Теорема виета для кубических уравнений с параметром

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x iКоэффициенты многочлена
2— 11129
— 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

«Формулы Виета как один из способов решения кубических уравнений » (стр. 6 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6

из (1): ; (7)

из (6) и (7) получим: ,

,

.

Если подставить найденные корни в (2) , то получится условие, которому должны удовлетворять коэффициенты для того, чтобы кубическое уравнение имело корни, представляющие арифметическую прогрессию:

.

Обратно, если имеется указанная связь между коэффициентами кубического уравнения, то его корни будут членами геометрической прогрессии.

Ответ: а) ; б) .

Решение кубических уравнений и некоторые выводы о рациональности способов решения.

Пример 1.

Рассмотрим два способа решения:

Вывод: Теорема Виета позволяет рациональнее решить это уравнение.

П р и м е р 2 . Решить уравнение: x 3 – 3x 2 – 13x + 15 = 0 .

1 способ. Ищем первый корень перебором чисел: 0, 1, 2, 3

и подстановкой в уравнение. В результате находим, что 1 является корнем. Тогда делим левую часть этого уравнения на двучлен x – 1, и получаем:

Теперь, решая квадратное уравнение: x 2 – 2x – 15 = 0, находим оставшиеся два корня: x1 = 3 и x2 = 5 . Ответ : 1; -3; 5.

Вывод: Теорема Виета позволяет рациональнее решить это уравнение.

Формулы Виета и кубические уравнения с параметром.

Пример 3. Определить все значения параметра a, при каждом из которых три различных корня уравнения
x3 + (a2 – 9 a) x 2 + 8ax – 64 = 0 образуют геометрическую прогрессию. Найти эти корни.

Шаг 1: Составление соотношений Виета.

Обозначим символами x1, x2 и x3 три различных корня уравнения и выпишем соотношения Виета для кубического уравнения:

Шаг 2: Использование характеристического свойства геометрической прогрессии.

Из характеристического свойства геометрической прогрессии вытекает, что (x2)2 = x1x3, и тогда последнее из соотношений Виета дает: (x2)3 = 64, то есть

x2 = 4. Подставляя полученный корень в исходное уравнение, найдем все возможные значения a:
43 + 16(a2 – 9 a) + 32a – 64 = 0a(a – 7) = 0.

Осталось проверить найденные a (все остальные значения a заведомо не удовлетворяют условию): 1) При a = 0 уравнение принимает вид x3 = 64 и не имеет трех различных корней.

2) При a = 7 уравнение принимает вид x3 – 14 x 2 + 56x – 64 = 0(x – 4)( x 2 –10x + 16) = 0
(x – 4)(x – 2)(x – 8) = 0 (эти разложения на множители получены делением исходного кубического четырехчлена x3 – 14 x 2 + 56x – 64 на двучлен (x – 4) и разложением частного от деления (x 2 – 10x + 16) на линейные множители). Три его различных корня x1 = 2, x2 = 4 и x3 = 8 образуют геометрическую прогрессию.

Пример 4. Найти все значения параметров a и b, при которых найдутся два различных корня уравнения
x3 – 5 x 2 + 7x = a, которые будут также корнями уравнения x3 – 8x + b = 0.

Шаг 1: Составление соотношений Виета.

Обозначим символами x1, x2 и u корни первого уравнения и символами x1, x2 и v корни второго уравнения. Существование третьего корня u для первого уравнения и третьего корня v для второго уравнения доказывается делением соответственно многочлена x3 – 5 x 2 + 7xa и многочлена
x3 – 8x + b на квадратный трехчлен (xx1)(xx2).
Выпишем формулы Виета для корней первого и второго уравнений:

Шаг 2: Составление квадратного уравнения на общие корни и его решение. Вычтем из второго уравнения первое, получим:
.
Числа x1, x2 также являются корнями последнего уравнения, поскольку их подстановка в исходные уравнения приводит к верным числовым равенствам, а тогда верным будет и разность этих числовых равенств. По теореме Виета для квадратного уравнения имеем:

Сопоставляя эти соотношения с соотношениями Виета для кубических уравнений получим: u = 2, v = –3. Подставляя x1 + x2 = 3 и u = 2 в полученное на первом шаге соотношение x1x2 + (x1 + x2)u = 7, получим, что x1x2 = 1. Теперь находим значения параметров из соотношений Виета для кубических уравнений: a = x1x2u = 2, b = –x1x2v = 3, а для корней x1, x2 получаем систему уравнений:

Решив эту систему, получим

и .

