Теорема о множестве решений системы линейных уравнений

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Системы линейных уравнений

Обозначим через $ \mathbb A_<> $ любое из множеств $ \mathbb Q_<>, \mathbb R_<> $ или $ \mathbb C_<> $.

Примеры систем уравнений над $ \mathbb R $.

Относительно числа $ m_<> $ уравнений не делается ни какого предположения: оно может быть меньше, больше или равно числу переменных $ n_<> $. Если $ m_<>>n $ то система называется переопределенной. Решением системы уравнений называется любой набор значений переменных $ x_1=\alpha_<1>,\dots, x_n = \alpha_n $, обращающий каждое из уравнений в истинное равенство. Система называется совместной если она имеет хотя бы одно решение и несовместной в противном случае.

Можно доказать (см. результаты ☟ НИЖЕ ), что все возможности для произвольной системы ограничиваются следующими вариантами:

1. система совместна и имеет единственное решение;

2. cистема совместна и имеет бесконечное множество решений;

3. cистема несовместна.

При этом все решения будут находиться в том же множестве $ \mathbb A_<> $, что и коэффициенты системы.

Матричная форма записи

Для системы линейных уравнений относительно переменных $ x_1,x_2,\dots,x_n $ $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=b_1,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=b_2,\\ \dots & & & & \dots \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=b_m. \end \right. $$ матрицей системы называется матрица $$ A=\left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>\\ a_ <21>& a_ <22>& \dots & a_ <2n>\\ \dots &&& \dots \\ a_ & a_ & \dots & a_ \end \right)_ \ ; $$ cтолбец $$ <\mathcal B>= \left( \begin b_ <1>\\ b_ <2>\\ \vdots \\ b_ \end \right) $$ называется столбцом правых частей системы, а столбец $$ X= \left( \begin x_ <1>\\ x_ <2>\\ \vdots \\ x_ \end \right) $$ — столбцом неизвестных. Используя правило умножения матриц, систему можно записать в матричном виде: $$ AX= <\mathcal B>\ . $$ Любое решение $ x_1=\alpha_1,\dots,x_n=\alpha_n $ системы можно также записать в виде столбца: $$ X=\left( \begin \alpha_1 \\ \vdots \\ \alpha_n \end \right) \in \mathbb A^n \ . $$ Матрица, составленная из всех коэффициентов системы уравнений: $$ [A \mid \mathcal B ]= \left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \dots & a_ <2n>& b_2 \\ \dots &&& & \dots \\ a_ & a_ & \dots & a_ & b_m \end \right)_ \ , $$ т.е. конкатенацией матрицы $ A_<> $ и столбца правых частей $ <\mathcal B>_<> $ называется расширенной матрицей системы л.у.

Исключение переменных (метод Гаусса)

метода достаточно проста.

Пример. Решить систему уравнений $$ \left\< \begin 2x_1&-3x_2&-x_3&=3 \\ 4x_1&-3x_2&-5x_3&=6 \\ 3x_1&+5x_2&+9x_3&=-8 \end \right. $$

Решение. Выразим из первого уравнения $ x_ <1>$ $$ x_1=\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3> <2>$$ и подставим в оставшиеся уравнения $$ 4 \left(\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>\right) -3\,x_2-5\,x_3=6 \ <\color\iff > \ 3x_2-3x_3 = 0 $$ $$ \ <\color\iff > \ x_2-x_3=0 \ ; $$ $$ 3 \left(\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>\right) +5x_2+9x_3=-8 \ <\color\iff > \ \frac<19> <2>x_2 +\frac<21><2>x_3=-\frac<25> <2>$$ $$ <\color\iff > 19x_2 +21x_3=-25 \ . $$ Два получившихся уравнения не зависят от неизвестной $ x_ <1>$ — она оказалась исключенной из этих уравнений. Иными словами, мы получили новую подсистему уравнений $$ \left\< \begin x_2&-x_3&=0 \\ 19x_2&+21x_3&=-25, \end \right. $$ которой должны удовлетворять неизвестные $ x_ <2>$ и $ x_ <3>$. Продолжаем действовать по аналогии: выразим из первого уравнения $ x_ <2>$ через $ x_ <3>$: $$x_2=x_3 $$ и подставим во второе: $$ 40 x_3 =-25 \ \iff \ x_3=-\frac<5> <8>\ . $$ Итак, значение одной компоненты решения получено. Для нахождения оставшихся подставим значение $ x_ <3>$ в полученные по ходу решения соотношения: $$ x_2=x_3=-\frac<5> <8>\ \Rightarrow \ x_1=\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>=\frac<1> <4>\ . $$

Ответ. $ x_<1>=1/4, x_2=-5/8, x_3=-5/8 $.

Теперь осталось формализовать изложенную идею метода (сформулировав допустимые правила действия над уравнениями — те, что в принципе, очевидны из здравого смысла ), а также исследовать возможные последствия его применения к системам общего вида.

Исключение переменных

Элементарными преобразованиями системы л.у. называются преобразования следующих трех типов:

1. перестановка двух уравнений;

2. умножение обеих частей уравнения на любое отличное от нуля число;

3. прибавление к одному уравнению любого другого, умноженного на произвольное число: пара уравнений $$ \begin a_x_1 +a_x_2+ \ldots+a_x_n &=&b_j,\\ a_x_1 +a_x_2+ \ldots+a_x_n &=&b_k \end $$ заменяется парой $$ \begin (a_+ <\color\lambda > a_) x_1 &+ (a_+ <\color\lambda > a_) x_2 &+ \ldots &+ (a_+ <\color\lambda > a_) x_n &=&b_j + <\color\lambda > b_k\, , \\ a_x_1 &+a_x_2&+ \ldots &+a_x_n &=&b_k \, . \end $$

Теорема. Любое элементарное преобразование системы л.у. переводит эту систему в ей эквивалентную, т.е. имеющую то же множество решений, что и исходная.

Задача. С помощью элементарных преобразований привести систему л.у. к наиболее простому виду: такому, из которого легко было бы установить множество решений.

Предположим, что первое уравнение системы содержит явно неизвестную $ x_ <1>$, т.е. $ a_<11>^<> \ne 0 $. Исключим эту неизвестную из всех оставшихся уравнений. С этой целью вычтем из второго уравнения первое, домноженное на $ a_<21>/a_<11>^<> $. Получим $$\left(a_<22>— \frac>> a_ <12>\right)x_2 + \dots + \left(a_<2n>— \frac>> a_ <1n>\right)x_n = b_2 — \frac>> b_1 \ , $$ Аналогичное преобразование — вычитание из третьего уравнения системы первого, умноженного на $ a_<31>/a_<11>^<> $, позволяет исключить $ x_ <1>$ из этого уравнения, т.е. заменить его на $$\left(a_<32>— \frac>> a_ <12>\right)x_2 + \dots + \left(a_<3n>— \frac>> a_ <1n>\right)x_n = b_3 — \frac>> b_1 \ . $$ Продолжаем процесс далее. В конечном итоге исключаем $ x_ <1>$ из всех уравнений кроме первого: $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=b_1,\\ &a_<22>^<[1]>x_2&+ \ldots&+a_<2n>^<[1]>x_n &=b_2^<[1]>,\\ &\dots & & & \dots \\ &a_^<[1]>x_2&+ \ldots&+a_^<[1]>x_n &=b_m^<[1]>. \end \right. \ \ npu \ \ \begin a_^ <[1]>&= & \displaystyle a_ — \fraca_<1k>>> ,\\ b_j^ <[1]>&= & \displaystyle b_j — \fracb_1>> . \end $$ Полученная система эквивалентна исходной системе, однако она имеет более простой вид: в ней выделилась подсиcтема $$ \left\< \begin a_<22>^<[1]>x_2&+ \ldots&+a_<2n>^<[1]>x_n &=b_2^<[1]>,\\ \dots & & & \dots \\ a_^<[1]>x_2&+ \ldots&+a_^<[1]>x_n &=b_m^<[1]>, \end \right. $$ которая не зависит от переменной $ x_ <1>$. К этой новой подсистеме можно применить те же рассуждения, что и к исходной системе, поставив теперь целью исключение переменной $ x_ <2>$.

Понятно, что процесс исключения может быть продолжен и далее. Теперь посмотрим, где он может прерваться. Может так случиться, что очередная, $ \ell_<> $-я подсистема имеет коэффициент $ a_<\ell \ell>^ <[\ell-1]>$ равным нулю, что не позволит алгоритму идти дальше — т.е. исключить переменную $ x_<\ell>^<> $ из оставшихся уравнений (в принципе, такое могло случиться уже на первом шаге, если бы коэффициент $ a_<11>^<> $ был бы равен нулю). Возможные варианты дальнейших действий:

1. если хотя бы один коэффициент при $ x_<\ell>^<> $ в одном из оставшихся уравнений отличен от нуля: $ a_^<[\ell-1]>\ne 0^<> $, то это уравнение переставляется с $ \ell_<> $-м;

2. если при всех $ j\ge \ell^<> $ коэффициенты $ a_^ <[\ell-1]>$ равны нулю, то переменная $ x_<\ell>^<> $ не входит ни в одно оставшееся уравнение, и можно перейти к исключению переменной $ x_<\ell+1>^<> $.

Поскольку число переменных конечно, то алгоритм исключения должен завершиться за конечное число шагов. Чем он может завершиться? Окончательная система должна иметь вид: $$ \left\< \begin a_<11>x_1 +&a_<12>x_2&+ \ldots& +a_<1 <\mathfrak r>>x_<\mathfrak r>& +a_ <1 ,<\mathfrak r>+1>x_<<\mathfrak r>+1>&+ \ldots + & a_<1n>x_n &=b_1,\\ &a_<22>^<[1]>x_2&+ \ldots& +a_<2 <\mathfrak r>>^ <[1]>x_<\mathfrak r>& +a_<2 ,<\mathfrak r>+1>^ <[1]>x_<<\mathfrak r>+1>&+ \ldots + & a_<2n>^ <[1]>x_n &=b_2^<[1]>,\\ & & \ddots & & & & & \dots \\ & & & a_ <<\mathfrak r><\mathfrak r>>^<[<\mathfrak r>-1]>x_ <\mathfrak r>& + a_ <<\mathfrak r>, <\mathfrak r>+1>^<[<\mathfrak r>-1]>x_<<\mathfrak r>+1>& + \ldots + & a_ <<\mathfrak r>,n>^<[<\mathfrak r>-1]>x_n &=b_<\mathfrak r>^<[<\mathfrak r>-1]>, \\ & & & & & & 0 &=b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>, \\ & & & & & & \dots & \\ & & & & & & 0 &=b_^<[<\mathfrak r>-1]>, \\ \end \right. $$ при $ <\mathfrak r>\le n_<> $. Заметим, что все коэффициенты этой системы будут принадлежать тому же множеству, что и коэффициенты исходной системы.

Предположение . Мы будем считать, что каждое из первых $ <\mathfrak r>_<> $ уравнений системы содержит в своей левой части хотя бы одну переменную с ненулевым коэффициентом.

Процесс получения системы такого вида из исходной системы уравнений называется прямым ходом метода Гаусса.

Исторический комментарий о Гауссе ☞ ЗДЕСЬ.

