных уравнений. Первая группа уравнений:

№408,409 найдите уравнения такого типа. Очевидно, сто такие уравнения имеют корень 1.

Рассмотрим уравнения второго типа. В номере 408 (1) Записать на доске и решить через разность квадратов. Два корня. Арифметический корень и противоположное арифметическому корню число.

Ввести формулу (теорему)

Вполне понятно, что эти два случая можно объединить как уравнение вида

По учебнику решить устно №407, №408(3,5)

Подвести итоги урока .Работа со слайдом.

Домашнее задание: п.25 стр.160 определение кв. уравнения, определение полного и неполного кв. уравнения, теорема о корнях

Спасибо за урок.

По теме: методические разработки, презентации и конспекты

Урок математики в 8 классе по теме «Квадратное уравнение и его корни «

Урок обощения и систематизации материала. Направленность урока: игровой замысел. Организационные формы общения: групповая, индивидуальная.

Презентация к уроку алгебры в 9 классе для детей с нарушением слуха по теме «Квадратное уравнение и его корни».

Данная презентация подготовлена к урокам объяснения и первичного закрепления нового материала.

Открытый урок «Квадратное уравнение и его корни. Решение полных квадратных уравнений»

Открытый урок для учеников 8 класса «Квадратное уравнение и его корни. Решение полных квадратных уравнений&raquo.

Тематическая проверочная работа «Квадратное уравнение и его корни» 8 класс

Содержание КИМ соответствует УМК под редакцией Ю. Н. Макарычева.

Квадратные уравнения №2. Формула корней квадратного уранения.

Квадратные уравнения. Формула корней квадратного уранения. Урок №2 по теме квадратные уравнения. Урок с использованием сервиса ЯКласс.

Контрольная работа по алгебре «Квадратные уравнения и его корни»

Работа составлена для слабых учащихся.

Квадратное уравнение и его корни

Презентация к уроку «Квадратное уравнение и его корни». В презентации использован материал из рабочей тетради «Алгебра 8 класс. Задания для обучения и развития учащихся», авторы Ле.


источники:

http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya

http://nsportal.ru/shkola/algebra/library/2014/03/30/kvadratnoe-uravnenie-i-ego-korni

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Квадратное уравнение и его корни
    план-конспект урока по алгебре (8 класс)

    Урок изучения и первичного закрепления новых знаний по теме «Квадратное уравнение и его корни». Урок по алгебре для 8 класса. Учебник: Алгебра 8 под редакцией Ю.М.Колягина

    Скачать:

    ВложениеРазмер
    otkrytyy_urok_2.ppt334.5 КБ
    algebra_8_klass._kvadratnoe_uravnenie_i_ego_korni.docx924.87 КБ

    Предварительный просмотр:

    Подписи к слайдам:

    Предварительный просмотр:

    План-конспект урока «Квадратное уравнение и его корни»

    (урок по алгебре для 8 класса по базовой программе)

    Учебник: Алгебра8 под ред. Ю.М.Колягина

    Подготовила: Панина Елена Викторовна

    учитель математики ГБОУ гимназии №528 Санкт-Петербурга

    Тема: «Квадратные уравнения»

    1 урок в данной теме

    Тип урока: -у рок изучения и первичного закрепления новых знаний.

    Цели урока: формирование понятия квадратного уравнения и его видов по значениям коэффициентов;

    Регулятивные: учитывать правило в планировании и контроле способа решения, различать способ и результат действия.

    Познавательные: ориентироваться на разнообразие способов решения задач.

    Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве, контролировать действия партнера.

    В результате ученик научится:

    Распознавать квадратные уравнения, систематизировать их по способу решения

    Решать неполные квадратные уравнения

    Исследовать квадратные уравнения по коэффициентам.

    • Компьютер учителя, интерактивная доска
    • Учебник алгебра 8
    • Презентация
    • Рабочие тетради учеников.

    I. Мотивационно – ориентировочная часть:

    — мотивация, постановка учебной задачи.

    II. Операционно – познавательная часть:

    — решение учебной задачи (сообщение нового материала, первичная проверка понимания учащимися нового материала, закрепление изученного материала).

    III. Рефлексивно – оценочная часть:

    — подведение итогов урока,

    — комментарий к выполнению домашнего задания.

    Формы работы учащихся : коллективная, индивидуальная

    Содержание (цель) этапа

    1. Организационный момент
    1. Проверка домашней работы
    1. Устная работа
    1. Введение новых понятий и первичная отработка полученных знаний
    1. Итог урока