При подстановке a = 2, b = 3 заданные уравнения принимают вид:

x3 – 5 x 2 + 7x = 2 и x3 – 8x + 3 = 0. Вспоминая шаг 2, можно предположить, что общими корнями этих уравнений являются числа

и .

Их подстановка в уравнения подтверждает предположение.

Материал, представленный в работе, расширяет кругозор учащихся, пополняет теоретические знания и практические навыки по решению уравнений высших степеней.

В процессе работы над темой «Формулы Виета как один из способов решения кубических уравнений » я

Изучила литературу по данному вопросу; Познакомилась с понятиями кубический и квадратный трехчлен; Исследовала решения кубических уравнений; Изучила историю поиска корней кубического и квадратного уравнения; Исследовала теорему Виета на применение для решения уравнений высших степеней.

и пришла к выводу:

Остаётся ещё много интересных и важных задач, имеющих не только теоретическое, но и сугубо практическое значение. В перспективе я хочу исследовать на применение теоремы Виета в других уравнениях с высшими степенями и изучить историю их открытия.

1. черки по истории математики. – М.: Мир, 1963.

2. стория математики от Декарта до середины XIX столетия. – М.: Наука, 1966.

3. Гариг Тарталья и Кардано о кубических уравнениях и его общественные основы. – М.: Архив истории науки и техники, 1935.

4. Гордиенко алгебры в Европе в XV–XIX столетиях. Учебное пособие для студентов дневного отделения физико-математического факультета / – Воронежский госпедуниверситет, 2007.

5. История математики с древнейших времен до начала XIX столетия / Под ред. и . Т.1. – М.: Наука, 1970.

6. стория математики в древности. – М.: Наука, 1961.

7. Из истории алгебры XVI – XVII веков. – М.: Наука, 1979.

8. Пачоли Лука. Трактат о счетах и записях. – М.: Финансы и статистика, 1983.

9. Попов задачи. М.: Наука, 1968.

10. Пресман квадратного уравнения с помощью циркуля и линейки. — М., Квант, № 4/72. С. 34.

11. Родионов по математике для поступающих в вузы: Решение задач с параметрами. – М.: МЦ «Аспект», 1992.

12. Рыбников математики. – М.: Изд-во МГУ, 1960.

13. Табачников : Методические разработки для учащихся ОЛ «ВЗМШ» Российской академии образования при МГУ. – М.: Фазис, 1996.

14. Чистяков о математиках. – Минск: Выш. шк., 1963.

15. Чистяков задачи по элементарной математике. – Минск: Выш. шк., 1978.

Исследовательская работа по теме «Теорема Виета»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Городская научно – практическая конференция

«Математика вокруг нас»

Гордеева Ирина Сергеевна

МБОУ «средняя общеобразовательная школа № 26»

Кадочикова Юлия Николаевна

учитель математики, 1 категории

МБОУ «средняя общеобразовательная школа № 26»

Биография Франсуа Виета 5

Теорема Виета для квадратных уравнений 7

Теорема Виета для кубических уравнений 10

Применение теоремы Виета для решения уравнений с параметрами 12

По праву достойна в стихах быть воспета

О свойствах корней теорема Виета.

Что лучше, скажи, постоянства такого:

Умножишь ты корни – и дробь уж готова:

В числителе c, в знаменателе a

А сумма корней тоже дроби равна.

Хоть с минусом дробь эта, что за беда –

В числителе b, в знаменателе a.

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее число задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).

Квадратные уравнения изучаются в 8-м классе, где школьники тренируются на простых (иногда — примитивных) задачах. Но затем, на рубеже 10—11 классов и, особенно при изучении высшей математики, квадратные уравнения представляются как нечто само собой разумеющееся. При этом в коэффициентах зачастую возникают такие большие числа, что работать с ними большинство учеников просто не готовы.

