Тема решение систем уравнений второй степени

Урок-практикум по алгебре. 9-й класс. Тема: «Решение систем уравнений второй степени»

Класс: 9

Презентация к уроку

Цели урока (Слайд 1):

  • Обучающие: систематизировать знания по данной теме, выработать умение решать системы уравнений, содержащие уравнения второй степени графическим способом, способами подстановки и сложения.
  • Развивающие: развивать вычислительную технику, мыслительную активность, логическое мышление, интерес к предмету; способствовать формированию ключевых понятий; выполнение заданий различного уровня сложности.
  • Воспитывающие: воспитывать внимательность, аккуратность, умения четко организовывать самостоятельную и индивидуальную работу.

Оборудование: доска, мел, линейка, карточки – задания для индивидуальной работы, наглядность, презентация.

1. Организационный момент.

а) Отметить отсутствующих;
б) объявить тему урока;
в) объявить цели урока.

2. Фронтальный опрос правил и определений по теме урока. В параллели проводится индивидуальная работа (Приложение 1) с учащимися, имеющими слабую мотивацию к учебе.

Какие способы решения систем уравнений с двумя переменными знаете?

(Графический, подстановки, сложения) (Слайд 3).

Рассмотрим графический способ. (Слайд 4)

  • Как решается система графическим способом?
    (Необходимо: построить графики уравнения в одной координатной плоскости; найти координаты точек пересечения графиков, которые и будут решением системы.)
  • Почему координаты точек пересечения являются решением системы уравнений?
    (Координаты точек пересечения удовлетворяют каждому уравнению системы.)
  • Как записывается решение системы уравнений, если она решается графическим способом?
    (Приближенным равенством для значений переменных.)
  • От чего зависит количество решений системы уравнений при графическом способе решения?
    (От количества точек пересечения.)
  • Сколько точек имеют графики, если система имеет три решения? (Три точки.)

3. Работа с наглядностью. (Слайды 5, 6)

  • Сколько точек пересечения имеют графики. (Приложение 2)
  • Сколько решений имеет система, если графики изображены на рисунке. (Приложение 2)
  • Совместить графики уравнений с формулами, которыми они задаются. (Приложение 3)

4. Самостоятельная работа 1 (слайд 7) с использованием шаблонов координатной плоскости.

Изобразив схематически графики уравнений, укажите количество решений системы.

5. При графическом способе решения мы находим приближенные значения переменных. А как же найти точные значения?

(Решить систему способом подстановки или сложения . )

  • Как решить систему способом подстановки? (Слайд 8)
    (Выражают из уравнения одну переменную через другую. Подставляют эту подстановку в другое уравнение. Решают полученное уравнение с одной переменной. Находят соответствующие значение второй переменной, из подстановки).
  • Есть ли разница, из какого уравнения системы получить подстановку?
    (Нет. Если в систему входит уравнение 1-ой степени, то подстановку получают из этого уравнения. Если оба уравнения второй степени, то подстановку получают из любого.)
  • Как записать решение системы? (Парой чисел.)
  • Как решить систему способом сложения? (Слайд 13)

6 . Устная работа. В параллели проводится индивидуальная работа с учащимися средней мотивации к учебе (Приложение 4)

а) Определите степень уравнения (Слайд 9):

21221

б) Выразите одну переменную через другую (слайд 10):

в) Решите систему уравнений (Слайд 11):

Решений нет(-1; 2) ; (-2; 1)(1,6; 3)(10;1,8)

г) Определите корни уравнения (Слайд 12):

-1; 43; 4-4; -2

6. Работа в тетрадях (Слайд 14): № 440 (а), 433(а), 448(а), 443(а), [438].

7. Самостоятельная работа 2. (Слайд 15)

Решите систему уравнений.

Вариант 1Вариант 2
(-4;-5); (2;1)(-6;-9); (8;5)
Решений нет(4;-1); (-4;1)
(-0,5;-11); (8; 6)(-4;-5); (14;4)
(-0,4;0,3); (3;2)Решений нет
(3;1)

8. Подведение итогов. Занести результаты каждого ученика в оценочный лист.

№ п/пФ.И.
ученика
ИндивидуальнаяУстнаяСамостоятельная
1
Самостоятельная
2
ПисьменнаяИтоговая
оценка
1.
2.
3.

9. Домашнее задание (Слайд 16): п.18–19, с.109–112, № 433 (б), 440(б), 448(б), 443(б).

  1. Учебник “Алгебра 9 класс”, авторы: Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова, “Просвещение”, 2008.
  2. Уроки алгебры в 9 классе, авторы В.И.Жохов, Л.Б.Крайнева, “Вербум-М”, 2000.
  3. Дидактические материалы по алгебре 9 класс, авторы В.И.Жохов и др., “Просвещение”, 2009.
  4. Открытый банк задач по ГИА.

Урок «Решение систем уравнений второй степени»
план-конспект урока по алгебре (9 класс)

Разработка урока алгебры в 9 классе «Решение систем уравнений II степени» с презентацией

Скачать:

ВложениеРазмер
razrabotka_uroka.docx105.77 КБ
pril_9_klass.ppt2.84 МБ

Предварительный просмотр:

Открытый урок по алгебре в 9 класс

Тип урока: урок практикум

Тема урока «Решение систем уравнений второй степени» (Слайд 1)

Цели урока ( Слайд 2):

  • Обучающие: систематизировать знания по данной теме, выработать умение решать системы уравнений, содержащие уравнения второй степени графическим способом, способами подстановки и сложения.
  • Развивающие: развивать вычислительную технику, мыслительную активность, логическое мышление, интерес к предмету; способствовать формированию ключевых понятий; выполнение заданий различного уровня сложности.
  • Воспитывающие: воспитывать внимательность, аккуратность, умения четко организовывать самостоятельную и индивидуальную работу.

Оборудование : доска, мел, линейка, карточки с заданиями для индивидуальной работы, наглядность, презентация.

1. Организационный момент.

а) Отметить отсутствующих;
б) объявить тему урока;
в) объявить цели урока.

2 . Фронтальный опрос правил и определений по теме урока. В параллели проводится индивидуальная работа с учащимися, имеющими слабую мотивацию к учебе.

Какие способы решения систем уравнений с двумя переменными знаете?

(Графический, подстановки, сложения) (Слайд 3).

Рассмотрим графический способ . (Слайд 4)

  • Как решается система графическим способом?
    (Необходимо: построить графики уравнения в одной координатной плоскости; найти координаты точек пересечения графиков, которые и будут решением системы.)
  • Почему координаты точек пересечения являются решением системы уравнений?
    (Координаты точек пересечения удовлетворяют каждому уравнению системы.)
  • Как записывается решение системы уравнений, если она решается графическим способом?
    (Приближенным равенством для значений переменных.)
  • От чего зависит количество решений системы уравнений при графическом способе решения?
    (От количества точек пересечения.)
  • Сколько точек имеют графики, если система имеет три решения? (Три точки.)

3 . Работа с наглядностью . (Слайды 5, 6, 7, 8)

  • Сколько точек пересечения имеют графики.
  • Сколько решений имеет система, если графики изображены на рисунке.
  • Совместить графики уравнений с формулами, которыми они задаются.

4. Индивидуальная работа (карточки с заданиям) с использованием шаблонов координатной плоскости.

Изобразив схематически графики уравнений, укажите количество решений системы.

5 . При графическом способе решения мы находим приближенные значения переменных. А как же найти точные значения?

(Решить систему способом подстановки или сложения . )

  • Как решить систему способом подстановки? (Слайд 9)
    (Выражают из уравнения одну переменную через другую. Подставляют эту подстановку в другое уравнение. Решают полученное уравнение с одной переменной. Находят соответствующие значение второй переменной, из подстановки).
  • Есть ли разница, из какого уравнения системы получить подстановку?
    (Нет. Если в систему входит уравнение 1-ой степени, то подстановку получают из этого уравнения. Если оба уравнения второй степени, то подстановку получают из любого.)
  • Как записать решение системы? (Парой чисел.)
  • Как решить систему способом сложения? (Слайд 10)

6 . Устная работа . В параллели проводится индивидуальная работа с учащимися средней мотивации к учебе

а) Определите степень уравнения (Слайд 11, 12):

План -конспект на тему: » Решение систем уравнений второй степени» ( 9 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Открытый урок по алгебре

Решение систем уравнений второй степени с двумя методом подстановки.

Подготовила и провела

МБОУ « Новопокровская школа»

систематизировать знания по данной теме

выработать умение решать системы уравнений, содержащие уравнения второй степени способами подстановки.

развивать вычислительную технику, мыслительную активность, логическое мышление;

способствовать формированию ключевых понятий;

выполнять задания различного уровня сложности; развивать правильную математическую речь

формировать графическую и функциональную культуру обучающихся.

воспитывать внимательность, аккуратность, умение четко организовывать самостоятельную и индивидуальную работу, воспитывать глубокий и устойчивый интерес к изучению математики

формировать навыки общения, умения работать в коллективе.

1. Отработать алгоритм решения систем уравнений второй степени способом подстановки и различного уровня сложности.

2. Отработать навыки и умения иллюстрировать решения систем уравнений графически.

Формы работы на уроке: фронтальная, индивидуальная, коллективная, групповая, самостоятельная, работа в парах.

Тип урока : комбинированный.

Методы урока: практический, наглядный, словесный.

Оборудование: учебник «Алгебра – 9 класс» Макарычева Ю.Н., под ред. С.А.Теляковского, раздаточный материал, карточки с алгоритмом портреты.

Математике должны учить в школе

еще с той целью,

чтобы познания, здесь приобретаемые,

были достаточными для обыкновенных

потребностей в жизни.

Сегодняшний урок я хотела начать с философской загадки «Что самое быстрое, но и самое медленное, самое большое, но и самое маленькое, самое продолжительное и краткое, самое дорогое, но и дёшево ценимое нами?» (Время).

Итак, у нас всего 45 минут, и мне очень хотелось, чтобы это время пролетело для вас незаметно и с пользой.

Сегодня на уроке мы должны рассмотреть способ подстановки для решения систем уравнений.

Проверка домашнего задания.

III Актуализация опорных знаний.

Определение системы уравнения с двумя переменными.

(Уравнения, объединенные фигурной скобкой, имеющие множество решений одновременно удовлетворяющих для каждого уравнения)

Что называют решением системы уравнений с двумя переменными?

(Пара значений, которые обращают каждое уравнение в системе в верное равенство)

Какие уравнения называются равносильными?

(Уравнения, которые имеют одно и тоже множество решений )

Назовите основные способы решения систем уравнений.

Графический, метод подстановки, метод алгебраического сложения, метод замены переменной.

Учащиеся определяют вид уравнения, формулируют определения).

1) 6) ,

2) , 7) ,

3) , 8)

4) , 9)

5) 10)

3. Какая фигура является графиком уравнения?

4.Какая из следующих пар чисел является решением системы уравнений

х 2 +у 2 =1

5. Решение какой системы изображено

IV Из истории решения систем уравнений.

Еще древним вавилонянам и египтянам было известно много задач, решение которых сводилось к решению уравнений с одной переменной. Только в то время не умели применять в математике буквы. Поэтому вместо букв брали числа, показывали на числах, как решать задачу, а потом уже все похожие на нее задачи решали тем же способом.
В древневавилонских текстах, написанных в III – II тысячелетиях до н.э., содержится немало задач, решаемых с помощью составления систем уравнений, в которые входят и уравнения второй степени.

Многие уравнения умел решать греческий математик Диофант, который даже применял буквы для обозначения неизвестных.

Но по-настоящему метод уравнений сформировался в руках арабских ученых. Они, по-видимому, знали, как решали задачи в Вавилоне и Индии, улучшили эти способы решения и привели их в систему. Первым написал книгу на арабском языке о решении уравнений Мухаммед ибн Мусса ал-Хорезми. Название у нее было очень странное − «Краткая книга об исчислении ал-джабры и ал-мукабалы». В этом названии впервые прозвучало известное нам слово «алгебра».