Установление множества решений

Теорема. Если хотя бы одно из чисел $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>,\dots , b_^<[<\mathfrak r>-1]> $ отлично от нуля, то исходная система линейных уравнений будет несовместной.

Для простоты мы будем иллюстрировать наши рассуждения на системах л.у. над $ \mathbb R_<> $, в этом же множестве искать решения. Каждое из преобразований метода Гаусса будем обозначать $ \to_<> $.

Пример. Решить систему л.у.

$$ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ 2\,x_1&+x_2&-2\, x_3 =& 1 \\ x_1&+x_2&+ x_3 =& 3 \\ x_1&+2\,x_2&-3\, x_3 =& 1. \end \right. $$

Решение. $$ \ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &x_2&=& 2 \end \right. \ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &&4\, x_3=& 5 \end \right. \ \to \ $$ $$ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &&0=& 1 \end \right. $$ Последнее равенство абсолютно противоречиво.

Ответ. Система несовместна.

Пусть теперь $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>=0,<>\dots, b_^<[<\mathfrak r>-1]>=0 $. Возможны два случая: $ <\mathfrak r>=n_<> $ и $ <\mathfrak r>предположения , имеем $ a_^ <[n-1]>\ne 0 $. Но тогда, поскольку система является конечной стадией прямого хода метода Гаусса, то и все коэффициенты $ a_^<[n-2]>, \dots, a_<22>^<[1]>, a_ <11>$ должны быть отличны от нуля — в противном случае метод Гаусса не остановился бы на системе такого вида; он называется треугольным: Из последнего уравнения системы можно однозначно установить значение $ x_ $: $$x_n=b_n^ <[n-1]>\big/ a_^ <[n-1]>\ .$$ Далее, подставляя это значение в $ (n-1) $-е уравнение системы, выражаем $ x_ $: $$ x_= \frac^ <[n-2]>— a_^<[n-2]>x_>< a_^<[n-2]>>= \frac< b_^ <[n-2]>— a_^ <[n-2]>b_n^ <[n-1]>\Big/ a_^<[n-1]>>< a_^<[n-2]>> . $$ Подставляем полученные значения для $ x_ $ и $ x_ $ в $ (n-2)_<> $-е уравнение системы, выражаем $ x_ $, и т.д., в конце концов приходим к первому уравнению, из которого выражаем $ x_ <1>$ если ранее уже получены выражения для $ x_2,\dots,x_ $.

Теорема. Если прямой ход метода Гаусса заканчивается треугольной системой, т.е. $ \mathfrak r = n_<> $ и $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>=0,<>\dots, b_^<[<\mathfrak r>-1]>=0 $, то исходная система линейных уравнений имеет единственное решение.

Пример. Решить систему л.у.

$$ \left\< \begin x_1&+3\,x_2&+ x_3 =&5 \\ 2\,x_1&+x_2&+ x_3 =& 2 \\ x_1&+x_2&+ 5\,x_3 =& -7 \\ 2\,x_1&+3\,x_2&-3\, x_3 =& 14. \end \right. $$

Ответ. $ x_1=1,\, x_<2>=2,\, x_3=-2 $ .

Исследуем теперь случай $ <\mathfrak r>1) : На основании предположения , в $ <\mathfrak r>$-м уравнении этой системы имеется хотя бы один ненулевой коэффициент в левой части, пусть $ a_ <<\mathfrak r><\mathfrak s>>^<[<\mathfrak r>-1]>\ne 0 $ — первый из них. Если $ <\mathfrak s>=n $, то из этого уравнения однозначно определится $ x_ $ $$ x_n=\alpha_n = b_<\mathfrak r>^<[<\mathfrak r>-1]> \big/ a_ <<\mathfrak r>n>^<[<\mathfrak r>-1]> \ . $$ Если же $ <\mathfrak s>предположения , в этом уравнении имеется хотя бы один ненулевой коэффициент в левой части; пусть $ a_<<\mathfrak r>-1, <\mathfrak k>>^<[<\mathfrak r>-2]>\ne 0_<> $ — первый из них. Поскольку мы преположили, что система является конечной стадией прямого хода метода Гаусса, то $ <\mathfrak k>по крайней мере две переменные, значения которых еще не были зафиксированы на предыдущих шагах. Это следует из предположения, что число уравнений $ <\mathfrak r>_<> $ меньше числа неизвестных $ n_<> $. Такое уравнение допускает бесконечное число решений, любое из которых в ходе дальнейших шагов может быть «доделано» до решения системы.

Теорема. Если прямой ход метода Гаусса заканчивается трапециевидной системой, т.е. $ \mathfrak r 2) матрицы $ A_<> $ (третьего порядка). Понятие определителя распространяется и на квадратные матрицы бóльших порядков; образно говоря, определитель — это функция элементов матрицы, отвечающая за единственность решения системы уравнений.

Дальнейший матричный анализ метода Гаусса ☞ ЗДЕСЬ.

Формулы Крамера

Рассмотрим систему линейных уравнений с квадратной матрицей $ A_<> $, т.е. такую, у которой число уравнений совпадает с числом неизвестных.

Теорема. Cистема

$$ \left\<\begin a_<11>x_1 +a_<12>x_2+\ldots+a_<1n>x_n &=&b_1\\ a_<21>x_1 +a_<22>x_2+\ldots+a_<2n>x_n &=&b_2\\ \ldots& & \ldots \\ a_x_1 +a_x_2+\ldots+a_x_n &=&b_n \end\right. $$ имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля: $$ \left| \begin a_ <11>& a_ <12>& \dots & a_ <1n>\\ a_ <21>& a_ <22>& \dots & a_ <2n>\\ \dots &&& \dots \\ a_ & a_ & \dots & a_ \end \right| \ne 0 \ . $$ В этом случае решение можно вычислить по формулами Крамера 3) : $$ x_k =\frac<\det \left[ A_<[1]>|\dots|A_<[k-1]>|<\mathcal B>|A_<[k+1]>|\dots|A_ <[n]>\right]> <\det A>\quad npu \quad k\in \ < 1,\dots,n \>\ . $$ Для получения значения $ x_ $ в числитель ставится определитель, получающийся из $ \det A_<> $ заменой его $ k_<> $-го столбца на столбец правых частей ( здесь $ <> | $ означает конкатенацию).

Доказательство ☞ ЗДЕСЬ

Пример. Решить систему уравнений

$$ \left\<\begin 2x_1& +3x_2&+11x_3&+5x_4 &=& \color2,\\ x_1& +x_2&+5x_3&+2x_4 &=& \color1 ,\\ 2x_1& +x_2&+3x_3&+2x_4 &=&\color<-3>,\\ x_1& +x_2&+3x_3&+4x_4 &=&\color<-3>. \end\right. $$

Решение. $$ x_1=\frac<\left|\begin \color2 & 3&11&5 \\ \color1 & 1&5&2 \\ \color<-3>& 1&3&2 \\ \color <-3>& 1&3&4 \end\right|> <\left|\begin 2& 3&11&5 \\ 1& 1&5&2 \\ 2& 1&3&2 \\ 1& 1&3&4 \end\right|>=\frac<-28><14>=-2, x_2=\frac<\left|\begin 2& \color2&11&5 \\ 1& \color1&5&2 \\ 2& \color<-3>&3&2 \\ 1& \color<-3>&3&4 \end\right|> <\left|\begin 2& 3&11&5 \\ 1& 1&5&2 \\ 2& 1&3&2 \\ 1& 1&3&4 \end\right|>=\frac<0><14>=0, \dots $$ Найдите оставшиеся компоненты решения. ♦

Решение системы линейных уравнений с квадратной матрицей $ A_<> $ является непрерывной функцией коэффициентов этой системы при условии, что $ \det A_<> \ne 0 $.

Кроме того, формулы Крамера начинают конкурировать по вычислительной эффективности с методом Гаусса в случае систем, зависящих от параметра. Подробнее ☞ ЗДЕСЬ.

Еще один способ решения системы основан на построении обратной матрицы: $$ AX= <\mathcal B>\quad \Rightarrow \quad X=A^<-1> <\mathcal B>\ . $$ Этот способ малоэффективен при фиксированных числовых $ A_<> $ и $ <\mathcal B>_<> $.

Найти достаточное условие существования общего решения систем уравнений:

$$ A_1 X = <\mathcal B>_1 \quad u \quad A_2 Y = <\mathcal B>_2 \ , $$ при квадратных матрицах $ A_1 $ и $ A_2 $ одинакового порядка.

Теорема Кронекера-Капелли

Матрица, получающаяся конкатенацией матрицы $ A_<> $ и столбца правых частей $ <\mathcal B>_<> $ $$ [ A| <\mathcal B>] = \left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \dots & a_ <2n>& b_2 \\ \dots &&& & \dots \\ a_ & a_ & \dots & a_ & b_m \end \right)_ $$ называется расширенной матрицей системы линейных уравнений $ AX= <\mathcal B>$.

Теорема [Кронекер, Капелли]. Система $ AX= <\mathcal B>$ совместна тогда и только тогда, когда ранг матрицы этой системы совпадает с рангом ее расширенной матрицы:

$$ \operatorname\, A = \operatorname\, [ A| <\mathcal B>] \ . $$ При выполнении этого условия, система имеет единственное решение, если число неизвестных $ n_<> $ совпадает с общим значением ранга $ \mathfrak r_<> $, и бесконечное множество решений, если $ n_<> $ больше этого значения.

Доказательство необходимости. Пусть существует решение $ x_1=\alpha_1,\dots,x_n=\alpha_n $ системы, тогда $$\alpha_1 A_<[1]>+\dots+\alpha_n A_<[n]>= <\mathcal B>\ ,$$ т.е. столбец $ <\mathcal B>$ линейно выражается через столбцы $ A_<[1]>,\dots,A_ <[n]>$. Но тогда $$ \operatorname \,\dots,A_<[n]>\>=\operatorname \,\dots,A_<[n]>,<\mathcal B>\> .$$ Следовательно $ \operatorname\, A = \operatorname\, [ A| <\mathcal B>] $.