Например, попробуйте решить уравнение: x 2 + 27x − 3240 = 0. Корни у него будут вполне нормальными, вот только дискриминант равен

D = 27 2 − 4·1·(−3240) = 13689.

Ну и какое число надо возвести в квадрат, чтобы получить 13689? С помощью калькулятора все просто: 13689 = 117 2 . Но как догадаться об этом на экзамене или контрольной работе?

Теорема Виета помогает решать даже такие уравнения. Без всяких корней из пятизначных чисел — схема работы остается прежней. В результате экономится фантастически много времени, ведь многие километровые уравнения оказываются почти устными!

Рассмотреть теорему Виета для квадратных и кубических уравнений.

доказать теорему Виета для квадратных уравнений, рассмотреть её применение на примерах;

доказать теорему Виета для кубических уравнений, рассмотреть её применение на примерах;

рассмотреть применение теоремы Виета для уравнений, содержащих параметр.

Объект исследования — элементарная алгебра Предмет исследования применение теоремы Виета при решении уравнений. Выбор этой темы основывался на том, что уравнения есть как в программе начальной, так и в каждом последующем классе общеобразовательных школ, лицеев, колледжей. Многие геометрические задачи, задачи по физике, химии и биологии решаются с помощью уравнений. Уравнения решали двадцать пять веков назад. Они создаются и сегодня – как для использования в учебном процессе, так и для конкурсных экзаменов в вузы, для олимпиад самого высокого уровня.

Биография Франсуа Виета.

Франсуа Виет — замечательный французский математик, положивший начало алгебре как науке о преобразовании выражений, о решении уравнений в общем виде, создатель буквенного исчисления.

Виет первым стал обозначать буквами не только неизвестные, но и данные величины. Тем самым ему удалось внедрить в науку великую мысль о возможности выполнять алгебраические преобразования над символами, т. е. ввести понятие математической формулы. Этим он внес решающий вклад в создание буквенной алгебры, чем завершил развитие математики эпохи Возрождения и подготовил почву для появления результатов Ферма, Декарта, Ньютона.

Франсуа Виет родился в 1540 году на юге Франции в небольшом городке Фантене-ле-Конт. Отец Виета был прокурором. По традиции сын выбрал профессию отца и стал юристом, окончив университет в Пуату.

В 1671 году Виет перешел на государственную службу, став советником парламента, а затем советником короля Франции Генриха III.

Находясь на государственной службе, Виет оставался ученым. Он прославился тем, что сумел расшифровать код перехваченной переписки короля Испании с его представителями в Нидерландах, благодаря чему король Франции был полностью в курсе действий своих противников. Код был сложным, содержал до 600 различных знаков, которые периодически менялись. Испанцы не могли поверить, что его расшифровали, и обвинили французского короля в связях с нечистой силой.

К этому времени относятся свидетельства современников Виета о его огромной трудоспособности. Будучи чем-то увлечен, ученый мог работать по трое суток без сна.

В 1584 году по настоянию Гизов Виета отстранили от должности и выслали из Парижа. Именно на этот период приходится пик его творчества. Обретя неожиданный покой и отдых, ученый поставил своей целью создание всеобъемлющей математики, позволяющей решать любые задачи. У него сложилось убеждение в том, «что должна существовать общая, неизвестная еще наука, обнимающая и остроумные измышления новейших алгебраистов, и глубокие геометрические изыскания древних».

Виет изложил программу своих исследований и перечислил трактаты, объединенные общим замыслом и написанные на математическом языке новой буквенной алгебры, в изданном в 1591 году знаменитом «Введение в аналитическое искусство». Однако главный замысел ученого замечательно удался: началось преобразование алгебры в мощное математическое исчисление. Само название «алгебра» Виет в своих трудах заменил словами «аналитическое искусство.

Основу своего подхода Виет называл видовой логистикой. Следуя примеру древних, он четко разграничивал числа, величины и отношения, собрав их в некую систему «видов». В эту систему входили, например, переменные, их корни, квадраты, кубы, квадрато — квадраты и т. д., а также множество скаляров, которым соответствовали реальные размеры — длина, площадь или объем. Для этих видов Виет дал специальную символику, обозначив их прописными буквами латинского алфавита. Для неизвестных величин применялись гласные буквы, для переменных — согласные.