Книга ал-Хорезми о решении уравнений не была столь распространена, как его сочинение об индийском счете. Но и с нею познакомились математики Западной Европы. Когда они овладели методами ал-Хорезми, то стали их улучшать, применять к все более сложным уравнениям, настолько сложным, что без букв оказалось невозможно к ним подступиться.

Французский ученый Франсуа Виет(XVIв.) впервые ввел символическую запись уравнения: стал обозначать неизвестные величины одними буквами, а известные − другими. Алгебраическая символика совершенствовалась в трудах Декарта, Ньютона, Эйлера.

Рене Декарт
(1596 — 1650)
французский математик и философ

Мыслю, следовательно существую.

Исаа́к Нью́то́н 4 января 1643 31 марта 1727 английский физик , математик и астроном , один из создателей классической физики. Автор фундаментального труда « Математические начала натуральной философии », в котором он изложил закон всемирного тяготения и три закона механики , ставшие основой классической механики . Разработал дифференциальное и интегральное исчисление , теорию цвета и многие другие математические и физические теории.

ЛЕЙБНИЦ ( Leibniz ) Готфрид Вильгельм (1 июля 1646, Лейпциг — 14 ноября 1716, Ганновер), немецкий философ, логик, физик, математик и языковед.

Леонард Эйлер (1707—1783), — российский, немецкий и швейцарский математик. Анализировал бесконечно малые. Благодаря его работам, математический анализ стал вполне оформившейся наукой.

Карл Гаусс (1777—1855), — немецкий математик, астроном и физик. Создал теорию «первообразных» корней, из которой вытекало построение семнадцатиугольника. Один из величайших математиков всех времён.

Жозе́ф Луи́ Лагра́нж ( 25 января 1736 — 10 апреля 1813) — французский математик и механик итальянского происхождения. Наряду с Эйлером — лучший математик XVIII века . Особенно прославился исключительным мастерством в области обобщения и синтеза накопленного научного материала.

Основная цель при решении систем линейных уравнений — решить систему уравнений, то есть найти все ее решения или доказать, что решений нет. Для решения системы уравнений с двумя переменными используются разные способы. Практическое применение этих способов — это решение задач, по алгебре, физике, химии, геометрии.

V . Изучение нового материала

Основными методами решения систем уравнений являются метод подстановки и метод сложения.

При этом используют приемы: замена переменных, формулы сокращенного умножения, равенство произведения нулю и другие.

Записать на доске 3 метода решения систем уравнений.

1. Графический метод

2. Метод подстановки

3.Метод алгебраического сложения

С системами уравнений мы познакомились в курсе алгебры 7-го класса, но это были системы специального вида – системы двух линейных уравнений с двумя переменными.

Алгоритм, который был выработан в 7 классе, вполне пригоден для решения систем любых двух уравнений с двумя переменными х и у.

Выразить одну переменную через другую из одного уравнения системы.

Подставить полученное выражение вместо переменной в другое уравнение системы.

Решить полученное уравнение относительно одной переменной.

Подставить поочередно каждый из найденных на 3 шаге корней уравнения в выражение, полученное на первом шаге и найти другую переменную.

Записать ответ в виде пар значений (х;у).

Покажу, как работает этот метод при решении систем.

Решим систему уравнений:

Применим метод подстановки. Преобразуем исходную систему:

Ответ: (1;0), (2;1)

VI . Закрепление знаний.

Рассмотреть по учебнику № 433( а), № 437 (а)

Решение системы уравнений по алгоритму.

Реши систему уравнений


источники:

http://nsportal.ru/shkola/algebra/library/2019/02/21/urok-reshenie-sistem-uravneniy-vtoroy-stepeni

http://infourok.ru/plan-konspekt-na-temu-reshenie-sistem-uravneniy-vtoroy-stepeni-klass-2682691.html