Тема решение простейших тригонометрических уравнений и неравенств

Урок по теме «Решение тригонометрических неравенств»

Разделы: Математика

Тема “Тригонометрические неравенства” является объективно сложной для восприятия и осмысления учащимися 10-го класса. Поэтому очень важно последовательно, от простого к сложному формировать понимание алгоритма и вырабатывать устойчивый навык решения тригонометрических неравенств.

Успех освоения данной темы зависит от знания основных определений и свойств тригонометрических и обратных тригонометрических функций, знания тригонометрических формул, умения решать целые и дробно-рациональные неравенства, основные виды тригонометрических уравнений.

Особый упор нужно делать на методике обучения решения простейших тригонометрических неравенств, т.к. любое тригонометрическое неравенство сводится к решению простейших неравенств.

Первичное представление о решении простейших тригонометрических неравенств предпочтительно вводить, используя графики синуса, косинуса, тангенса и котангенса. И только после учить решать тригонометрические неравенства на окружности.

Остановлюсь на основных этапах рассуждения при решении простейших тригонометрических неравенств.

  1. Находим на окружности точки, синус (косинус) которых равен данному числу.
  2. В случае строгого неравенства отмечаем на окружности эти точки, как выколотые, в случае нестрогого – как заштрихованные.
  3. Точку, лежащую на главном промежутке монотонности функции синус (косинус), называем Рt1, другую точку – Рt2.
  4. Отмечаем по оси синусов (косинусов) промежуток, удовлетворяющий данному неравенству.
  5. Выделяем на окружности дугу, соответствующую данному промежутку.
  6. Определяем направление движения по дуге (от точки Рt1 к точке Рt2по дуге), изображаем стрелку по направлению движения, над которой пишем знак “+” или “-” в зависимости от направления движения. (Этот этап важен для контроля найденных углов. Ученикам можно проиллюстрировать распространенную ошибку нахождения границ интервала на примере решения неравенства по графику синуса или косинуса и по окружности).
  7. Находим координаты точек Рt1 (как арксинус или арккосинус данного числа)и Рt2т.е. границы интервала, контролируем правильность нахождения углов, сравнивая t1и t2.
  8. Записываем ответ в виде двойного неравенства (или промежутка) от меньшего угла до большего.

Рассуждения при решении неравенств с тангенсом и котангенсом аналогичны.

Рисунок и запись решения, которые должны быть отражены в тетради у учеников, приведены в предлагаемом конспекте.

Конспект урока по теме: “Решение тригонометрических неравенств”.

Задача урока – продолжить изучение решения тригонометрических неравенств, содержащих функции синус и косинус, перейти от простейших неравенств к более сложным.

  • закрепление знаний тригонометрических формул, табличных значений тригонометрических функций, формул корней тригонометрических уравнений;
  • формирование навыка решения простейших тригонометрических неравенств;
  • освоение приёмов решения более сложных тригонометрических неравенств;
  • развитие логического мышления, смысловой памяти, навыков самостоятельной работы, самопроверки;
  • воспитание аккуратности и чёткости в оформлении решения, интереса к предмету, уважения к одноклассникам.
  • формирование учебно-познавательных, информационных, коммуникативных компетенций.
  • Оборудование: графопроектор, раздаточные карточки с готовыми чертежами тригонометрических кругов, переносная доска, карточки с домашним заданием.

    Форма организации обучения – урок. Методы обучения, используемые на уроке – словесные, наглядные, репродуктивные, проблемно-поисковые, индивидуального и фронтального опроса, устного и письменного самоконтроля, самостоятельной работы.

    Этапы урока

    Содержание

    Организация класса на работу.

    Проверка домашнего задания.

    (Сбор тетрадей с домашней работой)

    Формулировка цели урока.

    – Сегодня на уроке повторим решение простейших тригонометрических неравенств и рассмотрим более сложные случаи.

    Устная работа.

    (Задания и ответы записаны на кодоскопной ленте, открываю ответы по ходу решения)

      Решить тригонометрические уравнения:

    sinx = —, 2sinx =, sin2x = , sin(x – ) = 0, cosx = ,

    cosx = —, cos2x = 1, tgx = -1.

