Теорема о неявной функции заданной одним уравнением доказательство

Неявные функции

Неявные функции, определяемые одним уравнением.

Пусть функция \(F(x,y)\) определена в \(R^2\). Рассмотрим уравнение
$$
F(x,y)=0.\label
$$

Множество \(G_F\) точек плоскости, координаты которых удовлетворяют уравнению \eqref, было названо графиком уравнения. Через \(A_F\) будем обозначать проекцию графика \(G_F\) на ось \(x\). Будем рассматривать такие уравнения \eqref, графики которых не есть пустые множества.

Так, график уравнения \(x^2 + y^2 — 1 = 0\) есть окружность, график уравнения \((x-1)(x+y-1)=0\) есть пара прямых \(x = 1\) и \(x+y-1=0\) (рис. 28.1).

Рис. 28.1

Если график \(G_F\) уравнения \eqref взаимно однозначно проектируется на \(A_F\), то существует единственная функция \(f: \; A_F\rightarrow R\), график которой совпадает с графиком уравнения. Эта функция каждому \(x\in A_F\) ставит в соответствие тот единственный \(y\), для которого \(F(x,y)=0\). Говорят, что уравнение \eqref определяет \(y\) как неявную функцию \(x\).

Но, как правило, график уравнения \eqref не проектируется взаимно однозначно на \(A_F\). Тогда на \(A_F\) в общем случае определено бесконечное множество функций, графики которых совпадают с некоторым подмножеством графика \(G_F\) уравнения \eqref. Так, разбивая отрезок \([-1,1]\) точками \(x_0= -1 Рис. 28.2

Меняя местами переменные \(x\) и \(y\), можно говорить о том, что уравнение \eqref определяет в некотором прямоугольнике переменную \(x\) как неявную функцию переменной \(y\).

Докажем теорему, дающую достаточные условия существования, непрерывности и дифференцируемости неявной функции, определяемой уравнением \eqref в некотором прямоугольнике.

  1. функция \(F(x,y)\) имеет в окрестности точки \((x_0,y_0)\) непрерывные частные производные \(F_x(x,y)\) и \(F_y(x,y)\);
  2. \(F(x_0,y_0)=0\);
  3. \(F_y(x_0,y_0)\neq 0\).

Тогда существует прямоугольник
$$
K = \<(x,y): \; x_0-a\leq x\leq x_0+a, \; y_0-b\leq y\leq y_0+b\>,\nonumber
$$
в котором уравнение \(F(x,y) = 0\) определяет \(y\) как неявную функцию \(x\). Функция \(y=f(x)\) непрерывно дифференцируема на интервале \((x_0-a,x_0+a)\) и
$$
f'(x)=-\frac.\label
$$

\(\circ\) Разобьем доказательство на два пункта.

Доказательство существования неявной функции. Из условия \(F_y(x_0,y_0)\neq 0\) следует, что либо \(F_y(x_0,y_0) > 0\), либо \(F_y(x_0,y_0) 0.\label
$$
Если \(F_y(x_0,y_0) 0\).

Так как функция \(F_y(x,y)\) в точке \((x_0,y_0)\) непрерывна и в силу условия \eqref принимает в этой точке положительное значение, то найдется такой прямоугольник (рис. 28.3)
$$
K_1=\<(x,y): \; |x-x_0|\leq a_1, \; |y-y_0|\leq b\>,\nonumber
$$
в котором функция \(F_y(x,y) > 0\).

Рис. 28.3

Рассмотрим функцию одной переменной
$$
\psi (y)=F(x_0,y),\quad y_0-b\leq y\leq y_0+b.\nonumber
$$
Функция \(\psi (y)\) строго возрастает на отрезке \([y_0-b,y_0+b]\), так как
$$
\psi'(y)=F_y(x_0,y) > 0.\nonumber
$$
Кроме того, в силу условия \(F(x_0,y_0)=0\)
$$
\psi (y_0) = F(x_0,y_0) = 0.\nonumber
$$
Поэтому
$$
\psi (y_0-b)= F(x_0,y_0-b) 0.\label
$$
Неравенства \eqref в силу непрерывности функции \(F(x,y)\) должны сохраняться в некоторых окрестностях точек \((x_0,y_0-b)\) и \((x_0,y_0+b)\). Поэтому существует такое \(a\in (0,a_1)\), что для всех \(x\in [x_0-a,x_0+a]\) выполнены неравенства
$$
F(x,y_0-b) 0.\label
$$
Покажем, что в прямоугольнике
$$
K=\<(x,y): \; |x-x_0|\leq a, \; |y-y_0|\leq b\>,\nonumber
$$
уравнение \(F(x,y) = 0\) определяет \(y\) как неявную функцию \(x\).