Виет показал, что, оперируя с символами, можно получить результат, который применим к любым соответствующим величинам, т. е. решить задачу в общем виде. Это положило начало коренному перелому в развитии алгебры: стало возможным буквенное исчисление.

Демонстрируя силу своего метода, ученый привел в своих работах запас формул, которые могли быть использованы для решения конкретных задач. Из знаков действий он использовал «+» и «-», знак радикала и горизонтальную черту для деления. Произведение обозначал словом «in». Виет первым стал применять скобки, которые, правда, у него имели вид не скобок, а черты над многочленом. Но многие знаки, введенные до него, он не использовал. Так квадрат, куб и т. д. обозначал словами или первыми буквами слов.

Знаменитая теорема, устанавливающая связь коэффициентов многочлена с его корнями, была обнародована в 1591 году. Теперь она носит имя Виета, а сам автор формулировал ее так: «Если В + D, умноженное на А, минус А в квадрате равно ВD, то А равно В и равно D».

Теорема Виета стала ныне самым знаменитым утверждением школьной алгебры. Теорема Виета достойна восхищения, тем более что ее можно обобщить на многочлены любой степени.

Глубокое знание алгебры давало Виету большие преимущества. Причем интерес его к алгебре первоначально был вызван приложениями к тригонометрии и астрономии. Не только каждое новое применение алгебры давало импульс новым исследованиям по тригонометрии, но и полученные тригонометрические результаты являлись источником важных успехов алгебры. Виету, в частности, принадлежит вывод выражений для синусов (или хорд) и косинусов кратных дуг.

В последние годы жизни Виет ушел с государственной службы, но продолжал интересоваться наукой. Известно, например, что он вступил в полемику по поводу введения нового, григорианского календаря в Европе. И даже хотел создать свой календарь.

Теорема Виета для квадратных уравнений.

Квадратным уравнением называется уравнение вида ax 2 + bx + c =0, где х – переменная, а, b, c – некоторые числа, причем, а ≠ 0. Числа а, b, c – коэффициенты квадратного уравнения. Число а называют первым коэффициентом, b называют вторым коэффициентом, с – свободным членом.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Рассмотрим квадратное уравнение вида ax 2 + bx + c =0, где а ≠ 0. Приведём его к приведённому квадратному уравнении, путём деления на первый коэффициент а:

ax 2 + bx + c = 0 | : а;

x 2 + x + = 0.

Введём обозначения: = p, = q . Тогда уравнение примет вид x 2 +px +q=0. Найдём дискриминант данного уравнения по формуле D = b 2 – 4 ac , т.е. D = p 2 – 4 q .

Если D ≥ 0, то уравнение имеет два действительных корня, которые вычисляются по формуле x 1,2 = . Подставим в формулу и получим:

x 1,2 = . Найдём корни уравнения:

x 1 =

x 2 = .

Найдём сумму и произведение корней:

x 1 + x 2 = + = = – p ;

x 1 ∙ x 2 = = = = = = q .

Итак, теорема доказана.

Вернёмся к нашим обозначениям = p, = q и получим, что если имеем полное квадратное уравнение, то x 1 + x 2 = – ; x 1 ∙ x 2 = .

Рассмотрим примеры применения теоремы.

Один из корней уравнения 5х 2 – 12х + с = 0 в три раза больше за второй. Найдите с.

Решение

Пусть второй корень равен х 2 . Тогда первый корень х 1 = 3х 2 . Согласно теореме Виета сумма корней равна х 1 + х 2 = = 2,4. Составим уравнение

Тогда, х 1 + х 2 = 2,4;

х 1 + 0,6 = 2, 4;

х1 = 1,8.

Найдём коэффициент с используя теорему Виета: x 1 ∙ x 2 = ;

1,8 ∙ 0,6 = ;

Известно, что х1 и х2 – корни уравнения х 2 – 8х + p = 0, причём 3х1 + 4х2 = 29. Найдите p.