  • Назовите главные промежутки монотонности функций синус и косинус.
  • Повторение.

    – Вспомним алгоритм решения простейших тригонометрических неравенств.

    (На доске – заготовки двух окружностей. Вызываю по одному двух учащихся для решения неравенств.Ученик подробно объясняет алгоритм решения.Класс работает совместно с отвечающими у доски на заранее подготовленных карточках с изображением окружности).

    1) sinx ;

    t1 = arccos(-) = p – arccos =

    = p – = ;

    t2 = —;

    + 2p n t2;

    t1 = arcsin = ;

    t2 = -p — = —;

    + 2p n 2 2x – 2cos2x 0.

    (Вспомним прием решения тригонометрических уравнений вынесением общего множителя за скобку).

    cos2x(cos2x – 2) 0.

    Замена: cos2x = t, 1; t(t – 2) 0; Второе неравенство не удовлетворяет условию 1.

    cos2x 0. (Решить неравенство самостоятельно. Проверить ответ).

    Ответ: + p n 2 x – 5sinx + 1 0.

    (Вспомним прием решения тригонометрических уравнений заменой переменной. У доски решает ученик с комментариями).

    Замена sinx = t, 1. 6t 2 – 5t +1 0, 6(t – )(t – ),

    Ответ: + 2p n х + 2p n, -p -arcsin+ 2p k х arcsin+ 2p k, n, k Z.

    №3. sinx + cos2x> 1.

    (Обсуждаем варианты решения. Вспоминаем фомулу косинуса двойного угла. Класс решает самостоятельно, один ученик – на индивидуальной доске с последующей проверкой).

    sinx + cos2x – 1> 0, sinx – 2sin 2 x> 0, sinx(1 – 2sinx) > 0,

    2p n 2 + () 2 = 1, то существует такой угол , что cos = , а sin = . Перепишем предыдущее неравенство в виде: sin(x + ) . Последнее неравенство, а, значит, и исходное неравенство имеет хотя бы одно решение при каждома таком, что -1, то есть при каждом а -5. Ответ: а -5.

    Домашнее задание.

    (Раздаю карточки с записью домашнего задания.Комментирую решение каждого неравенства).

    1. cosx > sin 2 x;
    2. 4sin2xcos2x 2 sin 2 – 0,5;
    3. sinx + cosx > 1.

    Повторить тригонометрические формулы сложения, подготовиться к самостоятельной работе.

    Подведение итогов, рефлексия.

    – Назовите приемы решения тригонометрических неравенств.

    – Каким образом знание алгоритма решения простейших тригонометрических неравенств используется при решении более сложных неравенств?

    – Какие неравенства вызвали наибольшее затруднение?

    (Оцениваю работу учащихся на уроке).

    Самостоятельная работа
    по результатам освоения материала

    Вариант 1

    Решите неравенства 1 – 3:

    1. sin3x – 2 x + 3cosx > 0;
    2. coscos2x – sinsin2x .
    3. Определите все а, при каждом из которых неравенство 12sinx + 5cosx а имеет хотя бы одно решение.

    Вариант 2

    Решите неравенства 1 – 3:

    1. 2cos> 1;
    2. sin 2 x – 4sinx

    Простейшие тригонометрические уравнения (задание 5) и неравенства

    \(\blacktriangleright\) Стандартные (простейшие) тригонометричекие уравнения — это уравнения вида
    \(\sin x=a,\quad \cos x=a,\quad \mathrm\,x=b,\quad \mathrm\,x=b\) , которые имеют смысл при \(-1\leq a\leq 1,\quad b\in \mathbb\) .

    Для решения данных уравнения удобно пользоваться единичной окружностью (радиус равен \(1\) ).

    Рассмотрим несколько примеров:

    Пример 1. Решить уравнение \(\sin x=\dfrac12\) .

    Найдем на оси синусов точку \(\dfrac12\) и проведем прямую параллельно оси \(Ox\) до пересечения с окружностью. Получим две точки на окружности, в которых находятся все углы, синус которых равен \(\dfrac12\) . Выберем в каждой точке по одному углу, причем удобнее выбирать эти углы из отрезка \([-\pi;\pi]\) . Тогда в нашем случае это углы \(\dfrac<\pi>6\) и \(\dfrac<5\pi>6\) . Все остальные углы можно получить путем прибавления к данным углам \(2\pi\cdot n\) , где \(n\) — целое число (т.е. поворотом от данных на целое число полных кругов).