Доказательство достаточности проводится в следующем пункте. ♦

Пример. Исследовать совместность системы уравнений

Решение. В этом примере число уравнений совпадает с числом неизвестных. Это обстоятельство несколько облегчает рассуждения. Обратимся к замечанию из предыдущего пункта: система л.у. с числом уравнений, совпадающем с числом неизвестных, как правило, совместна. Тогда попробуем установить условия, обеспечивающие противоположное свойство — несовместность. Оно, фактически, единственно: за все отвечает определитель системы $ \det A_<> $. Если он отличен от нуля — система совместна. $$\det A = \left| \begin<\color<\lambda>> &1&1&1 \\ 1&<\color<\lambda>>&1&1 \\ 1&1&<\color<\lambda>>&1 \\ 1&1&1&<\color<\lambda>> \end \right|= \left| \begin (<\color<\lambda>>-1) &(1-<\color<\lambda>>)&0&0 \\ 0&(<\color<\lambda>>-1)&(1-<\color<\lambda>>)&0 \\ 0&0&(<\color<\lambda>>-1)&(1-<\color<\lambda>>) \\ 1&1&1&<\color<\lambda>> \end \right| =(<\color<\lambda>>-1)^3 \left| \begin 1 &-1&0&0 \\ 0&1&-1&0 \\ 0&0&1&-1 \\ 1&1&1&<\color<\lambda>> \end \right|= $$ $ =(<\color<\lambda>>-1)^3(<\color<\lambda>>+3) $. По теореме Крамера при $ <\color<\lambda>>\ne 1 $ и при $ <\color<\lambda>>\ne -3 $ решение системы единственно: $$x_1=x_2=x_3=x_4=1/(<\color<\lambda>>+3) \ .$$

Осталось исследовать критические случаи: $ <\color<\lambda>>=1_<> $ и $ <\color<\lambda>>= -3 $: определитель системы обращается в нуль, но система может оказаться совместной. Придется вычислять ранги, но, к счастью, уже числовых матриц (а не зависящих от параметра, как исходная!). При $ <\color<\lambda>>= 1_<> $ имеем $$ \operatorname \left( \begin 1 &1&1&1 \\ 1&1&1&1 \\ 1&1&1&1 \\ 1&1&1&1 \end \right)= \operatorname \left( \begin 1&1&1&1&1 \\ 1&1&1&1&1 \\ 1&1&1&1&1 \\ 1&1&1&1&1 \end \right)=1 \ , $$ и система совместна. Она эквивалентна единственному уравнению $$x_1+x_2+x_3+x_4=1 \ ,$$ которое имеет бесконечно много решений.

При $ <\color<\lambda>>= -3 $: $$ \operatorname \left( \begin -3 &1&1&1 \\ 1&-3&1&1 \\ 1&1&-3&1 \\ 1&1&1&-3 \end \right)=3,\quad \operatorname \left( \begin -3 &1&1&1&1 \\ 1&-3&1&1&1 \\ 1&1&-3&1&1 \\ 1&1&1&-3&1 \end \right)=4 $$ и система несовместна.

Ответ. Система несовместна при $ <\color<\lambda>> = -3 $; она имеет бесконечное множество решений при $ <\color<\lambda>> = 1_<> $ и единственное решение при $ <\color<\lambda>> \not\in \ <-3,1\>$.

Система однородных уравнений

$$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=0,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=0,\\ \dots & & & \dots & \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=0 \end \right. $$ всегда совместна: она имеет тривиальное решение $ x_1=0,\dots,x_n=0 $. Для того, чтобы у нее существовало еще и нетривиальное решение необходимо и достаточно, чтобы определитель ее матрицы был равен нулю.

Пример. Найти условие, при котором три точки плоскости с координатами $ (x_1,y_1), (x_2,y_2) $ и $ (x_3,y_<3>) $ лежат на одной прямой.

Решение. Будем искать уравнение прямой в виде $ ax+by+c=0 $ при неопределенных коэффициентах $ a,b,c_<> $. Если точки лежат на прямой, то получаем для определения этих коэффициентов систему линейных уравнений: $$ \left\< \begin ax_1+by_1+c & =0\\ ax_2+by_2+c & =0\\ ax_3+by_3+c & =0 \end \right. $$ Получившаяся система является однородной, условие существования у нее нетривиального решения (т.е. набора $ (a,b,c)_<> $ при хотя бы одном из чисел отличном от нуля): $$ \left|\begin x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end \right|=0 . $$ ♦

Доказать, что для совместности системы

$$ \left\< \begin a_<11>x_1+a_<12>x_2+a_<13>x_3 &=& b_1 \\ a_<21>x_1+a_<22>x_2+a_<23>x_3 &=& b_2 \\ a_<31>x_1+a_<32>x_2+a_<33>x_3 &=& b_3 \\ a_<41>x_1+a_<42>x_2+a_<43>x_3 &=& b_4 \end \right. $$ необходимо, чтобы было выполнено условие $$ \left| \begin a_<11>&a_<12>& a_ <13>& b_1 \\ a_<21>&a_<22>& a_ <23>& b_2 \\ a_<31>&a_<32>& a_ <33>& b_3 \\ a_<41>&a_<42>& a_ <43>& b_4 \end \right|=0 \quad . $$ Является ли это условие достаточным для совместности?

An elementary treatise on determinants

в следующей формулировке.

Теорема. Для того чтобы система $ n_<> $ неоднородных уравнений была совместна, необходимо и достаточно, чтобы порядок наибольшего отличного от нуля минора был одинаков в расширенной и нерасширенной матрице системы.

Додсон — один из самых знаменитых математиков мира. Назовите его псевдоним.

Ответ ☞ ЗДЕСЬ

Общее решение

Пусть выполнено условие теоремы Кронекера-Капелли: $ \operatorname (A)=\operatorname[A\mid \mathcal B ] =\mathfrak $. По определению ранга матрицы, в матрице $ A $ существует минор порядка $ \mathfrak $, отличный от нуля; этот же минор останется и минором расширенной матрицы $ [ A\mid \mathcal B ] $. Пусть, для определенности, ненулевой минор находится в левом верхнем углу матрицы 4) : $$ \Delta = A\left( \begin 1 & 2 & \dots & \mathfrak \\ 1 & 2 & \dots & \mathfrak \end \right) = \left| \begin a_ <11>& a_ <12>& \dots & a_<1\mathfrak> \\ a_ <21>& a_ <22>& \dots & a_<2\mathfrak> \\ \dots &&& \dots \\ a_<\mathfrak1> & a_<\mathfrak2> & \dots & a_ <\mathfrak\mathfrak> \end \right| \ne 0 \ . $$ Тогда первые $ \mathfrak $ строк матрицы $ A $ линейно независимы, а остальные будут линейно выражаться через них. Это же утверждение будет справедливо и для строк матрицы $ [A\mid \mathcal B] $. Умножая первые $ \mathfrak $ уравнений системы на соответствующие числа и складывая их, получим любое оставшееся уравнение. Таким образом, система уравнений может быть заменена эквивалентной ей системой из первых $ \mathfrak $ уравнений: $$ \left\< \begin a_<11>x_1+\dots+a_<1\mathfrak>x_<\mathfrak>&+a_<1,\mathfrak+1>x_<\mathfrak+1>+ \dots +a_<1n>x_n&=&b_1, \\ \dots & & & \dots \\ a_<\mathfrak1>x_1+\dots+a_<\mathfrak\mathfrak>x_<\mathfrak>& +a_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<\mathfrakn>x_n&=&b_\mathfrak \end \right. \quad \iff \quad A^ <\prime>X=<\mathcal B>^ <\prime>$$ Если $ \mathfrak=n $, то матрица $ A^ <\prime>$ квадратная. По предположению $ \det A^ <\prime>\ne 0 $. По теореме Крамера решение такой системы единственно.

Пусть теперь $ \mathfrak произвольных фиксированных значениях $ x_<\mathfrak+1>,\dots,x_n $: $$ x_j=\frac< \left| \begin a_ <11>& \dots &a_ <1,j-1>&\left[ b_1-(a_<1,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<1n>x_n) \right] &a_<1,j+1>& \dots &a_<1\mathfrak> \\ \dots &&&\dots&&& \dots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & \left[ b_<\mathfrak>- (a_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<\mathfrakn>x_n) \right] &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right| > <\Delta>$$ $$ \mbox <при>\ j\in \<1,\dots, \mathfrak\> . $$ Таким образом, в этом случае система имеет бесконечное множество решений. Используя свойство линейности определителя по столбцу (см. свойство 5 ☞ ЗДЕСЬ ), формулы можно переписать в виде $$ x_j=\beta_j + \gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \ <1,\dots, \mathfrak\> \ . $$ Здесь $$ \beta_j =\frac<1> <\Delta>\left| \begin a_ <11>& \dots &a_ <1,j-1>& b_1 &a_<1,j+1>& \dots &a_<1\mathfrak> \\ \vdots &&&\vdots&&& \vdots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & b_<\mathfrak> &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right|\, , $$ $$ \gamma_ = -\frac<1> <\Delta>\left| \begin a_ <11>& \dots &a_ <1,j-1>& a_ <1k>&a_<1,j+1>& \dots &a_<1\mathfrak> \\ \vdots &&&\vdots&&& \vdots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & a_<\mathfrakk> &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right| \ . $$ Эти формулы называются общим решением системы $ A X=\mathcal B $. Участвующие в них переменные $ x_<\mathfrak+1>,\dots,x_n $ называются основными (или свободными), а $ x_1,\dots,x_<\mathfrak> $ — зависимыми. Решение, получающееся из общего решения фиксированием значений основных переменных, называется частным решением системы уравнений.

Пример. Исследовать совместность и найти общее решение системы уравнений:

Решение проведем двумя способами, соответствующими двум способам вычисления ранга матрицы. Вычисляем сначала ранг матрицы $ A $ по методу окаймляющих миноров: $$ |2| \ne 0,\quad \left| \begin 2 & 1 \\ 6 & 2 \end \right| \ne 0, \quad \left| \begin 2 & 1 & 2 \\ 6 & 2 & 4 \\ 4 & 1 & 1 \end \right|=2 \ne 0 \ , $$ а все миноры, окаймляющие последний, равны нулю. Итак, $ \operatorname (A) =3 $. Для нахождения ранга расширенной матрицы $ [A\mid \mathcal B] $ достаточно проверить окаймление найденного ненулевого минора третьего порядка с помощью элементов взятых из столбца правых частей. Имеется всего один такой минор, и он равен нулю. Следовательно $ \operatorname[ A\mid \mathcal B ] =3 $, система совместна, и имеет бесконечное множество решений.

Ненулевой минор третьего порядка (базисный минор) находится в первой, второй и четвертых строках, что означает линейную независимость соответствующих уравнений. Третье уравнение линейно зависит от остальных, и может быть отброшено. Далее, указанный базисный минор образован коэффициентами при $ x_1,x_3 $ и $ x_4 $. Следовательно оставшиеся уравнения могут быть разрешены относительно этих переменных, т.е. они — зависимые, а $ x_2 $ и $ x_5 $ — основные. Использование формулы дает общее решение $$ \begin x_1&=&\frac<\left| \begin 2 & 1 & 2 \\ 3 & 2 & 4 \\ 1 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin -1 & 1 & 2 \\ -3 & 2 & 4 \\ -2 & 1 & 1 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 3 & 1 & 2 \\ 5 & 2 & 4 \\ 2 & 1 & 1 \end \right|> <\displaystyle 2>=-\frac<1><2>+\frac<1><2>x_2+\frac<1><2>x_5, \\ & & \\ x_3&=&\frac<\left| \begin 2 & 2 & 2 \\ 6 & 3 & 4 \\ 4 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin 2 & -1 & 2 \\ 6 & -3 & 4 \\ 4 & -2 & 1 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 2 & 3 & 2 \\ 6 & 5 & 4 \\ 4 & 2 & 1 \end \right|><\displaystyle 2>=3-4x_5, \\ & & \\ x_4 &=&\frac<\left| \begin 2 & 1 & 2 \\ 6 & 2 & 3 \\ 4 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin 2 & 1 & -1 \\ 6 & 2 & -3 \\ 4 & 1 & -2 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 2 & 1 & 3 \\ 6 & 2 & 5 \\ 4 & 1 & 2 \end \right|> <\displaystyle 2>= 0. \end $$ Решим теперь ту же задачу, воспользовавшись методом Гаусса исключения переменных в системе линейных уравнений: $$ \left\< \begin 2x_1&-x_2&+x_3&+2x_4&+3x_5&=&2, \\ &&x_3&+2x_4&+4x_5&=&3, \\ &&&x_4&&=&0 \end \right. $$ Используя обратный ход метода Гаусса, снова приходим к полученным формулам.