Решение

Согласно теореме Виета х1 + х2 = 8, а по условию 3х1 + 4х2 = 29. Составим систему уравнений:

х1 + х2 = 8;

Тогда х1 = 8 – х2 = 8 – 5 = 3.

Применяя теорему Виета x 1∙ x 2 = p; р = 5 ∙ 3 = 15.

Пример 3

Не вычисляя корней уравнения 3х 2 + 8х – 1 = 0, найдите х1 4 + х2 4 .

Решение

Выпишем коэффициенты уравнения a = 3, b = 8, c = – 1. Согласно теореме Виета x 1 + x 2 = – ; x 1 ∙ x 2 = .

Подставим и получим:

x 1 + x 2 = – ;

x 1 ∙ x 2 = .

Найдём х 1 4 2 4 = (х 1 2 + х 2 2 ) 2 – 2х 1 2 х 2 2 = ((х 12 ) 2 – 2х 1 х 2 ) 2 – 2(х 1 х 2 ) 2 = ((– ) 2 – 2 ∙ (– )) 2 – 2 ∙ (– ) 2 = ( + 2 ∙ ) 2 – 2 ∙ = ( ) 2 – = = = 60 .

Ответ. х 1 4 2 4 = 60 .

Теорема Виета для кубических уравнений.

Кубическим уравнением называется уравнение вида ax 3 + bx 2 + c x + d = 0, где х – переменная, а, b, c, d – некоторые числа, причем, а ≠ 0. Числа а, b, c, d – коэффициенты кубического уравнения.

Докажем теорему Виета для кубического уравнения.

Пусть дано уравнение ax 3 + bx 2 + c x + d = 0 и x 1 , x 2 , x 3 – корни данного уравнения. Тогда левую часть уравнения можно разложить на множители:

ax 3 + bx 2 + cx + d = a ( x – x 1)( x – x 2)( x – x 3) | : a ;

x 3 + x 2 + x + = ( x – x 1 )( x – x 2 )( x – x 3 );

x 3 + x 2 + x + = ( x 2 – x 1 x – x 2 x + x 1 x 2 ) ( x – x 3 );

x 3 + x 2 + x + = x 3 – x 1 x 2 – x 2 x 2 + x 1 x 2 x – x 3 x 2 + x 1 x 3 x + x 2 x 3 x – x 1 x 2 x 3 ;

x 3 + x 2 + x + = x 3 – ( x 1 x 2 + x 2 x 2 + x 3 x 2 ) + ( x 1 x 2 x + x 1 x 3 x + x 2 x 3 x ) – x 1 x 2 x 3 ;

x 3 + x 2 + x + = x 3 – ( x 1 + x 2 + x 3 ) x 2 + ( x 1 x 2 + x 1 x 3 + x 2 x 3 ) x – x 1 x 2 x 3 .

Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняется равенство

( x 1 + x 2 + x 3 ) = ;

x 1 x 2 + x 1 x 3 + x 2 x 3 = ;

x 1 x 2 x 3 = – .

x 1 + x 2 + x 3 = – ;

x 1 x 2 + x 1 x 3 + x 2 x 3 = ;

x 1 x 2 x 3 = – .

Рассмотрим примеры применения теоремы.

Пример 4

Напишите кубическое уравнение, корни которого являются квадратами корней уравнения x 3 – 3x 2 + 7x + 5 = 0.

Обозначим корни заданного уравнения через x1, x2 и x3. Тогда по формулам Виета имеем

x1 + x2 +x3 = 3,

Корни искомого уравнения обозначим буквами y 1 , y 2 , y 3 , а его коэффициенты — буквами b 1 , b 2 , b 3 , положив коэффициент при y 3 равным 1. По условию должны выполняться равенства y 1 = , y 2 = , y 3 = и поэтому

b 1 = – ( y 1 + y 2 + y 3 ) = – ( + + ),

b 2 = y 1 y 2 + y 1 y 3 + y 2 y 3 = + + ,

b 3 = – y 1 y 2 y 3 = – .

+ + = (x 1 + x 2 +x 3 ) 2 – 2(x 1 x 2 + x 1 x 3 + x 2 x 3 ) = 9 – 2·7 = – 5,

+ + = (x 1 x 2 + x 1 x 3 + x 2 x 3 ) 2 – 2x 1 x 2 x 3 (x 1 + x 2 +x 3 )= 49 – 2·3·(– 5) = 79,

= (x 1 x 2 x 3 ) 2 = (– 5) 2 = 25.

Значит, b1 = 5, b2 = 79, b3 = – 25, и потому искомое уравнение имеет вид

y 3 + 5y 2 + 79y – 25 = 0.

Ответ: y 3 + 5y 2 + 79y – 25 = 0.

Применение теоремы Виета при решения уравнений с параметрами.

Пример 5

x² – (2a + 1) x + a² + 2 = 0, при каком значении а один корень в 2 раза больше другого.

Выпишем коэффициенты данного уравнения a = 1, b = – (2 a + 1), c = a 2 + 2. Применим теорему Виета для данного уравнения

D >0;

Пусть х1 = 2х2. Тогда система примет вид:

(2а + 1) 2 – 4(а 2 + 2) > 0;

(2а + 1) 2 – 4(а 2 + 2) > 0;

4а 2 + 4а + 1 – 4а 2 – 8 > 0;

a > ;

a > 1 .

2 = a 2 + 2.

a > 1 ;

2 = a 2 + 2;

x 2 = .

2 ∙( ) 2 = a 2 + 2;

2 ∙ = a 2 + 2;| ∙

4а 2 + 4а + 1 = a 2 + 9;

4а 2 + 4а + 1 – 4,5а 2 – 9 = 0;

– 0,5а 2 + 4а – 8 = 0; | ∙ (–2)

a 2 – 8 a + 16 = 0;

Подставим и найдём корни уравнения x 2 = ;

x 2 = = 3.

Вернёмся к системе

a > 1 ;

х1 = 6. Отсюда получаем, что а = 4.

Пример 6.

При каком значении а сумма кубов корней уравнения х 2 – х – а = 0 будет

Пусть х1 и х2 корни квадратного уравнения, тогда теореме Виета имеем

Чтобы почувствовать всю силу теоремы Виета, взгляните на приведенные в работе задачи. Для сравнения попробуйте решить их по старинке, через дискриминант. Разницу почувствуете сразу же. Мной была установлена практическая важность теоремы Виета при решении нестандартных уравнений и простейших квадратных уравнений; выявили способы «бесформульного» решения квадратных уравнений.

Мы достаточно часто сталкиваемся с уравнениями, решение которых требует длинных вычислений, а иногда и эти вычисления не приносят успеха. И как следствие, возникает вопрос: а нельзя ли для этого уравнения найти простое, рациональное, короткое и изящное решение. Необходимо помнить, что каждая математическая задача требует индивидуального подхода. Не всегда полезно следовать общим алгоритмам, отклонение от них иногда приводит к более рациональному решению.

Теорема Виета играет огромную роль при решении квадратных уравнений. И все-таки польза от формул — систем равенств, связывающих корни уравнений с их коэффициентами, есть. Есть хотя бы потому, что они содержат одну «подсказку», помогающую решать некоторые уравнения вообще без всяких формул (но уже не в уме, тут потребуется немало изобретательности и сообразительности). Полученные Виетом системы равенств, связывающие корни уравнений произвольной (не только второй!) степени с их коэффициентами, теперь называются теоремой Виета, и каждый ученик сегодня знает это имя. Какая высокая честь для ученого! Какая по-настоящему вечная память и слава! Стоит поразмышлять об этом. Исследования Виета дали совершенно новое направление работе своих современников, а алгебраические идеи его оказали сильнейшее влияние на европейскую науку, он прославился обобщением алгебры.

В.Г.Болтянского и Н.Я.Виленкина «Симметрия в алгебре».

Никифоровский В.А. Из истории алгебры XVI – XVII веков. – М.: Наука, 1979.

РодионовЕ.М. Справочник по математике для поступающих в вузы: Решение задач с параметрами. – М.: МЦ «Аспект», 1992.

Чистяков В.Д. Рассказы о математиках. – Минск: Выш. шк., 1963.


источники:

http://pandia.ru/text/80/396/1668-6.php

http://infourok.ru/issledovatelskaya-rabota-po-teme-teorema-vieta-547689.html