    Таким образом, решением являются \(x_1=\dfrac<\pi>6+2\pi n,\ x_2=\dfrac<5\pi>6+2\pi n, \ n\in \mathbb\) .

    Пример 2. Решить уравнение \(\cos x=-\dfrac<\sqrt2><2>\) .

    Найдем на оси косинусов точку \(-\dfrac<\sqrt2><2>\) и проведем прямую параллельно оси \(Oy\) до пересечения с окружностью. Получим две точки на окружности, в которых находятся все углы, косинус которых равен \(-\dfrac<\sqrt2><2>\) . Выберем в каждой точке по одному углу, причем удобнее выбирать эти углы из отрезка \([-\pi;\pi]\) . Тогда в нашем случае это углы \(\dfrac<3\pi>4\) и \(-\dfrac<3\pi>4\) . Все остальные углы можно получить путем прибавления к данным \(2\pi\cdot n\) , где \(n\) — целое число.

    Таким образом, решением являются \(x_1=\dfrac<3\pi>4+2\pi n,\ x_2=-\dfrac<3\pi>4+2\pi n, \ n\in \mathbb\) .

    Пример 3. Решить уравнение \(\mathrm\,x=\dfrac<\sqrt3>3\) .

    Найдем на оси тангенсов точку \(\dfrac<\sqrt3>3\) и проведем прямую через эту точку и центр окружности до пересечения с окружностью. Получим две точки на окружности, в которых находятся все углы, тангенс которых равен \(\dfrac<\sqrt3>3\) .Выберем в каждой точке по одному углу, причем удобнее выбирать эти углы из отрезка \([-\pi;\pi]\) . Тогда в нашем случае это углы \(\dfrac<\pi>6\) и \(-\dfrac<5\pi>6\) . Все остальные углы можно получить путем прибавления к данным \(2\pi\cdot n\) , где \(n\) — целое число, или путем прибавления к одному из данных углов \(\pi n\) .

    Таким образом, решением являются \(x=\dfrac<\pi>6+\pi n, \ n\in \mathbb\) .

    Пример 4. Решить уравнение \(\mathrm\,x=\sqrt3\) .

    Найдем на оси котангенсов точку \(\sqrt3\) и проведем прямую через эту точку и центр окружности до пересечения с окружностью. Получим две точки на окружности, в которых находятся все углы, котангенс которых равен \(\sqrt3\) . Выберем в каждой точке по одному углу, причем удобнее выбирать эти углы из отрезка \([-\pi;\pi]\) . Тогда в нашем случае это углы \(\dfrac<\pi>6\) и \(-\dfrac<5\pi>6\) . Все остальные углы можно получить путем прибавления к данным \(2\pi\cdot n\) , где \(n\) — целое число, или путем прибавления к одному из данных углов \(\pi n\) .

    Таким образом, решением являются \(x=\dfrac<\pi>6+\pi n, \ n\in \mathbb\) .

    \(\blacktriangleright\) Решения для любого стандартного тригонометрического уравнения выглядят следующим образом: \[\begin \hline \text <Уравнение>& \text <Ограничения>& \text<Решение>\\ \hline &&\\ \sin x=a & -1\leq a\leq 1 & \left[ \begin \begin &x=\arcsin a+2\pi n\\ &x=\pi -\arcsin a+2\pi n \end \end \right. \ \ , \ n\in \mathbb\\&&\\ \hline &&\\ \cos x=a & -1\leq a\leq 1 & x=\pm \arccos a+2\pi n, \ n\in \mathbb\\&&\\ \hline &&\\ \mathrm\, x=b & b\in \mathbb & x=\mathrm\, b+\pi n, \ n\in \mathbb\\&&\\ \hline &&\\ \mathrm\,x=b & b\in \mathbb & x=\mathrm\, b+\pi n, \ n\in \mathbb\\&&\\ \hline \end\] Иногда для более короткой записи решение для \(\sin x=a\) записывают как \(x=(-1)^k\cdot \arcsin a+\pi k, \ k\in \mathbb\) .