Ответ. Общее решение системы: $ x_1=1/2 (x_2+x_5-1),\ x_3=3-4\,x_5,\ x_4=0 $.

Проанализируем теперь полученные общие формулы для общего решения. В этих формулах $ \beta_j $ представляет решение системы, получаемое при $ x_<\mathfrak+1>=0,\dots,x_n=0 $. Величины же коэффициентов $ \gamma_ $ вовсе не зависят от правых частей системы и будут одинаковыми при любых значениях $ b_1,\dots,b_m $. В частности, если $ b_1=0,\dots,b_m=0 $, то в формулах величины $ \beta_j $ обращаются в нуль и эти формулы превращаются в $$ x_j=\gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \<1,\dots, \mathfrak\> \ . $$

Вывод. Формула общего решения системы $ A X=\mathcal B $: $$ x_j=\beta_j + \gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \ <1,\dots, \mathfrak\> $$ состоит из двух частей: слагаемые, не содержащие свободных переменных, определяют частное решение неоднородной системы: $$ x_1= \beta_1,\dots, x_<\mathfrak>= \beta_<\mathfrak>,x_<\mathfrak+1>=0,\dots,x_n=0 \ ; $$ оставшиеся после их отбрасывания формулы задают общее решение системы $ AX=\mathbb O $. Этот результат обобщается в следующей теореме.

Теорема. Общее решение системы уравнений $ A X=\mathcal B $ представимо в виде суммы какого-то частного решения этой системы и общего решения соответствующей однородной системы $ A X=\mathbb O $.

Доказательство тривиально если система $ A X=\mathcal B $ имеет единственное решение. Если же решений бесконечно много, то выбрав какое-то одно частное $ X=X_1 $ мы получаем, что любое другое частное решение $ X=X_2 $ должно быть связано с первым соотношением $$ A(X_2-X_1)=\mathbb O , $$ т.е. разность частных решений неоднородной системы обязательно является решением однородной системы уравнений $ AX=\mathbb O $. ♦

Теперь посмотрим как можно описать общее решение однородной системы.

Система однородных уравнений

Система линейных уравнений называется однородной, если все коэффициенты правых частей равны нулю: $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=0,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=0,\\ \dots & & & \dots & \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=0. \end \right. $$ или, в матричном виде: $$ A_X=<\mathbb O>_ $$

Задача ставится о поиске нетривиального решения. Оно не всегда существует. Так, к примеру, если матрица $ A_<> $ системы — квадратная и имеет ненулевой определитель, то, согласно теореме Крамера, нетривиальных решений у однородной системы нет. Теорема Кронекера-Капелли утверждает, что условие $ \det (A_<>) = 0 $ является и достаточным для существования нетривиального решения.

Теорема 1. Для того, чтобы система однородных уравнений с квадратной матрицей $ A_<> $ имела нетривиальное решение необходимо и достаточно, чтобы $ \det (A_<>) = 0 $.

Для произвольной (не обязательно квадратной) матрицы $ A_<> $ имеет место следующий общий результат.

Теорема 2. Если $ \operatorname (A)=\mathfrak r 5) $ A_^<> $.

Теорема 3. Множество решений системы однородных уравнений образует линейное подпространство пространства $ \mathbb A^ $. Размерность этого подпространства равна $ n-\mathfrak r $, а фундаментальная система решений образует его базис.

Пусть матрица системы $ AX=\mathbb O $ квадратная и

$$ \operatorname (A) =n_<>-1 \, .$$ Доказать, что если ненулевой минор матрицы порядка $ n_<>-1 $ соответствует какому-нибудь элементу $ j_<> $-й строки, то система алгебраических дополнений к элементам $ a_,\dots,a_^<> $ этой строки составляет ФСР для $ AX=\mathbb O_<> $. Например, для системы $$ \left\< \begin a_<11>x_1 +a_<12>x_2+a_<13>x_3&=0,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3&=0 \end \right. $$ ФСР состоит из решения $$ x_1=\left| \begin a_ <12>& a_ <13>\\ a_ <22>& a_ <23>\end \right| , \ x_2=-\left| \begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right| , \ x_3=\left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \ , $$ если только хотя бы один из миноров отличен от нуля.

Теперь обсудим способы нахождения ФСР.

1. Первый из них получается из общего метода решения системы линейных уравнений, рассмотренного в предыдущем пункте. Так же, как и в том пункте, сделаем упрощающее обозначения предположение, что зависимыми переменными являются первые $ x_<1>,\dots,x_ <\mathfrak r>$, т.е. общее решение задается формулами $$ x_j=\gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \<1,\dots, \mathfrak\> \ . $$ Иными словами, вектор столбец $$ X=\left(\begin \gamma_<1,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<1n>x_n \\ \gamma_<2,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<2n>x_n \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<\mathfrakn>x_n \\ x_<\mathfrak+1> \\ x_<\mathfrak+2> \\ \vdots \\ x_ \end\right) $$ будет решением однородной системы при любых наборах значений основных переменных $ x_<\mathfrak+1>,\dots,x_ $. Представим этот вектор в виде суммы векторов: $$ =x_<\mathfrak+1> \underbrace< \left(\begin \gamma_<1,\mathfrak+1> \\ \gamma_<2,\mathfrak+1> \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+1> \\ 1 \\ 0 \\ \vdots \\ 0 \end\right)>_ + x_<\mathfrak+2> \underbrace<\left(\begin \gamma_<1,\mathfrak+2> \\ \gamma_<2,\mathfrak+2> \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+2> \\ 0 \\ 1 \\ \vdots \\ 0 \end\right)>_+\dots+ x_ \underbrace<\left(\begin \gamma_ <1n>\\ \gamma_ <2n>\\ \vdots \\ \gamma_<\mathfrakn> \\ 0 \\ 0 \\ \vdots \\ 1 \end\right)>_> \ . $$ Таким образом, любое решение однородной системы представимо в виде линейной комбинации $ n_<>— \mathfrak r $ фиксированных решений. Именно эти решения и можно взять в качестве ФСР — их линейная независимость очевидна (единицы в нижних частях каждого вектора $ X_ $ расположены на разных местах, и ни какая линейная комбинация столбцов $ \ < X_1,\dots,X_\> $ не сможет обратить их одновременно в нуль).

Оформим этот способ построения ФСР в теорему:

Теорема 4. Если система уравнений $ AX=\mathbb O $ имеет структуру матрицы $ A_<> $ вида:

$$ A = \left[ E_ <\mathfrak r>\mid P_ <\mathfrak r \times (n-\mathfrak r)>\right] \ , $$ то ее ФСР состоит из столбцов матрицы $$ \left[ \begin — P^ <\top>\\ \hline E_ \end \right] \ . $$

Пример. Найти ФСР для системы уравнений

Решение. Приводим систему к трапециевидному виду: $$ \left\< \begin x_1-&x_2+&x_3-&x_4=&0, \\ &&x_3+&4x_4=&0 \end \right. $$ В качестве зависимых переменных можно взять, например, $ x_ <1>$ и $ x_ <3>$. $$ \begin x_1 & x_3 & x_2 & x_4 \\ \hline 1 & 0 & 1 & 0 \\ 5 & -4 & 0 & 1 \end $$

2. Этот способ напоминает вычисление обратной матрицы методом приписывания единичной матрицы. Транспонируем матрицу $ A_<> $ системы и припишем к ней справа единичную матрицу порядка $ n_<> $: $$ \left[ A^ <\top>| E_n \right] = \left(\begin a_ <11>& a_ <21>& \dots & a_ & 1 & 0 & 0 & \dots & 0 \\ a_ <12>& a_ <22>& \dots & a_ & 0 & 1 & 0 & \dots & 0 \\ a_ <13>& a_ <23>& \dots & a_ & 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \vdots & \vdots & & & \ddots & \vdots \\ a_ <1n>& a_ <2n>& \dots & a_ & 0 & 0 & 0 & \dots & 1 \end \right) \ ; $$ здесь $ <> |_<> <> $ означает конкатенацию. Получившуюся матрицу элементарными преобразованиями строк приводим к форме: $$ \left( \begin \hat A & K \\ \mathbb O & L \end \right) = \left(\begin \color <\star>& * & * & \dots & * & * & * & * & * & * & * & \dots & * \\ 0 & \color <\star>& * & \dots & * & * & * & * & * & * & * & \dots & * \\ 0 & 0 & \color <\star>& \dots & * & * & * & * & * & * & * & \dots & * \\ \vdots & & & \ddots & & \vdots & & & \vdots & & & & \vdots \\ 0 & 0 & \dots & & 0 & \color <\star>& * & * & * & * & * & \dots & * \\ \hline 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & \Box & \Box & \Box & \dots & \Box \\ \vdots & & & & & \vdots & & & \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & \Box & \Box & \Box & \dots & \Box \end \right) \begin \left.\begin \\ \\ \\ \\ \\ \end\right\> \mathfrak r \\ \left. \begin \\ \\ \\ \end\right\> n — \mathfrak r \end \ . $$ Элементы трапециевидной матрицы $ \hat A $, обозначенные $ \color <\star>$, могут быть равны нулю, но $ \operatorname(\hat A)= \mathfrak r_<> $. В этом случае строки матрицы $ L_<> $, образовавшейся в правом нижнем углу (ее элементы обозначены $ \Box $), составляют ФСР для системы $ AX=\mathbb O $.

Пример. Найти ФСР для системы уравнений

$$ \left\< \begin x_1 &+2\,x_2&+ x_3&+3\,x_4&-x_5&+2\,x_6=&0,\\ -3x_1 &-x_2&+ 2\,x_3&-4\,x_4&+x_5&-x_6=&0,\\ x_1 &+x_2&+ 3\,x_3&+2\,x_4&+x_5&+3\,x_6=&0,\\ -8\,x_1 &-7\,x_2&+ 4\,x_3&-15\,x_4&+6\,x_5&-5\,x_6=&0,\\ 6x_1 &+5\,x_2& +5\,x_3&+11\,x_4 &&+9\,x_6=&0. \end \right. $$ Решение. Преобразуем матрицу $ \left[ A^ <\top>| E_6 \right] $

$$ \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 2 & -1 & 1 & -7 & 5 & & 1 \\ 1 & 2 & 3 & 4 & 5 & & & 1 \\ 3 & -4 & 2 & -15 & 11 &&&& 1 \\ -1 & 1 & 1 & 6 & 0 &&&&& 1 \\ 2 & -1 & 3 & -5 & 9 &&&&&& 1 \end \right)_ <6\times 11>$$ к трапециевидной форме с помощью элементарных преобразований строк: $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 5 & 2 & 12 & -1 &-1 &0 & 1 \\ 0 & 5 & -1 & 9 & -7 &-3&0&0& 1 \\ 0 & -2 & 2 & -2 & 6 &1&0&0&0& 1 \\ 0 & 5 & 1 & 11 & -3 &-2&0&0&0&0& 1 \end \right)\rightarrow $$ $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 0 & 3 & 3 & 6 &1 &-1 & 1 \\ 0 & 0 & 0 & 0 & 0 &-1&-1&0& 1 \\ 0 & 0 & 8/5 & 8/5 & 16/5 &1/5&2/5&0&0& 1 \\ 0 & 0 & 2 & 2 & 4 &0&-1&0&0&0& 1 \end \right)\rightarrow $$ $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 0 & 3 & 3 & 6 &1 &-1 & 1 \\ 0 & 0 & 0 & 0 & 0 &-1&-1&0& 1 \\ 0 & 0 & 0 & 0 & 0 &-1/3&14/15&-8/15&0& 1 \\ 0 & 0 & 0 & 0 & 0 &-2/3&-1/3&-2/3&0& 0 & 1 \end \right) $$

3. Еще один способ построения ФСР основан на теореме Гамильтона-Кэли.

