Теорема неявной функции заданной одним уравнением

Неявные функции

Неявные функции, определяемые одним уравнением.

Пусть функция \(F(x,y)\) определена в \(R^2\). Рассмотрим уравнение
$$
F(x,y)=0.\label
$$

Множество \(G_F\) точек плоскости, координаты которых удовлетворяют уравнению \eqref, было названо графиком уравнения. Через \(A_F\) будем обозначать проекцию графика \(G_F\) на ось \(x\). Будем рассматривать такие уравнения \eqref, графики которых не есть пустые множества.

Так, график уравнения \(x^2 + y^2 — 1 = 0\) есть окружность, график уравнения \((x-1)(x+y-1)=0\) есть пара прямых \(x = 1\) и \(x+y-1=0\) (рис. 28.1).

Рис. 28.1

Если график \(G_F\) уравнения \eqref взаимно однозначно проектируется на \(A_F\), то существует единственная функция \(f: \; A_F\rightarrow R\), график которой совпадает с графиком уравнения. Эта функция каждому \(x\in A_F\) ставит в соответствие тот единственный \(y\), для которого \(F(x,y)=0\). Говорят, что уравнение \eqref определяет \(y\) как неявную функцию \(x\).

Но, как правило, график уравнения \eqref не проектируется взаимно однозначно на \(A_F\). Тогда на \(A_F\) в общем случае определено бесконечное множество функций, графики которых совпадают с некоторым подмножеством графика \(G_F\) уравнения \eqref. Так, разбивая отрезок \([-1,1]\) точками \(x_0= -1 Рис. 28.2

Меняя местами переменные \(x\) и \(y\), можно говорить о том, что уравнение \eqref определяет в некотором прямоугольнике переменную \(x\) как неявную функцию переменной \(y\).

Докажем теорему, дающую достаточные условия существования, непрерывности и дифференцируемости неявной функции, определяемой уравнением \eqref в некотором прямоугольнике.

  1. функция \(F(x,y)\) имеет в окрестности точки \((x_0,y_0)\) непрерывные частные производные \(F_x(x,y)\) и \(F_y(x,y)\);
  2. \(F(x_0,y_0)=0\);
  3. \(F_y(x_0,y_0)\neq 0\).

Тогда существует прямоугольник
$$
K = \<(x,y): \; x_0-a\leq x\leq x_0+a, \; y_0-b\leq y\leq y_0+b\>,\nonumber
$$
в котором уравнение \(F(x,y) = 0\) определяет \(y\) как неявную функцию \(x\). Функция \(y=f(x)\) непрерывно дифференцируема на интервале \((x_0-a,x_0+a)\) и
$$
f'(x)=-\frac.\label
$$

\(\circ\) Разобьем доказательство на два пункта.

Доказательство существования неявной функции. Из условия \(F_y(x_0,y_0)\neq 0\) следует, что либо \(F_y(x_0,y_0) > 0\), либо \(F_y(x_0,y_0) 0.\label
$$
Если \(F_y(x_0,y_0) 0\).

Так как функция \(F_y(x,y)\) в точке \((x_0,y_0)\) непрерывна и в силу условия \eqref принимает в этой точке положительное значение, то найдется такой прямоугольник (рис. 28.3)
$$
K_1=\<(x,y): \; |x-x_0|\leq a_1, \; |y-y_0|\leq b\>,\nonumber
$$
в котором функция \(F_y(x,y) > 0\).