    \(\blacktriangleright\) Любые уравнения вида \(\mathrm\,\big(f(x)\big)=a\) , (где \(\mathrm\) — одна из функций \(\sin, \ \cos, \ \mathrm,\ \mathrm\) , а аргумент \(f(x)\) — некоторая функция) сводятся к стандартным уравнениям путем замены \(t=f(x)\) .

    Пример 5. Решить уравнение \(\sin<(\pi x+\dfrac<\pi>3)>=1\) .

    Сделав замену \(t=\pi x+\dfrac<\pi>3\) , мы сведем уравнение к виду \(\sin t=1\) . Решением данного уравнения являются \(t=\dfrac<\pi>2+2\pi n, n\in\mathbb\) .

    Теперь сделаем обратную замену и получим: \(\pi x+\dfrac<\pi>3=\dfrac<\pi>2+2\pi n\) , откуда \(x=\dfrac16+2n,\ n\in\mathbb\) .

    Если \(n\) точек, являющихся решением уравнения или системы, разбивают окружность на \(n\) равных частей, то их можно объединить в одну формулу: \(x=\alpha+\dfrac<2\pi>n,\ n\in\mathbb\) , где \(\alpha\) — один из этих углов.

    Рассмотрим данную ситуацию на примере:

    Пример 6. Допустим, решением системы являются \(x_1=\pm \dfrac<\pi>4+2\pi n, \ x_2=\pm \dfrac<3\pi>4+2\pi n, \ n\in\mathbb\) . Отметим эти точки на окружности:

    Заметим, что длины дуг \(\buildrel\smile\over, \buildrel\smile\over, \buildrel\smile\over, \buildrel\smile\over\) равны \(\dfrac<\pi>2\) , то есть эти точки разбили окружность на \(4\) равных части. Таким образом, ответ можно записать в виде одной формулы: \(x=\dfrac<\pi>4+\dfrac<\pi>2n, \ n\in\mathbb\) .

    где \(\lor\) — один из знаков \(\leq,\ ,\ \geq\) .

    Пример 7. Изобразить на окружности множество решений неравенства \(\sin x >\dfrac12\) .

    Для начала отметим на окружности корни уравнения \(\sin x =\dfrac12\) . Это точки \(A\) и \(B\) . Все точки, синус которых больше \(\dfrac12\) , находятся на выделенной дуге. Т.к. при положительном обходе движение по окружности происходит против часовой стрелки, то начало дуги — это \(A\) , а конец — \(B\) .

    Выберем в точке \(A\) любой угол, например, \(\dfrac<\pi>6\) . Тогда в точке \(B\) необходимо выбрать угол, который будет больше \(\dfrac<\pi>6\) , но ближайший к нему, и чтобы синус этого угла также был равен \(\dfrac12\) . Это угол \(\dfrac<5\pi>6\) . Тогда все числа из промежутка \(\left(\dfrac<\pi>6;\dfrac<5\pi>6\right)\) являются решениями данного неравенства (назовем такое решение частным). А все решения данного неравенства будут иметь вид \(\left(\dfrac<\pi>6+2\pi n;\dfrac<5\pi>6+2\pi n\right), n\in\mathbb\) , т.к. у синуса период \(2\pi\) .

    Пример 8. Изобразить на окружности множество решений неравенства \(\cos x .

    Для начала отметим на окружности корни уравнения \(\cos x =\dfrac12\) . Это точки \(A\) и \(B\) . Все точки, косинус которых меньше \(\dfrac12\) , находятся на выделенной дуге. Т.к. при положительном обходе движение по окружности происходит против часовой стрелки, то начало дуги — это \(A\) , а конец — \(B\) .

    Выберем в точке \(A\) любой угол, например, \(\dfrac<\pi>3\) . Тогда в точке \(B\) необходимо выбрать угол, который будет больше \(\dfrac<\pi>3\) , но ближайший к нему, и чтобы косинус этого угла также был равен \(\dfrac12\) . Это угол \(\dfrac<5\pi>3\) . Тогда все числа из промежутка \(\left(\dfrac<\pi>3;\dfrac<5\pi>3\right)\) являются решениями данного неравенства (назовем такое решение частным). А все решения данного неравенства будут иметь вид \(\left(-\dfrac<5\pi>3+2\pi n;-\dfrac<\pi>3+2\pi n\right), n\in\mathbb\) , т.к. у косинуса период \(2\pi\) .