Теорема. Пусть матрица системы $ AX=\mathbb O $ квадратная и $ \operatorname (A) = <\mathfrak r>$. Тогда характеристический полином матрицы $ A_<> $ имеет вид:

Пример. Найти ФСР для системы уравнений

Решение. Здесь $$ A= \left( \begin 1 & 1 & -1 & -1 \\ 2 & 3 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end \right), \quad \det (A-\lambda E) = \lambda^2(\lambda^2-4\lambda+1), $$ $$ A^2-4A+E= \left( \begin 0 & 0 & 4 & 1 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end \right) $$

Блок-схемы зависимости множества решений системы уравнений $ AX= \mathcal B $ от комбинации чисел $ n, \mathfrak r $ ☞ ЗДЕСЬ.

Геометрическая интерпретация

Геометрический смысл введенных определений поясним на примере $ \mathbb R^ <3>$. Уравнение $$ a_1x_1+a_2x_2+a_3x_3=b $$ — при фиксированных вещественных коэффициентах $ a_1,a_2,a_3 $ (хотя бы один из них считаем отличным от нуля) и $ b_<> $ — задает плоскость. Если, к примеру, $ a_1\ne 0 $, то из уравнения получаем выражение для $ x_ <1>$ как функции $ x_2,x_3 $: $$ x_1=\frac-\fracx_2-\fracx_3 \ . $$ В этом представлении переменные $ x_ <2>$ и $ x_ <3>$ могут принимать любые вещественные значения независимо друг от друга, а вот переменная $ x_ <1>$ полностью определяется заданием $ x_ <2>$ и $ x_ <3>$. С одной стороны, последняя формула определяет общее решения системы линейных уравнений (которая в нашем частном случае состоит из одного-единственного уравнения); переменные $ x_ <2>$ и $ x_ <3>$ выбраны основными, а $ x_ <1>$ оказывается зависимой. Строго говоря, координаты любой точки плоскости можно представить формулами $$x_1=\frac-\fract-\fracu,\ x_2=t,\ x_3=u \quad npu \quad \\subset \mathbb R \ , $$ которые называются параметрическим представлением плоскости. Таким образом, получили геометрическую интерпретацию общего решения системы уравнений. Идем далее: представим последние формулы в векторной форме: $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)= \left( \begin b/a_1- t\, a_2/a_1- u\, a_3/a_1 \\ t \\ u \end \right)= \left( \begin b/a_1\\ 0 \\ 0 \end \right)+ t \left( \begin -a_2/a_1\\ 1 \\ 0 \end \right) + u \left( \begin -a_3/a_1\\ 0 \\ 1 \end \right) \ . $$ Какой геометрический смысл имеет каждое из слагаемых? Первое слагаемое $$ X_0=\left( \begin b/a_1\\ 0 \\ 0 \end \right) $$ получается при задании $ t=0,u=0_<> $ в общем решении. Это — частное решение нашего уравнения и определяет точку, через которую проходит плоскость. Два оставшихся столбца $$ X_1=\left( \begin -a_2/a_1\\ 1 \\ 0 \end \right) \quad u \quad X_2=\left( \begin -a_3/a_1\\ 0 \\ 1 \end \right) $$ не задают решения нашего уравнения — если только $ b\ne 0_<> $. Но оба удовлетворяют однородному уравнению $$ a_1x_1+a_2x_2+a_3x_3=0 , $$ Последнее также определяет плоскость — параллельную исходной и проходящую через начало координат. Первая плоскость получается из второй сдвигом (параллельным переносом) на вектор $ \vec $: и этот факт составляет геометрическую интерпретацию теоремы, сформулированной в конце ☞ ПУНКТА:

Теорема. Общее решение системы уравнений $ A X=\mathcal B $ представимо в виде суммы какого-то частного решения этой системы и общего решения соответствующей однородной системы $ A X=\mathbb O $.

Координаты произвольной точки плоскости $ a_1x_1+a_2x_2+a_3x_3=0 $ задаются соотношениями $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)=tX_1+uX_2 \ . $$ Векторы пространства $ \vec $ и $ \vec $ являются базисными векторами плоскости — любой вектор $ \vec $, лежащий в плоскости, через них выражается и они линейно независимы. Но $ X_ <1>$ и $ X_ <2>$ определяют фундаментальную систему решений однородного уравнения. Таким образом, мы получили геометрическую интерпретацию для ФСР: она задает базисные векторы плоскости, проходящей через начало координат.

Теперь рассмотрим систему из двух уравнений: $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&b_1,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&b_2. \end\right. $$ Ее можно интерпретировать как пересечение двух плоскостей в $ \mathbb R^ <3>$. Здесь уже возможны варианты: пересечение может оказаться как пустым так и непустым. От чего это зависит? — В соответствии с теоремой Кронекера-Капелли, надо сравнить два числа $$ \operatorname \left( \begin a_ <11>& a_ <12>& a_ <13>\\ a_ <21>& a_ <22>& a_ <23>\end \right) \quad u \quad \operatorname \left( \begin a_ <11>& a_ <12>& a_ <13>& b_1 \\ a_ <21>& a_ <22>& a_ <23>& b_2 \end \right) \ . $$ Очевидно, ни одно из них не может быть большим $ 2_<> $. Если оба равны $ 2_<> $ и этот факт обеспечен, например, условием $$ \left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \ne 0, $$ то решения системы определяют прямую в пространстве. Действительно, при таком условии систему можно разрешить относительно неизвестных $ x_ <1>$ и $ x_ <2>$ и представить общее решение в виде: $$ x_1= \frac<\left|\begin b_1 & a_ <12>\\ b_2 & a_ <22>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>+ \frac<\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>x_3 \ , \quad x_2= \frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>- \frac<\left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>x_3 \ . $$ В этих формулах переменная $ x_ <3>$ принимает любое значение, а значения переменных $ x_ <1>$ и $ x_ <2>$ линейно выражаются через $ x_ <3>$. Общее решение фактически задает прямую в параметрическом виде: координаты произвольной ее точки определяются формулами $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)=X_0+tX_1 \ , $$ где вектор $$ \quad X_0 = \left(\frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|> , \ \frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>,\ 0\right)^ <\top>$$ задает координаты точки, лежащей на прямой (т.е. принадлежащей пересечению плоскостей), а вектор $$ X_1= \left(\frac<\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>,\ — \frac<\left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>, \ 1 \right)^ <\top>$$ является направляющим для прямой. С тем же успехом мы могли бы взять в качестве направляющего вектор, получающийся растяжением $ X_ <1>$: $$ \tilde X_1 = \left(\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|,\ — \left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|, \ \left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \right)^ <\top>\ . $$ Очевидно, что любой из векторов $ X_ <1>$ или $ \tilde X_1 $ задает фундаментальную систему решений однородной системы уравнений 10) $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&0,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&0. \end\right. $$ Последняя определяет прямую в $ \mathbb R^3 $, проходящую через начало координат. Мы снова получаем интерпретацию теоремы: общее решение неоднородной системы получается сдвигом (параллельным переносом) общего решения однородной системы на вектор $ \vec $.

Мы рассмотрели пока только случай пересекающихся плоскостей в пространстве. Его можно считать общим, т.е. случаем «как правило»: две случайным образом выбранные плоскости в $ \mathbb R^ <3>$ пересекаться будут. Исследуем теперь исключительный случай — параллельности плоскостей. Исключительность этого случая может быть проверена и аналитикой. Для несовместности системы из двух уравнений необходимо, чтобы ранг ее матрицы $$ \left( \begin a_ <11>& a_ <12>& a_ <13>\\ a_ <21>& a_ <22>& a_ <23>\end \right) $$ оказался меньшим $ 2_<> $. Это равносильно тому, что все миноры второго порядка этой матрицы обращаются в нуль: $$ \left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|=0,\ \left| \begin a_ <12>& a_ <13>\\ a_ <22>& a_ <23>\end \right| =0,\ \left| \begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|=0 \ . $$ Эти условия можно переписать в виде $$ \frac>>=\frac>>=\frac>> \ ; $$ и, если обозначить общую величину последний отношений через $ \tau_<> $, то получаем: $$ (a_<11>,a_<12>,a_<13>)=\tau (a_<21>,a_<22>,a_<23>) . $$ Если вспомнить, что каждый из этих наборов коэффициентов задает вектор $ \vec> $ в $ \mathbb R^ <3>$, перпендикулярный соответствующей плоскости, то, в самом деле, плоскости, определяемые уравнениями, оказываются параллельными. Пересекаться они, как правило, не будут: для пересечения необходимо, чтобы расширенная матрица системы $$ \left( \begin a_ <11>& a_ <12>& a_ <13>& b_1 \\ a_ <21>& a_ <22>& a_ <23>& b_2 \end \right) $$ имела ранг меньший $ 2_<> $. Это возможно только при условии когда коэффициенты правых частей удовлетворяют соотношению $$ b_1 = \tau b_2 $$ при величине $ \tau_<> $ определенной выше. При выполнении этого условия второе уравнение получается из первого домножением на $ \tau_<> $ и соответствующие плоскости попросту совпадают.