Рис. 28.3

Рассмотрим функцию одной переменной
$$
\psi (y)=F(x_0,y),\quad y_0-b\leq y\leq y_0+b.\nonumber
$$
Функция \(\psi (y)\) строго возрастает на отрезке \([y_0-b,y_0+b]\), так как
$$
\psi'(y)=F_y(x_0,y) > 0.\nonumber
$$
Кроме того, в силу условия \(F(x_0,y_0)=0\)
$$
\psi (y_0) = F(x_0,y_0) = 0.\nonumber
$$
Поэтому
$$
\psi (y_0-b)= F(x_0,y_0-b) 0.\label
$$
Неравенства \eqref в силу непрерывности функции \(F(x,y)\) должны сохраняться в некоторых окрестностях точек \((x_0,y_0-b)\) и \((x_0,y_0+b)\). Поэтому существует такое \(a\in (0,a_1)\), что для всех \(x\in [x_0-a,x_0+a]\) выполнены неравенства
$$
F(x,y_0-b) 0.\label
$$
Покажем, что в прямоугольнике
$$
K=\<(x,y): \; |x-x_0|\leq a, \; |y-y_0|\leq b\>,\nonumber
$$
уравнение \(F(x,y) = 0\) определяет \(y\) как неявную функцию \(x\).

Возьмем любую точку \(x^*\in [x_0-a,x_0+a]\) и рассмотрим непрерывную на отрезке \([y_0-b,y_0+b]\) функцию одной переменной \(\varphi (y)=F(x^*,y)\). В силу условия \eqref эта функция принимает на концах отрезка значения разных знаков:
$$
\varphi(y_0-b)= F(x^*,y_0-b) 0.\nonumber
$$
По теореме Коши о промежуточных значениях найдется такая точка \(y^*\in [y_0-b,y_0+b]\), что
$$
\varphi(y^*) = F(x^*,y^*)=0.\nonumber
$$

Так как \(\varphi'(y) = F_y(x^*,y) > 0\), то функция \(\varphi(y)\) строго возрастает на отрезке \([y_0-b,y_0+b]\) и не может обратиться на этом отрезке в нуль более одного раза.

Таким образом, для любого \(x\in [x_0-a,x_0+a]\) найдется единственный \(y\in [y_0-b,y_0+b]\) такой, что \(F(x,y) = 0\). Это означает, что в прямоугольнике \(K\) уравнение \(F(x,y) = 0\) определяет \(y\) как неявную функцию \(x\).

Доказательство непрерывной дифференцируемости неявной функции. Непрерывная на замкнутом прямоугольнике \(K\) функция \(F_y(x,y)\) по теореме Вейерштрасса принимает на этом прямоугольнике свое наименьшее значение \(\alpha\). Так как \(F_y(x,y) > 0\) на \(K\), то
$$
F_y(x,y)\geq a > 0,\qquad (x,y)\in K.\label
$$

Непрерывная на \(K\) функция \(F_x(x,y)\) ограничена на \(K\). Поэтому
$$
|F_x(x,y)| Замечание 1.

Если известно, что уравнение \(F(x,y)=0\) определяет в прямоугольнике \(a\leq x\leq b, \; c\leq y\leq d\) переменную \(y\) как неявную функцию \(x\), то связь между \(dy\) и \(dx\) можно установить, формально дифференцируя тождество \(F(x,y(x)) = 0\). Воспользовавшись инвариантностью формы дифференциала, получаем
$$
F_x(x,y)dx + F_y(x,y)dy = 0.\nonumber
$$
Дифференцируя последнее тождество еще раз, можем найти второй дифференциал \(d^2y\)
$$
F_ dx^2 + 2F_ dx dy + F_ dy^2 + F_y d^2y = 0.\nonumber
$$

Неявные функции, определяемые системой уравнений.

Рассмотрим систему \(m\) уравнений с \(n+m\) неизвестными
$$
\left\<\beginF_1(x_1,\ldots,x_n,x_,\ldots,x_)=0,\\…..\\F_m(x_1,\ldots,x_n,x_,\ldots,x_)=0\end\right.\label
$$

При формулировке общей теоремы о неявных функциях удобно пользоваться понятием декартова произведения множеств. Если \(A\) и \(B\) — произвольные множества, то их декартово произведение \(A\times B\) есть множество пар \((x,y)\), где \(x\in A\), \(y\in B\). Так, декартово произведение \([a,b]\times [c,d]\) есть множество пар вещественных чисел таких, что \(a\leq x\leq b,\) и \(c\leq y\leq d\), то есть прямоугольник в \(R^2\).