Возьмем любую точку \(x^*\in [x_0-a,x_0+a]\) и рассмотрим непрерывную на отрезке \([y_0-b,y_0+b]\) функцию одной переменной \(\varphi (y)=F(x^*,y)\). В силу условия \eqref эта функция принимает на концах отрезка значения разных знаков:
$$
\varphi(y_0-b)= F(x^*,y_0-b) 0.\nonumber
$$
По теореме Коши о промежуточных значениях найдется такая точка \(y^*\in [y_0-b,y_0+b]\), что
$$
\varphi(y^*) = F(x^*,y^*)=0.\nonumber
$$

Так как \(\varphi'(y) = F_y(x^*,y) > 0\), то функция \(\varphi(y)\) строго возрастает на отрезке \([y_0-b,y_0+b]\) и не может обратиться на этом отрезке в нуль более одного раза.

Таким образом, для любого \(x\in [x_0-a,x_0+a]\) найдется единственный \(y\in [y_0-b,y_0+b]\) такой, что \(F(x,y) = 0\). Это означает, что в прямоугольнике \(K\) уравнение \(F(x,y) = 0\) определяет \(y\) как неявную функцию \(x\).

Доказательство непрерывной дифференцируемости неявной функции. Непрерывная на замкнутом прямоугольнике \(K\) функция \(F_y(x,y)\) по теореме Вейерштрасса принимает на этом прямоугольнике свое наименьшее значение \(\alpha\). Так как \(F_y(x,y) > 0\) на \(K\), то
$$
F_y(x,y)\geq a > 0,\qquad (x,y)\in K.\label
$$

Непрерывная на \(K\) функция \(F_x(x,y)\) ограничена на \(K\). Поэтому
$$
|F_x(x,y)| Замечание 1.

Если известно, что уравнение \(F(x,y)=0\) определяет в прямоугольнике \(a\leq x\leq b, \; c\leq y\leq d\) переменную \(y\) как неявную функцию \(x\), то связь между \(dy\) и \(dx\) можно установить, формально дифференцируя тождество \(F(x,y(x)) = 0\). Воспользовавшись инвариантностью формы дифференциала, получаем
$$
F_x(x,y)dx + F_y(x,y)dy = 0.\nonumber
$$
Дифференцируя последнее тождество еще раз, можем найти второй дифференциал \(d^2y\)
$$
F_ dx^2 + 2F_ dx dy + F_ dy^2 + F_y d^2y = 0.\nonumber
$$

Неявные функции, определяемые системой уравнений.

Рассмотрим систему \(m\) уравнений с \(n+m\) неизвестными
$$
\left\<\beginF_1(x_1,\ldots,x_n,x_,\ldots,x_)=0,\\…..\\F_m(x_1,\ldots,x_n,x_,\ldots,x_)=0\end\right.\label
$$

При формулировке общей теоремы о неявных функциях удобно пользоваться понятием декартова произведения множеств. Если \(A\) и \(B\) — произвольные множества, то их декартово произведение \(A\times B\) есть множество пар \((x,y)\), где \(x\in A\), \(y\in B\). Так, декартово произведение \([a,b]\times [c,d]\) есть множество пар вещественных чисел таких, что \(a\leq x\leq b,\) и \(c\leq y\leq d\), то есть прямоугольник в \(R^2\).

Клеточной окрестностью точки \(x^0 =(x_1^0,\ldots,x_n^0)\) будем называть следующее множество:
$$
K(x^0)=\\>,\nonumber
$$
где \(\varepsilon_i, \; i =\overline<1,n>\) — положительные числа, \(x = (x_1,…,x_n)\).

Легко видеть, что в том случае, когда \(K_1(x^0)\subset R^n\) и \(K_2(y^0)\subset R^m\) — клеточные окрестности, их декартово произведение \(K_1(x^0)\times K_2(y^0)\) есть клеточная окрестность точки \((x^0,y^0)=(x_1^0,…,x_n^0,y_1^0,…,y_m^0\) в пространстве \(R^\).

Для дальнейшего удобно преобразовать переменные, полагая \(x=(x_1,…,x_n), \; y=(y_1,…,y_m)\), где \(y_1=x_,…,y_m=x_\).

Тогда систему уравнений \eqref можно записать в более кратком виде:
$$
F_i(x,y) = 0, \; i=\overline<1,m>.\label
$$

Функции \(F_i(x,y) = 0\) будем считать определенными в некоторой клеточной окрестности точки \((x^0,y^0)\).

Пусть \(K(x^0)\subset R^n\) и \(Q(y_0)\subset R^m\) есть клеточные окрестности. Будем говорить, что система уравнений \(F_i(x,y)=0, \; i=\overline<1,m>\), определяет в \(K(x^0)\times Q(y_0)\) переменные \(y_1,…,y_m\) как неявные функции переменных \(x_1,…,x_n\), если для любого \(x\in K(x^0)\) найдется единственный \(y\in Q(y^0)\) такой, что \(F_i(x,y) = 0, \; i=\overline<1,m>\).

Пусть выполнены следующие условия:

Тогда найдутся клеточные окрестности \(K(x^0) \subset R^n\) и \(Q(y^0) \subset R^m\) такие, что в \(K(x^0)\times Q(y^0)\) система уравнений \eqref определяет переменные \(y_1,…,y_m\) как неявные функции переменных \(x_1,…,x_n\). Неявные функции \(y_j =\varphi_j(x)\) непрерывно дифференцируемы в \(K(x^0)\) и \(y_j^0=\varphi_j(x^0), \; j=\overline<1,m>\).

\(\circ\) Воспользуемся методом индукции по числу уравнений \(m\). При \(m=1\) доказательство теоремы 2 не отличается от доказательства теоремы 1 (в дальнейшем будем ссылаться на этот частный случай теоремы 2 как на теорему 1).

Предположим, что утверждение теоремы верно в том случае, когда система \eqref содержит \(m-1\) уравнение. Докажем, что тогда теорема верна и для системы \eqref из \(m\) уравнений.

Так как определитель \eqref отличен от нуля, то, раскладывая его по элементам последней строки, получаем, что хотя бы один из соответствующих миноров \(m-1\)-го порядка отличен от нуля. Пусть, например
$$
<\begin\displaystyle\frac<\partial F_1><\partial y_1>&…&\displaystyle\frac<\partial F_1><\partial y_>\\…&…&…\\\displaystyle\frac<\partial F_><\partial y_1>&…&\displaystyle\frac<\partial F_><\partial y_>\end>_<(x^0,y^0)>\neq0\nonumber
$$
(Здесь и в дальнейшем символ \(0\) означает, что значение соответствующей функции берется для аргументов с верхним индексом \(0\)).

Тогда в силу индукции найдутся такие клеточные окрестности
$$
\beginK_1=\displaystyle\left\<(x,y_m): \; \vert x_i-x_i^0\vert\leq\varepsilon_i’, \; i=\overline<1,n>, \; \vert y_m-y_m^0\vert Замечание 2.

Существует несколько способов доказательства теоремы о неявных функциях. Предложенный способ является, по-видимому, наиболее простым, но обладает двумя недостатками: не дает алгоритма для вычисления неявной функции и не обобщается на бесконечномерный случай.

Локальная обратимость регулярного отображения.

Пусть на множестве \(E\subset R^n\) заданы \(n\) функций
$$
f_1(x),…,f_n(x).\nonumber
$$

Они задают отображение \(f: \; E\rightarrow R^n\), которое каждой точке \(x\in E\) ставит в соответствие точку \(y=f(x)\), где
$$
y_1=f_1(x),\quad,…,\quad y_n=f_n(x).\nonumber
$$

Точка \(y=f(x)\) называется образом точки \(x\) при отображении \(f\). Точка \(x\) называется прообразом точки \(y\).

Если \(\Omega\subset E\), то множество
$$
f(\Omega)=\\nonumber
$$
называется образом множества \(\Omega\) при отображении \(f\). Если \(\omega\subset f(E)\), то множество
$$
f^<-1>(\omega)=\\nonumber
$$
называется прообразом множества \(\omega\).

Пусть \(G \subset R^n\) есть открытое множество. Отображение \(f: \; G\rightarrow R^n\) называется непрерывным в точке \(x^0\), если \(\forall \varepsilon > 0 \; \exists\delta > 0\) такое, что \(\forall x\) таких, что \(\rho(x,x^0) Лемма 1.

Если \(G\) есть открытое множество, а \(f: \; G\rightarrow R^n\) — непрерывное отображение, то прообраз каждого открытого множества \(\omega\in f(G)\) есть открытое множество.

\(\circ\) Пусть \(\Omega= f^<-1>(\omega)\). Возьмем любую точку \(x^0\in\Omega\). Тогда \(f(x^0)=y^0\in \omega\). Так как множество \(\omega\) открыто, то найдется окрестность \(S_<\varepsilon>(y^0)\in \omega\). В силу непрерывности отображения \(f\) в точке \(x^0\) найдется шаровая окрестность \(S_<\delta>(x^0)\), для которой выполнено условие \eqref.

Следовательно,
$$
S_<\delta>(x^0)\subset f^<-1>(\omega)\subset\Omega,\nonumber
$$
и \(\Omega\) — открытое множество. \(\bullet\)

Как обычно, под окрестностью \(A(x^0)\) точки \(x^0\) будем понимать любое множество \(A\), для которого точка \(x^0\) внутренняя.

Пусть \(G \subset R^n\) — открытое множество. Отображение \(f: \; G\rightarrow R^n\) будем называть непрерывно дифференцируемым, если функции \(f_1(x),…,f_n(x)\), задающие это отображение, непрерывно дифференцируемы в \(G\). Непрерывно дифференцируемое отображение \(f: \; G\rightarrow R^n\) будем называть регулярным, если в области \(G\) якобиан отображения \(j_f(x)\neq 0\). Якобианом отображения \(j_f(x)\) называется следующий функциональный определитель:
$$
j_f(x)=\begin\frac<\partial f_1(x)><\partial x_1>&…&\frac<\partial f_1(x)><\partial x_n>\\…&…&…\\\frac<\partial f_n(x)><\partial x_1>&…&\frac<\partial f_n(x)><\partial x_n>\end.\nonumber
$$

Пусть \(G\) — открытое множество в \(R^n\), а отображение \(f: \; G\rightarrow R^n\) регулярно. Тогда в каждой точке \(x^0\in G\) оно локально регулярно обратимо, то есть \(\forall x^0\in G\) найдутся такие окрестности \(A(x^0) \subset G\) и \(B(y^0)\subset f(G)\), где \(y^0= f(x^0)\), что отображение \(f: \; A(x^0)\rightarrow B(y^0)\) будет взаимно однозначным, причем обратное отображение \(f^<-1>: \; B(y^0)\rightarrow A(x^0)\) регулярно.

\(\circ\) Рассмотрим в \(G\times R^n\) систему уравнений
$$
F_i(x,y)\equiv y_i-f_i(x)=0,\quad i=\overline<1,n>.\label
$$

Пусть \(x^0\) — произвольная точка множества G и \(y^0=f(x^0)\). Тогда функции \(F_i(x,y)\) непрерывно дифференцируемы в \(G\times R^n\) и \(y_i^0= f_i(x^0), \; i=\overline<1,n>\). Так как отображение \(f\) регулярно, то
$$
<\begin\frac<\partial F_1><\partial x_1>&…&\frac<\partial F_1><\partial x_n>\\…&…&…\\\frac<\partial F_n><\partial x_1>&…&\frac<\partial F_n><\partial x_n>\end>_<(x^0,y^0)>=(-1)^nj_f(x^0)\neq0.\nonumber
$$
Для системы уравнений \eqref выполнены все условия теоремы 2 о неявных функциях. Поэтому найдутся такие клеточные окрестности
$$
\beginK(x^0)=\left\\right\>,\quad K(x^0)\subset G,\\Q(y^0)=\left\\right\>,\quad Q(y^0)\subset f(G),\end\nonumber
$$
что в \(K(x^0)\times Q(y^0)\) система уравнений \eqref определяет переменные \(x_1,…,x_n\) как неявные непрерывно дифференцируемые функции переменных \(y_1,…,y_n\):
$$
\beginx_1=\varphi_1(y),\quad …,\quad x_n=\varphi_n(y),\\x\in K(x^0),\quad y\in Q(y^0),\quad x_i^0=\varphi_i(y^0),\quad i=\overline<1,n>.\end\label
$$
Пусть \(B(y^0)\) есть внутренность \(Q(y^0)\):
$$
B(y^0) = \left\

Если \(f: \; G\rightarrow R^n\) есть регулярное отображение, то образ любого открытого множества \(\Omega\subset G\) есть открытое множество.

\(\circ\) Пусть \(\omega=f(\Omega)\). Возьмем произвольную точку \(y^0\in\omega\) и пусть \(x^0\) есть какой-то ее прообраз. Тогда, вследствие теоремы 3, найдутся такие окрестности \(A(x^0) \subset \Omega\) и \(B(y^0) \subset \omega\); что отображение \(f: \; A(x^0)\rightarrow B(y^0)\) регулярно обратимо. Поэтому каждая точка \(y^0\in\omega\) принадлежит \(\omega\) вместе с некоторой окрестностью \(B(y^0)\). Множество \(\omega=f(\Omega)\) открыто. \(\bullet\)

Теория неявных функций и ее приложения

ТЕОРИЯ НЕЯВНЫХ ФУНКЦИЙ И ЕЕ ПРИЛОЖЕНИЯ

§ 1. Понятие неявной функции

В математике и в ее приложениях приходится сталкиваться с такими задачами, когда переменная u, являющаяся по смыслу задачи функцией аргументов х, у, . , задается посредством функционального уравнения

В этом случае говорят, что u как функция аргументов х, у, . задана неявно. Так, например, функция u = — , рассматриваемая в круге x2 + y2 ≤ 1, может быть неявно задана посредством функционального уравнения

Естественно, возникает вопрос, при каких условиях функциональное уравнение (1) однозначно разрешимо относительно u, т.е. однозначно определяет явную функцию u = φ( х, у, . ) и более тонкий вопрос, при каких условиях эта явная функция является непрерывной и дифференцируемой. Эти вопросы не являются простыми. Так функцио­нальное уравнение (2), вообще говоря, определяет в круге x2 + y2 ≤ 1, кроме указанной выше явной функции u = — , бесконечно много других функций. Таковыми являются функция u = + , а также любая функция u, равная + для некоторых точек (х, у) из круга x2 + y2 ≤ 1 и равная для остальных точек этого круга. Для выяснения вопроса об условиях, обеспечивающих однозначную разрешимость уравнения (2) относительно u, обратимся к геометрической иллюстрации. Уравнение (2) определяет в пространстве (u, х, у) сферу S радиуса 1 с центром в начале координат (рис.1). Возьмем на сфере S точку M0(u0, х0, у0), не лежащую в плоскости Оху, т.е. такую, для которой u0 0. Очевидно, часть сферы S, лежащая в достаточно малой окрестности точки M0, однозначно проектируется на плоскость Оху. Аналитически это означает, что если рассматривать функцию F(u, х, у) = u2 + x2 + y2 – 1 только в указанной окрестности точки M0, то уравнение (2) однозначно разрешимо относительно u и определяет единственную явную функцию u = + при u0>0 и u = — при u0 0 в окрестности точки M0’(х0, у0) существует единственная функция u = φ(х, у), которая удовлетворяет условию | u u0 | 0

Далее рассмотрим функции F(u — ε, х, у) и F(u + ε, х, у) двух пере­менных х и у, т. е., выражаясь геометрическим языком, рассмотрим функцию F(u, х, у) на двух плоскостях, параллельных координатной плоскости Оху, первая из которых проходит через точку M1 а вто­рая — через точку M2. Поскольку F(M1) 0 и функция F(u, х, у) непрерывна всюду в шаре Ω, то по теореме об устой­чивости знака непрерывной функции на указанных плоскостях най­дутся такие окрестности точек M1 и M2, в пределах которых функция F сохраняет те же знаки, что и в точках M1 и M2. Эти окрестности мы можем взять в виде открытых квадратов с центрами в точках M1 и M2 и с достаточно малой стороной 2δ (на рис. 2 указанные квадраты заштрихованы). Аналитически тот факт, что функ­ция F(u, х, у) сохраняет постоянный знак на указанных квадратах, выражается неравенствами

Выбор стороны указанных квадратов мы подчиним и еще одному условию: возьмем δ столь малым, чтобы оба указанных квадрата лежали внутри шара Ω (это заведомо можно сделать, ибо центры квадратов M1 и M2 являются внутренними точками шара Ω). При таком выборе δ любая точка пространства (u, х, у), координаты ко­торой удовлетворяют неравенствам

| x – x0 | 0 вытекает, что внутри сег­мента u0 – ε ≤ u u0 + ε найдется одно единственное значение u такое, что F(u, х, у) = 0 (или, выражаясь геометрически, внутри отрез­ка M1M2 найдется единственная точка М, лежащая на поверхности S).


источники:

http://www.on-lan.ru/matematika/teoriya_neyavnyx_funkcij_i_ee.php