Перейдем теперь к системе из трех уравнений: $$ \left\< \begin a_<11>x_1 +&a_<12>x_2+&a_<13>x_3=&b_1, \\ a_<21>x_1 +&a_<22>x_2+&a_<23>x_3=&b_2, \\ a_<31>x_1 +&a_<32>x_2+&a_<33>x_3=&b_3. \end \right. $$ Вариантов взаимного расположения трех плоскостей в $ \mathbb R^ <3>$ уже значительно больше. Какой из них будет самым распространенным, то есть случаем «как правило»? Геометрически ответ очевиден: если пересечение двух плоскостей определяет, как правило, прямую, то эта прямая пересекается с третьей плоскостью, как правило, в одной-единственной точке. И алгебра подтверждает геометрию: в комментарии к теореме Крамера говорится, что система, число уравнений которой совпадает с числом неизвестных, как правило, имеет единственное решение. Условие для этого случая «как правило» дается той же теоремой Крамера: $$ \left| \begin a_ <11>& a_ <12>& a_<13>\\ a_ <21>& a_ <22>& a_ <23>\\ a_ <31>& a_ <32>& a_ <33>\end \right| \ne 0 . $$

Теорема Кронекера-Капелли в этом случае не нужна — нет, она остается справедливой! — но проверка условия на ранги матриц тривиальна: они оба равны $ 3_<> $. Если же указанный определитель обращается в нуль, то этот факт эквивалентен тому, что три строки определителя линейно зависимы. Например, возможно, что строка $ (a_<31>,a_<32>, a_<33>) $ может быть представлена в виде линейной комбинации первых двух строк. Вспомним геометрический смысл этих строк: они задают координаты векторов, перпендикулярных соответствующим плоскостям. Если система уравнений $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&b_1,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&b_2 \end\right. $$ определяет прямую в $ \mathbb R^ <3>$, то оба вектора $ \vec> $ и $ \vec> $ при $ A^<[1]>= (a_<11>,a_<12>, a_<13>) $ и $ A^<[2]>= (a_<21>,a_<22>, a_<23>) $ перпендикулярны этой прямой; любая их комбинация также перпендикулярна этой прямой, а, следовательно, плоскость $$ a_<31>x_1 +a_<32>x_2+a_<33>x_3 =b_3 $$ будет ей параллельна.

Статья не закончена!

Ортогональность

Геометрические соображения из предыдущего пункта могут быть обобщены на случай когда размерности рассматриваемых пространств увеличиваются, и мы говорим о точках и векторах многомерных пространств. В последующих пунктах нам потребуются понятия линейной оболочки, линейного пространства, размерности, базиса и координат применительно к векторам-столбцам или векторам-строкам. Их можно найти ☞ ЗДЕСЬ.

Задача решения системы линейных уравнений $$ \left\< \begin 3x_1&+4x_2&-x_3&=2, \\ x_1&-2x_2&+3x_3&=1 \end \right. $$ может быть рассмотрена с двух точек зрения. С одной стороны, переписав систему в виде $$ x_1\left(\begin 3 \\ 1 \end \right)+ x_2\left(\begin 4 \\ -2 \end \right)+ x_3\left(\begin -1 \\ 3 \end \right)= \left(\begin 2 \\ 1 \end \right) \ , $$ можно говорить о поиске линейной комбинации столбцов $$ \left(\begin 3 \\ 1 \end \right),\ \left(\begin 4 \\ -2 \end \right),\ \left(\begin -1 \\ 3 \end \right) $$ равной заданному столбцу $$ \left(\begin 2 \\ 1 \end \right) \ . $$ В случае произвольной системы, записанной в матричном виде $$ A_X=\mathcal B_ \ $$ совместность системы интерпретировать в смысле принадлежности столбца $ \mathcal B $ линейной оболочке столбцов $ A_<[1]>,\dots,A_ <[n]>$: $$ \mathcal B=x_1 A_<[1]>+\dots+x_nA_ <[n]>\quad \iff \quad \mathcal B \in \mathcal L (A_<[1]>,\dots,A_<[n]>) \ . $$ В случае положительного ответа числа $ x_<1>,\dots,x_n $ интерпретируются как координаты столбца $ \mathcal B $ в системе столбцов 11) $ \,\dots,A_<[n]>\> $.

С другой стороны, к той же задаче решения системы уравнений, в предыдущем ПУНКТЕ мы подошли с другой стороны. Первое из уравнений системы $$ 3\,x_1+4\,x_2-x_3=2 $$ можно интерпретировать так: скалярное произведение векторов $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OX>> $ равно фиксированному числу $ 2_<> $. Здесь вектора рассматриваются в пространстве строк $ \mathbb R_<>^ <3>$; считается, что каждый вектор имеет начало в начале координат $ \mathbf O=[0,0,0] $, а конец — в точке с координатами $ [3,4,-1] $ или, соответственно, $ [x_1,x_2,x_3] $. Если скалярное произведение векторов обозначать скобками $ \langle <> \mbox < >\rangle $, то систему уравнений можно переписать в виде $$ \langle \vec<<\mathbf OA>^<[1]>> ,\ \vec<<\mathbf OX>> \rangle=2,\ \langle \vec<<\mathbf OA>^<[2]>> ,\ \vec<<\mathbf OX>> \rangle=1 \quad npu \quad A^ <[1]>= [3,4,-1], A^<[2]>=[1,-2,3] $$ — строках матрицы $ A_<> $. И задачу решения такой системы понимать в смысле: найти координаты всех векторов-строк $ [x_1,x_2,x_3] $ которые обеспечат нам заданные значения скалярных произведений с двумя фиксированными векторами.

Геометрическая интерпретация еще более упрощается если рассмотреть случай однородной системы уравнений. Так, решить систему уравнений $$ \left\< \begin 3x_1&+4x_2&-x_3&=0, \\ x_1&-2x_2&+3x_3&=0 \end \right. $$ означает подобрать вектор $ \vec<<\mathbf OX>> $ перпендикулярный (ортогональный) одновременно обоим векторам $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OA>^<[2]>> $. Очевидно, что таких векторов в $ \mathbb R^ <3>$ бесконечно много — найдя хотя бы один такой вектор $ \vec<<\mathbf OX>> $, другие получим его растяжением: $ \alpha \cdot \vec<<\mathbf OX>> $ остается перпендикулярным векторам $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OA>^<[2]>> $ при $ \forall \alpha \in \mathbb R $.

Все эти геометрические соображения обобщаются в произвольное пространство $ \mathbb R_<>^ $ строк или столбцов, состоящих из $ n_<> $ вещественных чисел (компонент). Для этого приходится обобщать понятие скалярного произведения. В общем случае оно вводится аксиоматически (и, более того, в одном и том же множестве может быть определено разными способами, см. ☞ ЕВКЛИДОВО ПРОСТРАНСТВО ). Мы сейчас не будем залезать так глубоко в эту аксиоматику, а просто определим скалярное произведение двух строк $ X=[x_1,x_2,\dots,x_n] $ и $ Y=[y_1,y_2,\dots,y_n] $ формулой $$ \langle X,Y \rangle=x_1y_1+x_2y_2+\dots+x_ny_n \ $$ и продекларируем без обоснований, что все привычные нам по случаям $ \mathbb R^ <2>$ и $ \mathbb R^ <3>$ свойства скалярного произведения будут выполнены.

В терминах скалярного произведения, задачу решения системы линейных уравнений можно переформулировать как поиск строки $ X=[x_1,x_2,\dots,x_n] $, ортогональной всем строкам матрицы $ A_<> $: $$ \langle A^<[1]>,X \rangle=0, \langle A^<[2]>,X \rangle=0,\dots, \langle A^<[m]>,X \rangle=0 \ . $$ Множество таких строк образует линейное подпространство пространства $ \mathbb R_<>^ $, это подпространство является ортогональным дополнением линейной оболочки $ \mathcal L ( A^<[1]>, A^<[2]>,\dots, A^ <[m]>) $ в пространстве $ \mathbb R_<>^ $. Это подпространство называется нуль-пространством матрицы или ядром матрицы $ A_<> $ и обозначается 12) $ <\mathcal K>er (A) $. Фундаментальная система решений системы $ AX=\mathbb O $ составляет базис этого подпространства. Для произвольного линейного пространства количество векторов его базиса называется размерностью пространства и обозначается $ \operatorname $. Во введенных обозначениях теорема из ☞ ПУНКТА переформулируется так:

Теорема. $ \operatorname \left( <\mathcal K>er (A) \right)=n- \mathfrak r $, где $ n_<> $ — количество столбцов матрицы $ A_<> $, а $ \mathfrak r=\operatorname (A) $ — ее ранг.

Структура общего решения системы уравнений

Однородная система линейных уравнений

всегда совместна, так как имеет тривиальное решение . Если ранг матрицы системы равен количеству неизвестных , то тривиальное решение единственное. Предположим, что . Тогда однородная система имеет бесконечно много решений. Заметим, что расширенная матрица однородной системы при элементарных преобразованиях строк приводится к упрощенному виду , т.е. . Поэтому из (5.11) получаем общее решение однородной системы уравнений :

Получим другую форму записи решений однородной системы, которая раскрывает структуру множества решений. Для этого подчеркнем следующие свойства.

Свойства решений однородной системы уравнений

1. Если столбцы — решения однородной системы уравнений, то любая их линейная комбинация также является решением однородной системы.

В самом деле, из равенств следует, что

т.е. линейная комбинация решений является решением однородной системы.

2. Если ранг матрицы однородной системы равен , то система имеет линейно независимых решений.

Действительно, по формулам (5.13) общего решения однородной системы найдем частных решений , придавая свободным переменным следующие стандартные наборы значений (всякий раз полагая, что одна из свободных переменных равна единице, а остальные — равны нулю):

которые линейно независимы. В самом деле, если из этих столбцов составить матрицу, то последние ее строк образуют единичную матрицу. Следовательно, минор, расположенный в последних строках не равен нулю (он равен единице), т.е. является базисным. Поэтому ранг матрицы будет равен . Значит, все столбцы этой матрицы линейно независимы (см. теорему 3.4).

Любая совокупность линейно независимых решений однородной системы называется фундаментальной системой (совокупностью) решений .

Заметим, что фундаментальная система решений определяется неоднозначно. Однородная система может иметь разные фундаментальные системы решений, состоящие из одного и того же количества линейно независимых решений.

Теорема 5.3 об общем решении однородной системы. Если — фундаментальная система решений однородной системы уравнений (5.4), то столбец

при любых значениях произвольных постоянных также является решением системы (5.4), и, наоборот, для каждого решения х этой системы найдутся такие значения произвольных постоянных , при которых это решение удовлетворяет равенству (5.14).

Прямое утверждение теоремы следует из свойства 1 решений однородной системы. Докажем обратное утверждение о том, что любое решение можно представить в виде (5.14). Для этого составим матрицу , приписав к столбцам фундаментальной системы решений столбец

Найдем ранг этой матрицы. Так как первые столбцов линейно независимы, то . Так как каждый из столбцов матрицы является решением системы , то по первой формуле из (5.13) получаем

Следовательно, первая строка матрицы является линейной комбинацией последних строк этой матрицы.

По второй формуле из (5.13) получим, что вторая строка матрицы является линейной комбинацией последних строк этой матрицы, и т.д. По r-й формуле из (5.13) получим, что r-я строка матрицы является линейной комбинацией последних строк этой матрицы. Значит, первые строк матрицы можно вычеркнуть и при этом ранг матрицы не изменится. Следовательно, , так как после вычеркивания в матрице будет всего строк. Таким образом, . Значит, есть базисный минор матрицы , который расположен в первых ее столбцах, а столбец не входит в этот базисный минор. Тогда по теореме о базисном миноре найдутся такие числа , что

Итак, обратное утверждение доказано.

Алгоритм решения однородной системы уравнений

1-5. Выполнить первые 5 пунктов алгоритма Гаусса. При этом не требуется выяснять совместность системы, так как любая однородная система имеет решение (пункт 3 метода Гаусса следует пропустить). Получить формулы (5.11) общего решения, которые для однородной системы будут иметь вид (5.13).

Если ранг матрицы системы равен числу неизвестных , то система имеет единственное тривиальное решение и процесс решения заканчивается.

Если ранг матрицы системы меньше числа неизвестных , то система имеет бесконечно много решений. Структуру множества решений находим в следующих пунктах алгоритма.

6. Найти фундаментальную систему решений однородной системы. Для этого подставить в (5.13) последовательно стандартных наборов значений свободных переменных, в которых все свободные переменные равны нулю, кроме одной, равной единице (см. свойство 2 решений однородной системы).

7. Записать общее решение однородной системы по формуле (5.14).

1. В пункте 6 алгоритма вместо стандартного набора значений свободных переменных можно использовать и другие наборы значений, лишь бы они обеспечивали линейную независимость получаемых частных решений однородной системы.

2. Матрица столбцы которой образуют фундаментальную систему решений однородной системы, называется фундаментальной. Используя фундаментальную матрицу, общее решение (5.14) однородной системы можно записать в виде

3. Если базисный минор матрицы расположен в левом верхнем углу (в первых строках и первых столбцах), то упрощенный вид расширенной матрицы (5.9) однородной системы можно представить в виде блочной матрицы

Тогда блочная матрица размеров является фундаментальной. В этом можно убедиться, используя стандартные наборы значений свободных переменных. Применение блочных матриц может служить вторым способом нахождения фундаментальной системы решений.

Пример 5.4. Найти фундаментальную систему решений и общее решение однородной системы

Решение. 1. Составляем расширенную матрицу системы

2-4. Используя элементарные преобразования над строками матрицы , приводим ее к ступенчатому, а затем и к упрощенному виду (см. решение примера 5.3):

Пункт 3 метода Гаусса пропускаем.

5. Переменные — базисные, а — свободные. Записываем формулу (5.13) общего решения однородной системы

6. Находим фундаментальную систему решений. Так как и , надо подобрать линейно независимых решения. Подставляем в систему стандартные наборы значений свободных переменных:

В результате получили фундаментальную систему решений

7. Записываем общее решение однородной системы по формуле (5.14):

Заметим, что фундаментальную систему решений можно получить, взяв иные наборы значений свободных переменных. Например, и . Тогда получим другую фундаментальную систему решений

Несмотря на различия, обе формулы задают одно и то же множество решений.

Структура общего решения неоднородной системы уравнений

Ранее была выведена формула (5.11) общего решения системы линейных уравнений. Получим другую форму записи, отражающую структуру множества решений.

Рассмотрим неоднородную систему и соответствующую ей однородную систему . Между решениями этих систем имеются связи, выражающиеся следующими свойствами.

Свойства решений неоднородной системы уравнений

1. Разность двух решений и неоднородной системы есть решение однородной системы.

Действительно, из равенств и следует, что .

2. Пусть — решение неоднородной системы. Тогда любое решение неоднородной системы можно представить в виде

В самом деле, для любого решения неоднородной системы разность по свойству 1 является решением однородной системы, т.е. — решение однородной системы.

Теорема 5.4 о структуре общего решения неоднородной системы.

Пусть — решение неоднородной системы, а — фундаментальная система решений соответствующей однородной системы уравнений. Тогда столбец

при любых значениях [i]произвольных постоянных является решением неоднородной системы, и, наоборот, для каждого решения этой системы найдутся такие значения произвольных постоянных , при которых это решение удовлетворяет равенству (5.15).[/i]

Говорят, что общее решение неоднородной системы есть сумма частного решения неоднородной системы и общего решения соответствующей однородной системы.

Доказательство теоремы вытекает из свойств 1, 2 и теоремы 5.3.

Алгоритм решения неоднородной системы уравнений

1-5. Выполнить первые 5 пунктов метода Гаусса решения системы уравнений и получить формулу общего решения неоднородной системы вида (5.11).

6. Найти частное решение неоднородной системы, положив в (5.11) все свободные переменные равными нулю.

7. Записав формулы (5.13) общего решения соответствующей однородной системы, составить фундаментальную систему ее решений. Для этого подставить в (5.13) последовательно стандартных наборов значений свободных переменных, в которых все переменные равны нулю, за исключением одной, равной единице.

8. Записать общее решение неоднородной системы по формуле (5.15).

1. Используя фундаментальную матрицу однородной системы , решение неоднородной системы можно представить в виде

2. Если базисный минор матрицы расположен в левом верхнем углу (в первых строках и первых столбцах), то упрощенный вид расширенной матрицы (5.9) неоднородной системы можно представить в виде блочной матрицы

Тогда блочная матрица оказывается фундаментальной (см. п.3 замечаний 5.3), а столбец является частным решением неоднородной системы (в этом можно убедиться, подставляя в (5.11) нулевой набор свободных переменных). Используя блочные матрицы, общее решение (5 15) неоднородной системы можно представить в виде

где — столбец произвольных постоянных. Полученную формулу можно считать вторым способом решения неоднородной системы.

Пример 5.5. Найти структуру (5.15) общего решения неоднородной системы

Решение. 1-5. Первые 5 пунктов метода Гаусса выполнены при решении примера 5.3, где получены формулы общего решения неоднородной системы:

Переменные — базисные, а — свободные.

6. Полагая , получаем частное решение неоднородной системы .

7. Находим фундаментальную систему решений однородной системы (см. пример 5.4):

8. Записываем по формуле (5.15) общее решение неоднородной системы

Искомая структура множества решений найдена.

Получим формулу общего решения вторым способом , используя п.2 замечаний 5.4. При решении примера 5.3 расширенная матрица системы была приведена к упрощенному виду. Разбиваем ее на блоки:

Записываем частное решение неоднородной системы

и составляем фундаментальную матрицу:

По формуле (5.16) получаем общее решение неоднородной системы, которое преобразуем к виду (5.15):

Общая теория систем линейных уравнений

Условия совместности.

Займемся изучением систем из m уравнений с n неизвестными. Систему
\begina_<1>^<1>x^<1>+a_<2>^<1>x^<2>+. +a_^<1>x^=b^<1>,\\a_<1>^<2>x^<1>+a_<2>^<2>x^<2>+. +a_^<2>x^=b^<2>,\\\cdots\\a_<1>^x^<1>+a_<2>^x^<2>+. +a_^x^=b^\end мы можем кратко записать в виде \tag <1>A\boldsymbol=\boldsymbol.
Система задается своей расширенной матрицей A^ <*>, получаемой объединением матрицы системы A и столбца свободных членов \boldsymbol .

Простое и эффективное условие, необходимое и достаточное для совместности системы (1) , дает следующая теорема, называемая теоремой Кронекера-Капелли.

Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

Иначе утверждение теоремы можно сформулировать так: приписывание к матрице A размеров m \times n столбца \boldsymbol высоты m не меняет ее ранга тогда и только тогда, когда этот столбец — линейная комбинация столбцов A .

Если \mathbf\,A^ <*>= \mathbf\,A , то базисный минор A является базисным и для A^ <*>. Следовательно, \boldsymbol раскладывается по базисным столбцам A . Мы можем считать его линейной комбинацией всех столбцов A , добавив недостающие столбцы с нулевыми коэффициентами.

Обратно, если \boldsymbol раскладывается по столбцам A , то элементарными преобразованиями столбцов можно превратить A^ <*>в матрицу A_ <0>, получаемую из A приписыванием нулевого столбца. Из утверждения о том, что ранг матрицы не меняется при элементарных преобразованиях, следует \mathbf\,A_ <0>= \mathbf\,A^ <*>. С другой стороны, \mathbf\,A_ <0>= \mathbf\,A , так как добавление нулевого столбца не может создать новых невырожденных подматриц. Отсюда \mathbf\,A = \mathbf\,A^ <*>, как и требовалось.

Иначе это утверждение можно сформулировать так.

Система линейных уравнений несовместна тогда и только тогда, когда противоречивое равенство 0=1 является линейной комбинацией ее уравнений.

Равенство рангов матрицы системы и расширенной матрицы можно выразить, понимая ранг матрицы как строчный ранг. Это приведет нас к важной теореме, известной как теорема Фредгольма.

Транспонируем матрицу A системы (1) и рассмотрим систему из n линейных уравнений \tag <2>\begin a_<1>^<1>y_<1>+a_<1>^<2>y_<2>+. +a_<1>^y_=0,\\ a_<2>^<1>y_<1>+a_<2>^<2>y_<2>+. +a_<2>^y_=0,\\\cdots\\a_^<1>y_<1>+a_^<2>y_<2>+. +a_^y_=0\end с m неизвестными, матрицей A^и свободными членами, равными нулю. Она называется сопряженной однородной системой для системы (1) . Если \boldsymbol — столбец высоты m из неизвестных, то систему (2) можно записать как A^\boldsymbol=\boldsymbol , или лучше в виде \tag <3>\boldsymbol^A=\boldsymbol, где \boldsymbol — нулевая строка длины n .

Для того чтобы система (1) была совместна, необходимо и достаточно, чтобы каждое решение сопряженной однородной системы (3) удовлетворяло уравнению \tag <4>\boldsymbol^\boldsymbol=y_<1>b^<1>+. +y_b^=0.

1^ <\circ>. Пусть система (1) совместна, то есть существует столбец \boldsymbol высоты n , для которого A\boldsymbol=\boldsymbol . Тогда для любого столбца \boldsymbol высоты m выполнено \boldsymbol^A\boldsymbol=\boldsymbol^\boldsymbol . Если \boldsymbol — решение системы (3) , то \boldsymbol^\boldsymbol=(\boldsymbol^A)\boldsymbol=\boldsymbol\boldsymbol=0 .

2^ <\circ>. Предположим теперь, что система (1) несовместна. Тогда согласно утверждению 1 строка \begin 0&. & 0& 1 \end входит в упрощенный вид расширенной матрицы A^<*>=\begin A& |& \boldsymbol \end и, следовательно, является линейной комбинацией ее строк. Обозначим коэффициенты этой линейной комбинации y_<1>. y_ и составим из них столбец \boldsymbol . Для этого столбца \boldsymbol^\begin A& |& \boldsymbol \end=\begin 0&. & 1 \end (согласно данного утверждения). Это же равенство можно расписать как два: \boldsymbol^A=\boldsymbol и \boldsymbol^\boldsymbol=1 . Итак, нам удалось найти решение системы (3) , не удовлетворяющее условию (4) . Это заканчивает доказательство.

В качестве примера применим теорему Фредгольма к выводу условия параллельности двух различных прямых на плоскости. Их уравнения составляют систему A_<1>x+B_<1>y+C_<1>=0,\ A_<2>x+B_<2>y+C_<2>=0.
Она не имеет решений, если существуют такие числа y_<1>, y_ <2>, что y_<1>A_<1>+y_<2>A_<2>=0 , y_<1>B_<1>+y_<2>B_<2>=0 , но y_<1>C_<1>+y_<2>C_ <2>\neq 0 . Ясно, что y_ <1>и y_ <2>не равны нулю. Поэтому можно положить \lambda=-y_<2>/y_ <1>и записать полученное условие в виде: существует число \lambda такое, что A_<1>=\lambda A_ <2>, B_<1>=\lambda B_ <2>и C_ <1>\neq \lambda C_ <2>.

Нахождение решений.