Клеточной окрестностью точки \(x^0 =(x_1^0,\ldots,x_n^0)\) будем называть следующее множество:
$$
K(x^0)=\\>,\nonumber
$$
где \(\varepsilon_i, \; i =\overline<1,n>\) — положительные числа, \(x = (x_1,…,x_n)\).

Легко видеть, что в том случае, когда \(K_1(x^0)\subset R^n\) и \(K_2(y^0)\subset R^m\) — клеточные окрестности, их декартово произведение \(K_1(x^0)\times K_2(y^0)\) есть клеточная окрестность точки \((x^0,y^0)=(x_1^0,…,x_n^0,y_1^0,…,y_m^0\) в пространстве \(R^\).

Для дальнейшего удобно преобразовать переменные, полагая \(x=(x_1,…,x_n), \; y=(y_1,…,y_m)\), где \(y_1=x_,…,y_m=x_\).

Тогда систему уравнений \eqref можно записать в более кратком виде:
$$
F_i(x,y) = 0, \; i=\overline<1,m>.\label
$$

Функции \(F_i(x,y) = 0\) будем считать определенными в некоторой клеточной окрестности точки \((x^0,y^0)\).

Пусть \(K(x^0)\subset R^n\) и \(Q(y_0)\subset R^m\) есть клеточные окрестности. Будем говорить, что система уравнений \(F_i(x,y)=0, \; i=\overline<1,m>\), определяет в \(K(x^0)\times Q(y_0)\) переменные \(y_1,…,y_m\) как неявные функции переменных \(x_1,…,x_n\), если для любого \(x\in K(x^0)\) найдется единственный \(y\in Q(y^0)\) такой, что \(F_i(x,y) = 0, \; i=\overline<1,m>\).

Пусть выполнены следующие условия:

Тогда найдутся клеточные окрестности \(K(x^0) \subset R^n\) и \(Q(y^0) \subset R^m\) такие, что в \(K(x^0)\times Q(y^0)\) система уравнений \eqref определяет переменные \(y_1,…,y_m\) как неявные функции переменных \(x_1,…,x_n\). Неявные функции \(y_j =\varphi_j(x)\) непрерывно дифференцируемы в \(K(x^0)\) и \(y_j^0=\varphi_j(x^0), \; j=\overline<1,m>\).

\(\circ\) Воспользуемся методом индукции по числу уравнений \(m\). При \(m=1\) доказательство теоремы 2 не отличается от доказательства теоремы 1 (в дальнейшем будем ссылаться на этот частный случай теоремы 2 как на теорему 1).

Предположим, что утверждение теоремы верно в том случае, когда система \eqref содержит \(m-1\) уравнение. Докажем, что тогда теорема верна и для системы \eqref из \(m\) уравнений.

Так как определитель \eqref отличен от нуля, то, раскладывая его по элементам последней строки, получаем, что хотя бы один из соответствующих миноров \(m-1\)-го порядка отличен от нуля. Пусть, например
$$
<\begin\displaystyle\frac<\partial F_1><\partial y_1>&…&\displaystyle\frac<\partial F_1><\partial y_>\\…&…&…\\\displaystyle\frac<\partial F_><\partial y_1>&…&\displaystyle\frac<\partial F_><\partial y_>\end>_<(x^0,y^0)>\neq0\nonumber
$$
(Здесь и в дальнейшем символ \(0\) означает, что значение соответствующей функции берется для аргументов с верхним индексом \(0\)).

Тогда в силу индукции найдутся такие клеточные окрестности
$$
\beginK_1=\displaystyle\left\<(x,y_m): \; \vert x_i-x_i^0\vert\leq\varepsilon_i’, \; i=\overline<1,n>, \; \vert y_m-y_m^0\vert Замечание 2.

Существует несколько способов доказательства теоремы о неявных функциях. Предложенный способ является, по-видимому, наиболее простым, но обладает двумя недостатками: не дает алгоритма для вычисления неявной функции и не обобщается на бесконечномерный случай.

Локальная обратимость регулярного отображения.