    Пример 9. Изобразить на окружности множество решений неравенства \(\mathrm\, x \geq \dfrac<\sqrt<3>>3\) .

    Для начала отметим на окружности корни уравнения \(\mathrm\, x = \dfrac<\sqrt<3>>3\) . Это точки \(A\) и \(B\) . Все точки, тангенс которых больше или равен \(\dfrac<\sqrt<3>>3\) , находятся на выделенных дугах, причем точки \(C\) и \(D\) выколоты, т.к. в них тангенс не определен.

    Рассмотрим одну из дуг, например, \(\buildrel\smile\over\) . Т.к. при положительном обходе движение по окружности происходит против часовой стрелки, то за конец дуги можно принять угол \(\dfrac<\pi>2\) , тогда начало дуги — это угол \(\dfrac<\pi>6\) (угол должен быть меньше \(\dfrac<\pi>2\) , но ближайший к нему). Значит, частным решением данного неравенства является полуинтервал \(\Big[\dfrac<\pi>6;\dfrac<\pi>2\Big)\) . А все решения данного неравенства будут иметь вид \(\Big[\dfrac<\pi>6+\pi n;\dfrac<\pi>2+\pi n\Big), n\in\mathbb\) , т.к. у тангенса период \(\pi\) .

    Пример 10. Изобразить на окружности множество решений неравенства \(\mathrm\, x \leq \sqrt<3>\) .

    Для начала отметим на окружности корни уравнения \(\mathrm\, x = \sqrt<3>\) . Это точки \(A\) и \(B\) . Все точки, котангенс которых меньше или равен \(\sqrt<3>\) , находятся на выделенных дугах, причем точки \(C\) и \(D\) выколоты, т.к. в них котангенс не определен.

    Рассмотрим одну из дуг, например, \(\buildrel\smile\over\) . Т.к. при положительном обходе движение по окружности происходит против часовой стрелки, то за конец дуги можно принять угол \(\pi\) , тогда начало дуги — это угол \(\dfrac<\pi>6\) (угол должен быть меньше \(\pi\) , но ближайший к нему). Значит, частным решением данного неравенства является полуинтервал \(\Big[\dfrac<\pi>6;\pi\Big)\) . А все решения данного неравенства будут иметь вид \(\Big[\dfrac<\pi>6+\pi n;\pi+\pi n\Big), n\in\mathbb\) , т.к. период котангенса \(\pi\) .

    Геометрический способ (по окружности).
    Этот способ заключается в том, что мы отмечаем решения всех уравнений (неравенств) на единичной окружности и пересекаем (объединяем) их.

    Пример 11. Найти корни уравнения \(\sin x=-\dfrac12\) , если \(\cos x\ne \dfrac<\sqrt3>2\) .

    В данном случае необходимо пересечь решения первого уравнения с решением второго уравнения.

    Решением первого уравнения являются \(x_1=-\dfrac<\pi>6+2\pi n,\ x_2=-\dfrac<5\pi>6+2\pi n,\ n\in \mathbb\) , решением второго являются \(x\ne \pm \dfrac<\pi>6+2\pi n,\ n\in\mathbb\) . Отметим эти точки на окружности:

    Видим, что из двух точек, удовлетворяющих первому уравнению, одна точка \(x= -\dfrac<\pi>6+2\pi n\) не подходит. Следовательно, ответом будут только \(x=-\dfrac<5\pi>6+2\pi n, n\in \mathbb\) .