В этом пункте мы будем предполагать, что дана совместная система из m линейных уравнений с n неизвестными. Ранг матрицы системы обозначим r . Поскольку ранг расширенной матрицы тоже равен r , мы можем считать базисные столбцы матрицы системы базисными столбцами расширенной матрицы. Элементарными преобразованиями строк приведем расширенную матрицу к упрощенному виду (возможность этого мы уже доказывали). Наша система линейных уравнений перейдет в эквивалентную ей систему из r линейно независимых уравнений.

Для удобства записи будем предполагать, что первые r столбцов — базисные. Тогда преобразованную систему можно записать в виде \tag <5>\begin x^<1>=\beta^<1>-(\alpha_^<1>x^+. +\alpha_^<1>x^),\\\cdots\\x^=\beta^-(\alpha_^x^+. +\alpha_^x^).\end
Здесь \alpha_^ и \beta^ — элементы преобразованной расширенной матрицы. В левых частях равенств мы оставили неизвестные, соответствующие выбранным нами базисным столбцам, так называемые базисные неизвестные. Остальные неизвестные, называемые параметрическими, перенесены в правые части равенств.

Как бы мы ни задали значения параметрических неизвестных, по формулам (5) мы найдем значения базисных так, что они вместе со значениями параметрических неизвестных образуют решение системы (1) . Легко видеть, что так мы получим все множество решений.

На формулах (5) можно было бы и остановиться, но ниже мы дадим более простое и наглядное, а также принципиально важное описание совокупности решений системы линейных уравнений.

Приведенная система.

Сопоставим системе линейных уравнений (1) однородную систему с той же матрицей коэффициентов: \tag<6>A\boldsymbol=\boldsymbol. По отношению к системе (1) она называется приведенной.

Пусть \boldsymbol_ <0>— решение системы (1) . Столбец \boldsymbol также будет ее решением тогда и только тогда, когда найдется такое решение у приведенной системы (6) , что \boldsymbol=\boldsymbol_<0>+\boldsymbol .

Пусть \boldsymbol — решение системы (1) . Рассмотрим разность \boldsymbol=\boldsymbol-\boldsymbol_ <0>. Для нее A\boldsymbol=A\boldsymbol-A\boldsymbol_<0>=\boldsymbol-\boldsymbol=\boldsymbol .

Обратно, если \boldsymbol — решение системы (6) , и \boldsymbol=\boldsymbol_<0>+\boldsymbol , то A\boldsymbol=A\boldsymbol_<0>+A\boldsymbol=\boldsymbol+\boldsymbol=\boldsymbol .

Это предложение сводит задачу описания множества решений совместной системы линейных уравнений к описанию множества решений ее приведенной системы.

Однородная система совместна. Действительно, нулевой столбец является ее решением. Это решение называется тривиальным.

Пусть столбцы матрицы A линейно независимы, то есть \mathbf\,A=n . Тогда система (6) имеет единственное решение (ранее мы это уже доказывали) и, следовательно, нетривиальных решений не имеет.

Если \boldsymbol_ <1>и \boldsymbol_ <2>— решения однородной системы, то любая их линейная комбинация — также решение этой системы.

Действительно, из A\boldsymbol_<1>=\boldsymbol и A\boldsymbol_<2>=\boldsymbol для любых \alpha и \beta следует A(\alpha \boldsymbol_<1>+\beta \boldsymbol_<2>)=\alpha A \boldsymbol_<1>+\beta A\boldsymbol_<2>=\boldsymbol .

Если однородная система имеет нетривиальные решения, то можно указать несколько линейно независимых решений таких, что любое решение является их линейной комбинацией. Сделаем это.

Матрица F , состоящая из столбцов высоты n , называется фундаментальной матрицей для однородной системы с матрицей А, если:

  1. AF=O ;
  2. столбцы F линейно независимы;
  3. ранг F максимален среди рангов матриц, удовлетворяющих условию 1).

Столбцы фундаментальной матрицы называются фундаментальной системой решений.

Если фундаментальная матрица существует, то каждый ее столбец в силу первого условия определения — решение системы. Если система не имеет нетривиальных решений, то фундаментальной матрицы нет. Это будет в том случае, когда столбцы А линейно независимы: \mathbf\,A=n .

Ниже мы докажем, что в остальных случаях фундаментальная матрица существует, но сначала выясним, что означает третье условие в определении.

Пусть A — матрица размеров m \times n и ранга r . Если AF=O , то \mathbf\,F \leq n-r .

Приведем матрицу A к упрощенному виду элементарными преобразованиями строк, а затем элементарными преобразованиями столбцов обратим в нулевые все небазисные столбцы. Мы получим матрицу A’=PAQ , где P и Q — произведения соответствующих элементарных матриц. Первые r строк A’ — строки единичной матрицы порядка n , а остальные — нулевые. Обозначим F’=Q^<-1>F . Тогда \mathbf\,F’ = \mathbf\,F . Используя ранее доказанное нами утверждение, легко заметить, что первые r строк матрицы A’F’ совпадают с первыми r строками F’ . Но A’F’=PAF=O и, следовательно, F’ содержит r нулевых строк. Так как всего в ней n строк, \mathbf\,F’ \leq n-r . Это равносильно доказываемому утверждению.

Покажем теперь, как может быть построена фундаментальная матрица. Согласно ранее доказанному утверждению, решение однородной системы состоит из коэффициентов равной нулю линейной комбинации столбцов матрицы системы. Мы можем получить такие линейные комбинации, основываясь на теореме о базисном миноре. Снова для удобства записи будем считать, что в матрице A первые r столбцов — базисные. Каждый из небазисных столбцов \boldsymbol_ (j=r+1. n) раскладывается по базисным: \tag <7>\boldsymbol_=\alpha_^<1>\boldsymbol_<1>+. +\alpha_^\boldsymbol_. Отсюда следует, что столбец \begin -\alpha_^<1>. -\alpha_^& 0. 0& 1& 0. 0 \end^решением. (Единица в нем стоит на j -м месте.)

Таких решений можно составить столько, сколько есть небазисных столбцов, то есть (n-r) . Убедимся в том, что эти решения линейно независимы. Для этого объединим все столбцы в одну матрицу \tag <8>\begin -\alpha_^<1>& -\alpha_^<1>&. -\alpha_^<1>,\\\cdots\\-\alpha_^& -\alpha_^&. -\alpha_^,\\1& 0&. & 0\\0& 1&. & 0\\\cdots\\0& 0&. & 1\end.
Подматрица в последних n-r строках — единичная. Поэтому ранг матрицы (8) равен числу столбцов, и столбцы линейно независимы.

Таким образом, мы получили

Если ранг матрицы однородной системы линейных уравнений r меньше числа неизвестных n , то система имеет фундаментальную матрицу из n-r столбцов.

Итак, система столбцов (8) — фундаментальная система решений. Она называется нормальной фундаментальной системой решений. Каждому выбору базисных столбцов соответствует своя нормальная фундаментальная система решений. Вообще же, каждая система из n-r линейно независимых решений является фундаментальной.

Для нахождения матрицы (8) можно привести матрицу A системы к упрощенному виду, что даст коэффициенты разложения небазисных столбцов по базисным.

Пусть F — фундаментальная матрица системы A\boldsymbol=\boldsymbol . Рассмотрим произвольный столбец с высоты n-r . Произведение F\boldsymbol — столбец высоты n , и из равенства AF\boldsymbol =\boldsymbol следует, что при любом с столбец F\boldsymbol — решение системы. Оказывается, имеет место

Столбец \boldsymbol — решение системы A\boldsymbol=\boldsymbol тогда и только тогда, когда существует такой столбец \boldsymbol , что \tag <9>\boldsymbol=F\boldsymbol.

Остается доказать необходимость условия. Пусть \boldsymbol — решение. Присоединив его к F , получим матрицу F^<*>=\begin F\ |\ \boldsymbol \end . Эта матрица удовлетворяет условию AF^<*>=O , так как каждый ее столбец — решение. Значит, \mathbf\,F^<*>=n-r . По теореме Кронекера-Капелли мы заключаем отсюда, что существует столбец \boldsymbol , удовлетворяющий системе F\boldsymbol=\boldsymbol .

Общее решение системы линейных уравнений.

Теперь мы можем собрать воедино наши результаты — утверждения 2 и 6.

Выражение, стоящее в правой части формулы (10) , называется общим решением системы линейных уравнений. Если \boldsymbol_<1>. \boldsymbol_ — фундаментальная система решений, а c_<1>. c_ — произвольные постоянные, то формула (10) может быть написана так: \tag <11>\boldsymbol=\boldsymbol_<0>+c_<1>\boldsymbol_<1>+. +c_\boldsymbol_.

Теорема 3 верна, в частности, и для однородных систем. Если \boldsymbol_ <0>— тривиальное решение, то (10) совпадает с (9) .

Одна из ранее доказанных нами теорем гласит, что для существования единственного решения системы из n линейных уравнений с n неизвестными достаточно, чтобы матрица системы имела детерминант, отличный от нуля. Сейчас легко получить и необходимость этого условия.

Пусть A — матрица системы из n линейных уравнений с n неизвестными. Если \det A=0 , то система либо не имеет решения, либо имеет бесконечно много решений.

Равенство \det A=0 означает, что \mathbf\,A и, следовательно, приведенная система имеет бесконечно много решений. Если данная система совместна, то из теоремы 3 следует, что и она имеет бесконечно много решений.

Пример.

Рассмотрим уравнение плоскости как систему \tag<12>Ax+By+Cz+D=0 из одного уравнения. Пусть A \neq 0 и потому является базисным минором матрицы системы. Ранг расширенной матрицы 1, значит, система совместна. Одно ее решение можно найти, положив параметрические неизвестные равными нулю: y=z=0 . Мы получим x=-D/A . Так как n=3 , r=1 , фундаментальная матрица имеет два столбца. Мы найдем их, придав параметрическим неизвестным два набора значений: y=1 , z=0 и y=0 , z=1 . Соответствующие значения базисной неизвестной x , найденные из приведенной системы, будут -B/A и -C/A . Итак, общее решение системы (12) \tag <13>\begin x\\ y\\ z \end=\begin -D/A\\ 0\\ 0 \end+c_ <1>\begin -B/A\\ 1\\ 0 \end+c_ <2>\begin -C/A\\ 0\\ 1 \end.

Выясним геометрический смысл полученного решения. Очевидно, прежде всего, что решение \begin -D/A& 0& 0 \end^состоит из координат некоторой (начальной) точки плоскости, или, что то же, из компонент ее радиус-вектора. В формуле (10) решение x_0 можно выбирать произвольно. Это соответствует произволу выбора начальной точки плоскости. Мы уже знаем, что компоненты лежащих в плоскости векторов удовлетворяют уравнению A\alpha_<1>+B\alpha_<2>+C\alpha_<3>=0 , то есть приведенной системе. Два линейно независимых решения этой системы (фундаментальная система решений) могут быть приняты за направляющие векторы плоскости. Таким образом, формула (13) — не что иное, как параметрические уравнения плоскости.


источники:

http://mathhelpplanet.com/static.php?p=struktura-obshchego-resheniya-sistemy-uravnenii

http://univerlib.com/analytic_geometry/matrices_and_systems_of_linear_equations/common_theory_of_linear_equations_systems/