Пусть на множестве \(E\subset R^n\) заданы \(n\) функций
$$
f_1(x),…,f_n(x).\nonumber
$$

Они задают отображение \(f: \; E\rightarrow R^n\), которое каждой точке \(x\in E\) ставит в соответствие точку \(y=f(x)\), где
$$
y_1=f_1(x),\quad,…,\quad y_n=f_n(x).\nonumber
$$

Точка \(y=f(x)\) называется образом точки \(x\) при отображении \(f\). Точка \(x\) называется прообразом точки \(y\).

Если \(\Omega\subset E\), то множество
$$
f(\Omega)=\\nonumber
$$
называется образом множества \(\Omega\) при отображении \(f\). Если \(\omega\subset f(E)\), то множество
$$
f^<-1>(\omega)=\\nonumber
$$
называется прообразом множества \(\omega\).

Пусть \(G \subset R^n\) есть открытое множество. Отображение \(f: \; G\rightarrow R^n\) называется непрерывным в точке \(x^0\), если \(\forall \varepsilon > 0 \; \exists\delta > 0\) такое, что \(\forall x\) таких, что \(\rho(x,x^0) Лемма 1.

Если \(G\) есть открытое множество, а \(f: \; G\rightarrow R^n\) — непрерывное отображение, то прообраз каждого открытого множества \(\omega\in f(G)\) есть открытое множество.

\(\circ\) Пусть \(\Omega= f^<-1>(\omega)\). Возьмем любую точку \(x^0\in\Omega\). Тогда \(f(x^0)=y^0\in \omega\). Так как множество \(\omega\) открыто, то найдется окрестность \(S_<\varepsilon>(y^0)\in \omega\). В силу непрерывности отображения \(f\) в точке \(x^0\) найдется шаровая окрестность \(S_<\delta>(x^0)\), для которой выполнено условие \eqref.

Следовательно,
$$
S_<\delta>(x^0)\subset f^<-1>(\omega)\subset\Omega,\nonumber
$$
и \(\Omega\) — открытое множество. \(\bullet\)

Как обычно, под окрестностью \(A(x^0)\) точки \(x^0\) будем понимать любое множество \(A\), для которого точка \(x^0\) внутренняя.

Пусть \(G \subset R^n\) — открытое множество. Отображение \(f: \; G\rightarrow R^n\) будем называть непрерывно дифференцируемым, если функции \(f_1(x),…,f_n(x)\), задающие это отображение, непрерывно дифференцируемы в \(G\). Непрерывно дифференцируемое отображение \(f: \; G\rightarrow R^n\) будем называть регулярным, если в области \(G\) якобиан отображения \(j_f(x)\neq 0\). Якобианом отображения \(j_f(x)\) называется следующий функциональный определитель:
$$
j_f(x)=\begin\frac<\partial f_1(x)><\partial x_1>&…&\frac<\partial f_1(x)><\partial x_n>\\…&…&…\\\frac<\partial f_n(x)><\partial x_1>&…&\frac<\partial f_n(x)><\partial x_n>\end.\nonumber
$$

Пусть \(G\) — открытое множество в \(R^n\), а отображение \(f: \; G\rightarrow R^n\) регулярно. Тогда в каждой точке \(x^0\in G\) оно локально регулярно обратимо, то есть \(\forall x^0\in G\) найдутся такие окрестности \(A(x^0) \subset G\) и \(B(y^0)\subset f(G)\), где \(y^0= f(x^0)\), что отображение \(f: \; A(x^0)\rightarrow B(y^0)\) будет взаимно однозначным, причем обратное отображение \(f^<-1>: \; B(y^0)\rightarrow A(x^0)\) регулярно.