    Вычислительный способ.
    Этот способ заключается в подстановке решений уравнения (системы) в имеющиеся ограничения. Для данного способа будут полезны некоторые частные случаи формул приведения: \[\begin &\sin<(\alpha+\pi n)>=\begin \sin \alpha, \text <при >n — \text< четном>\\ -\sin \alpha, \text <при >n — \text < нечетном>\end\\ &\cos<(\alpha+\pi n)>=\begin \cos \alpha, \text <при >n — \text< четном>\\ -\cos \alpha, \text <при >n — \text <нечетном>\end\\ &\mathrm\,(\alpha+\pi n)=\mathrm\,\alpha\\ &\mathrm\,(\alpha+\pi n)=\mathrm\,\alpha\\ &\sin<\left(\alpha+\dfrac<\pi>2\right)>=\cos\alpha\\ &\cos<\left(\alpha+\dfrac<\pi>2\right)>=-\sin \alpha\\ &\,\mathrm\,\left(\alpha+\dfrac<\pi>2\right)=-\,\mathrm\,\alpha\\ &\,\mathrm\,\left(\alpha+\dfrac<\pi>2\right)=-\,\mathrm\,\alpha \end\]

    Пример 12. Решить систему \(\begin \cos x=\dfrac12\\ \sin x+\cos x>0\end\)

    Решением уравнения являются \(x_1=\dfrac<\pi>3+2\pi n,\ x_2=-\dfrac<\pi>3+2\pi n,\ n\in\mathbb\) . Подставим в неравенство \(\sin x+\cos x>0\) по очереди оба корня:

    \(\sin x_1+\cos x_1=\dfrac<\sqrt3>2+\dfrac12>0\) , следовательно, корень \(x_1\) нам подходит;
    \(\sin x x_2+\cos x_2=-\dfrac<\sqrt3>2+\dfrac12 , следовательно, корень \(x_2\) нам не подходит.

    Таким образом, решением системы являются только \(x=\dfrac<\pi>3+2\pi n,\ n\in\mathbb\) .

    Алгебраический способ.

    Пример 13. Найти корни уравнения \(\sin x=\dfrac<\sqrt2>2\) , принадлежащие отрезку \([0;\pi]\) .

    Решением уравнения являются \(x_1=\dfrac<\pi>4+2\pi n, \ x_2=\dfrac<3\pi>4 +2\pi n, \ n\in\mathbb\) . Для того, чтобы отобрать корни, решим два неравенства: \(0\leq x_1\leq\pi\) и \(0\leq x_2\leq\pi\) :

    \(0\leq \dfrac<\pi>4+2\pi n\leq\pi \Leftrightarrow -\dfrac18\leq n\leq\dfrac38\) . Таким образом, единственное целое значение \(n\) , удовлетворяющее этому неравенству, это \(n=0\) . При \(n=0\) \(x_1=\dfrac<\pi>4\) — входит в отрезок \([0;\pi]\) .

    Аналогично решаем неравенство \(0\leq x_2\leq\pi\) и получаем \(n=0\) и \(x_2=\dfrac<3\pi>4\) .

    Для следующего примера рассмотрим алгоритм решения линейных уравнений в целых числах:

    Уравнение будет иметь решение в целых числах относительно \(x\) и \(y\) тогда и только тогда, когда \(c\) делится на \(НОД(a,b)\) .

    Пример: Уравнение \(2x+4y=3\) не имеет решений в целых числах, потому что \(3\) не делится на \(НОД(2,4)=2\) . Действительно, слева стоит сумма двух четных чисел, то есть четное число, а справа — \(3\) , то есть нечетное число.

    Пример: Решить уравнение \(3x+5y=2\) . Т.к. \(НОД(3,5)=1\) , то уравнение имеет решение в целых числах. Выразим \(x\) через \(y\) :

    Число \(\dfrac<2-2y>3\) должно быть целым. Рассмотрим остатки при делении на \(3\) числа \(y\) : \(0\) , \(1\) или \(2\) .
    Если \(y\) при делении на \(3\) имеет остаток \(0\) , то оно записывается как \(y=3p+0\) . Тогда \[\dfrac<2-2y>3=\dfrac<2-2\cdot 3p>3=\dfrac23-2p\ne \text<целому числу>\]

    Если \(y\) при делении на \(3\) имеет остаток \(1\) , то оно записывается как \(y=3p+1\) . Тогда \[\dfrac<2-2y>3=\dfrac<2-2(3p+1)>3=-2p=\text<целому числу>\]

    Значит, этот случай нам подходит. Тогда \(y=3p+1\) , а \(x=\dfrac<2-2y>3-y=-5p-1\) .