\(\circ\) Рассмотрим в \(G\times R^n\) систему уравнений
$$
F_i(x,y)\equiv y_i-f_i(x)=0,\quad i=\overline<1,n>.\label
$$

Пусть \(x^0\) — произвольная точка множества G и \(y^0=f(x^0)\). Тогда функции \(F_i(x,y)\) непрерывно дифференцируемы в \(G\times R^n\) и \(y_i^0= f_i(x^0), \; i=\overline<1,n>\). Так как отображение \(f\) регулярно, то
$$
<\begin\frac<\partial F_1><\partial x_1>&…&\frac<\partial F_1><\partial x_n>\\…&…&…\\\frac<\partial F_n><\partial x_1>&…&\frac<\partial F_n><\partial x_n>\end>_<(x^0,y^0)>=(-1)^nj_f(x^0)\neq0.\nonumber
$$
Для системы уравнений \eqref выполнены все условия теоремы 2 о неявных функциях. Поэтому найдутся такие клеточные окрестности
$$
\beginK(x^0)=\left\\right\>,\quad K(x^0)\subset G,\\Q(y^0)=\left\\right\>,\quad Q(y^0)\subset f(G),\end\nonumber
$$
что в \(K(x^0)\times Q(y^0)\) система уравнений \eqref определяет переменные \(x_1,…,x_n\) как неявные непрерывно дифференцируемые функции переменных \(y_1,…,y_n\):
$$
\beginx_1=\varphi_1(y),\quad …,\quad x_n=\varphi_n(y),\\x\in K(x^0),\quad y\in Q(y^0),\quad x_i^0=\varphi_i(y^0),\quad i=\overline<1,n>.\end\label
$$
Пусть \(B(y^0)\) есть внутренность \(Q(y^0)\):
$$
B(y^0) = \left\

Если \(f: \; G\rightarrow R^n\) есть регулярное отображение, то образ любого открытого множества \(\Omega\subset G\) есть открытое множество.

\(\circ\) Пусть \(\omega=f(\Omega)\). Возьмем произвольную точку \(y^0\in\omega\) и пусть \(x^0\) есть какой-то ее прообраз. Тогда, вследствие теоремы 3, найдутся такие окрестности \(A(x^0) \subset \Omega\) и \(B(y^0) \subset \omega\); что отображение \(f: \; A(x^0)\rightarrow B(y^0)\) регулярно обратимо. Поэтому каждая точка \(y^0\in\omega\) принадлежит \(\omega\) вместе с некоторой окрестностью \(B(y^0)\). Множество \(\omega=f(\Omega)\) открыто. \(\bullet\)

Неявные функции, определяемые одним уравнением

Неявные функции, определяемые одним уравнением

Неявные функции, определяемые одним уравнением. Найдем условия, при которых 1 уравнение с несколькими переменными определяет уникальную функцию. Начните с изучения уравнения, содержащего 2 неизвестных. Р(х, г)= 0. Если функция 2 переменных P(x, y) задана в подмножествах a плоскости K1Y, A и H1Y, а функция 1 переменной y = [(x) существует и определяется множеством B и Kx, содержащимся в проекции на ось Ox множества A, то (x, f (x) e A формируется на всех geB, если= 0 имеет место, то f называется неявной функцией, определяемой уравнением P (X, Y)= 0. 41.1.Неявные функции, определенные в одном уравнении 29 декабря.

То есть, одна из этих переменных определяется как другие функции. Людмила Фирмаль

  • Лемма. Сделайте функцию P (x, y) смежной в окрестности прямоугольника о, ВА)= <<Х, Y).\ х-х0 \ 1, / г-версия v0 | Н>* Точек (n ’ 0, y0) и каждый фиксированный x =(x0-+ Он строго монотонен с y в интервале (y-R\, y0 + m].Следующий П(Хо, УО)= 0、 Тогда окрестности точек x0 и I ((x0)=(x0-δ, x0-φb)) (y0)=(y-E, yy-*-d) каждого xe (/(A ’0) кроме того, существует единственное решение уравнения (y0 Р(х, г)=0.Это решение является функцией x, обозначаемой y = f( x), и непрерывно в x0、 [(х0)= гИтак, в Лемме, в частности, при сделанных предположениях имеется неявная функция y = f (x), определяемая уравнением P (x, y)= 0, условием X e 6 /(x0).!/ е (/(у0) Р(Х, Y)= 0 и Y = F(х) Это эквивалентно. Proof. By условие леммы, функция P (x,. x) каждого фиксированного xe (x0-x0+») .. строго монотонно По переменной y в интервале (y0 -,, y0 + l).

В частности, функция P(x0, y) строго monotonic. To будьте ясны, давайте увеличим строго. Выберите любой e 0, который следует только условию 0 e c. Поскольку функция P (x (), y) переменной y строго увеличивается на интервал[r / 0-e, y0-fe], а гипотеза P (x0, y0)= 0、 П(х0, У0-е) 0,р(х0,У0 + к) 0 Однако функция 2 переменных P (x, y) является, по предположению, открытым множеством V (x0, y0) и (xn, y0-e) e (/(x0, yo), (x0, y°D) e (Y (xn, y0); таким образом, в окрестности точки (x0, yn-e) находится неравенство P (x0, y-E) и окрестности точки B (x0, y) образуется B (x0, y) 0. + e) неравенство p (x, y) 0 (см. лемму 19.3 подраздела 1). в частности, все x€=(xo-b, x0 + b) (рис. 150), неравенство Р(х, е-б).0, р (х, е + е) 0.(41.1) Поставь б /(хо)=(хо-б, Хо-| Б), В (Е)^(е-е е » б е).

  • Согласно принятой в курсе нотации, окрестность точки (x0, ya) равна 11 ((l), а не 11 (x0, y0)., Y0)) является более точным. Для простоты, 2-я скобка опущена. $ 41.Неявная функция В случае фиксированного xe (f(x0), функция P (x, y) переменной y непрерывна в интервале[r / 0-e, p0 + e]из условия (41.1), согласно теореме Коши промежуточного значения. В функции рывка (см. теорему§ 6.2) будет y * eY (yp (см. Рисунок 6. 150), где P (x, y*) = 0. Монотонность приведенной выше функции P (x, y) Для интервала[r / 0-e, p0 + e] относительно переменной y указанный y * уникален. Таким образом, вы получаете соответствие 1-к-1 (функция 1-к-1): xn-y *, xe (/(x0) (r / 0), это представлено символом/. г * = F(х).

По определению этого соответствия, для xeY (x0) и y * [(x)、 П(х, г*) = 0,г * = 1!(Y0), и точка y *с этим свойством уникальна. Кроме того, гипотезы лемм P (x0, yp = 0, и x0e1 /(x0),| / 0e (Y(y0)).таким образом, единственность функции/дает нам p0 = f (x0). Наконец, обратите внимание, что E0 произвольно фиксируется с C в качестве условия, и для него найдено B0. x это x01. b (условие xeY(x0)) это включение f (x) e [/(yp, т. е. неравенство| /(x)-/(x0)| C e. это означает непрерывность функции / точки x0 с 0 Достаточное условие приложения для однозначной сольватации уравнения P (x, y)= 0 в окрестности точки, где P (x0, y0)= 0, задается следующей теоремой.

Таким образом, доказано существование и единственность искомой функции. Людмила Фирмаль

  • Теорема I. пусть функция P (x, y) непрерывна в окрестности точки (x0, y°) и имеет частные производные Py (x, y) в этой окрестности и непрерывна в точке (x0, y°). П (Хо, УО) −0, ру (Хо, йо) Φ0、 Тогда существует окрестность V (x0) и V (y0) точек x0 и y0, и для каждого x = 0 (x0) существует единственное решение y = f (x) e I!(Y0)= 0 *K уравнения P (x, y).Это решение непрерывно везде в V (xφ и p0 = f(*) Далее предполагается, что функция имеет имеет частную производную в окрестности точки (x0, y0) * ’В этом случае они также говорят, что уравнение P (x, y)= 0 однозначно разрешимо в окрестности I! (х0, У0)= <(Х, Y). хеаС ’ (х0), уеу (У0)>точка (*оуо)41.1.Неявные функции, определенные в одном уравнении.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Презентация по математике «Теорема о неявной функции в решении задач с параметрами»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Теорема о неявной функции Мельник П.И ФМиКН, 5 курс

Теорема о неявной функции Целеполагание Задача Параметр

Выразить одну переменную через другую: Вхождение в тему Математическая разминка 2)Вычислить производную Теорема о неявной функции

Организация учащихся Холодные числа, внешне сухие формулы математики полны внутренней красоты и жара сконцентрированной в них мысли. А.Д. Александров Теорема о неявной функции

Теорема о неявной функции Определим функцию у = f(x) следующим образом: пусть каждому значению переменной х из некоторого множества поставлено в соответствие некоторое число у, такое что F(x; y) = 0. Такой способ задания называется неявным способом задания функции у = f(x), а сама эта функция – неявной функцией. Простейшая теорема о неявной функции состоит в следующем: Если функция F: R×R→R непрерывна в некоторой окрестности точки (x0,y0) F(x0,y0)=0 и при фиксированном x, функция F(x,y) строго монотонна по y в данной окрестности, тогда найдётся такой двумерный промежуток I=Ix×Iy , являющийся окрестностью точки (x0,y0 )и такая непрерывная функцияf: Ix→Iy , что для любой точки (x,y)∈I,F(x,y)=0 ↔y=f(x). Теорема о неявной функции Освоение новых знаний

Пусть f(a,x)=ax2+(a+1)x+1, тогда f(a,x) – непрерывна как многочлен. Чтобы функция была монотонна достаточно, чтобы ее производная по x не равнялась нулю. Пример 1. Решить уравнение ax2+(a+1)x+1=0 Практикум ax2+(a+1)x+1=0 D=a2+2a+1-4a=a2-2a+1=(a-1)2 Ответ: x1=-1,x2=-1/a Теорема о неявной функции f ‘(a,x)=2ax+a+1, то есть в окрестности точки (0;0) функция f(a,x) – непрерывна и монотонна, тогда по теореме о неявной функции, в окрестности взятой точки найдется такая непрерывная функция f(a,x)=0 ↔ x=f(a). Т.е. в окрестности точки(0;0) исходное уравнение имеет корни: x1=-1,x2=-1/a. Т.к функция f(a,x) непрерывна на всей вещественной оси, то решения x1=-1,x2=-1/a будут решениями уравнения в любой точке.

Практикум Пример2. Решить уравнение 22x-(2a+1) 2x+a2+a=0. Решение. Пусть f(a,x)=22x-(2a+1)2x+a2+a тогда f(a,x) – непрерывна как многочлен. Чтобы функция была монотонна достаточно, чтобы ее производная по не равнялась нулю. то есть в окрестности точки (0,0) функция f(a,x) – непрерывна и монотонна, тогда по теореме о неявной функции, в окрестности взятой точки найдется такая непрерывная функция f(a,x)=0 ↔ x=f(a). 22x-(2a+1) 2x+a2+a=0, Пусть 2x=t, t>0, тогда Теорема о неявной функции

Практикум Пример2. Решить уравнение 22x-(2a+1) 2x+a2+a=0. Решение. Ответ: Теорема о неявной функции , .

Задание для самостоятельного решения Решение. Пусть f(a,x)=a sinx-1, тогда f(a,x) – непрерывна как многочлен. Чтобы функция была монотонна достаточно, чтобы ее производная по x не равнялась нулю. f ‘(a,x)=a cosx; x≠π/2+πn, n∈Z, a∈R, то есть в окрестности точки (0,1) функция f(a,x) – непрерывна и монотонна, тогда по теореме о неявной функции, в окрестности взятой точки найдется такая непрерывная функция f(a,x)=0 ↔ x=f(a). Ответ: Проверка полученных результатов Решить уравнение a sin x=1 Теорема о неявной функции

Домашнее задание Найти хотя бы одно решение Подведение игогов, рефлексия Мы с наслаждением познаём математику… Она восхищает нас, как цветок лотоса. Аристотель Получили ли вы наслаждение на уроке? Теорема о неявной функции


источники:

http://lfirmal.com/neyavnye-funkcii-opredelyaemye-odnim-uravneniem/

http://infourok.ru/prezentaciya-po-matematike-teorema-o-neyavnoy-funkcii-v-reshenii-zadach-s-parametrami-1127171.html