    Ответ: \((-5p-1; 3p+1), p\in\mathbb\) .

    Перейдем к примеру:

    Пример 14. Решить систему \[\begin \sin \dfrac x3=\dfrac<\sqrt3>2\\[3pt] \cos \dfrac x2=1 \end\]

    Решим первое уравнение системы:

    \[\left[ \begin \begin &\dfrac x3=\dfrac<\pi>3+2\pi n\\[3pt] &\dfrac x3=\dfrac<2\pi>3 +2\pi m \end \end \right.\quad n,m\in\mathbb \quad \Leftrightarrow \quad \left[ \begin \begin &x=\pi+6\pi n\\ &x=2\pi +6\pi m \end \end \right.\quad n,m\in\mathbb\]

    Решим второе уравнение системы:

    \[\dfrac x2=2\pi k, k\in\mathbb \quad \Leftrightarrow \quad x=4\pi k, k\in\mathbb\]

    Необходимо найти корни, которые удовлетворяют и первому, и второму уравнению системы, то есть пересечь решения первого и второго уравнений.
    Найдем целые \(n\) и \(k\) , при которых совпадают решения в сериях \(\pi+6\pi n\) и \(4\pi k\) :

    \[\pi + 6\pi n=4\pi k \quad \Rightarrow \quad 4k-6n=1\]

    Т.к. \(НОД(4,6)=2\) и \(1\) не делится на \(2\) , то данное уравнение не имеет решений в целых числах.

    Найдем целые \(m\) и \(k\) , при которых совпадают решения в сериях \(2\pi +6\pi m\) и \(4\pi k\) :

    \[2\pi +6\pi m=4\pi k \quad \Rightarrow \quad 2k-3m=1\]

    Данное уравнение имеет решение в целых числах. Выразим \(k=\frac<3m+1>2=m+\frac2\) .

    Возможные остатки при делении \(m\) на \(2\) — это \(0\) или \(1\) .
    Если \(m=2p+0\) , то \(\frac2=\frac<2p+1>2=p+\frac12\ne \) целому числу.
    Если \(m=2p+1\) , то \(\frac2=\frac<2p+1+1>2=p+1= \) целому числу.

    Значит, \(m=2p+1\) , тогда \(k=3p+2\) , \(p\in\mathbb\) .

    Подставим либо \(m\) , либо \(k\) в соответствующую ему серию и получим окончательный ответ: \(x=4\pi k=4\pi (3p+2)=8\pi+12\pi p, p\in\mathbb\) .

    Тема решение простейших тригонометрических уравнений и неравенств

    Методы решения тригонометрических уравнений.

    1. Алгебраический метод.

    ( метод замены переменной и подстановки ).

    2. Разложение на множители.

    П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

    Р е ш е н и е . Перенесём все члены уравнения влево:

    sin x + cos x – 1 = 0 ,

    преобразуем и разложим на множители выражение в

    левой части уравнения:

    П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

    Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

    sin x · cos x – sin 2 x = 0 ,

    sin x · ( cos x – sin x ) = 0 ,

    П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

    Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

    2 cos 4x cos 2x = 2 cos ² 4x ,

    cos 4x · ( cos 2x – cos 4x ) = 0 ,

    cos 4x · 2 sin 3x · sin x = 0 ,

    1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

    3. Приведение к однородному уравнению.

    а) перенести все его члены в левую часть;

    б) вынести все общие множители за скобки;

    в) приравнять все множители и скобки нулю;

    г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

    cos ( или sin ) в старшей степени;

    д) решить полученное алгебраическое уравнение относительно tan .

    П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

    Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

    sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

    tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

    корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

    1) tan x = –1, 2) tan x = –3,

    4. Переход к половинному углу.

    П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

    Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

    = 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

    2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

    tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

    5. Введение вспомогательного угла.

    где a , b , c – коэффициенты; x – неизвестное.

    Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

    6. Преобразование произведения в сумму.

    П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

    Р е ш е н и е . Преобразуем левую часть в сумму:


    источники:

    http://shkolkovo.net/theory/25

    http://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij