Теория электролитической диссоциации как решать уравнения

Электролитическая диссоциация

Электролитической диссоциацией называют процесс, в ходе которого молекулы растворенного вещества распадаются на ионы в результате взаимодействия с растворителем (воды). Диссоциация является обратимым процессом.

Диссоциация обуславливает ионную проводимость растворов электролитов. Чем больше молекул вещества распадается на ионы, тем лучше оно проводит электрический ток и является более сильным электролитом.

В общем виде процесс электролитической диссоциации можно представить так:

KA ⇄ K + (катион) + A — (анион)

Замечу, что сила кислоты определяется способностью отщеплять протон. Чем легче кислота его отщепляет, тем она сильнее.

У HF крайне затруднен процесс диссоциации из-за образования водородных связей между F (самым электроотрицательным элементом) одной молекулы и H другой молекулы.

Ступени диссоциации

Некоторые вещества диссоциируют на ионы не в одну стадию (как NaCl), а ступенчато. Это характерно для многоосновных кислот: H2SO4, H3PO4.

Посмотрите на ступенчатую диссоциацию ортофосфорной кислоты:

Важно заметить, что концентрация ионов на разных ступенях разная. На первых ступенях ионов всегда много, а до последних доходят не все молекулы. Поэтому в растворе ортофосфорной кислоты концентрация дигидрофосфат-анионов будет больше, чем фосфат-анионов.

Для серной кислоты диссоциация будет выглядеть так:

Для средних солей диссоциация чаще всего происходит в одну ступень:

Из одной молекулы ортофосфата натрия образовалось 4 иона.

Из одной молекулы сульфата калия образовалось 3 иона.

Электролиты и неэлектролиты

Химические вещества отличаются друг от друга по способности проводить электрический ток. Исходя из этой способности, вещества делятся на электролиты и неэлектролиты.

Электролиты — жидкие или твердые вещества, в которых присутствуют ионы, способные перемещаться и проводить электрический ток. Связи в их молекулах обычно ионные или ковалентные сильнополярные.

К ним относятся соли, сильные кислоты и щелочи (растворимые основания).

Степень диссоциации сильных электролитов составляет от 0,3 до 1, что означает 30-100% распад молекул, попавших в раствор, на ионы.

Неэлектролиты — вещества недиссоциирующие в растворах на ионы. В молекулах эти веществ связи ковалентные неполярные или слабополярные.

К неэлектролитам относятся многие органические вещества, слабые кислоты, нерастворимые в воде основания и гидроксид аммония.

Степень их диссоциации до 0 до 0.3, то есть в растворе неэлектролита на ионы распадается до 30% молекул. Они плохо или вообще не проводят электрический ток.

Молекулярное, полное и сокращенное ионные уравнения

Молекулярное уравнение представляет собой запись реакции с использованием молекул. Это те уравнения, к которым мы привыкли и которыми наиболее часто пользуемся. Примеры молекулярных уравнений:

Полные ионные уравнения записываются путем разложения молекул на ионы. Запомните, что нельзя раскладывать на ионы:

  • Слабые электролиты (в их числе вода)
  • Осадки
  • Газы

Сокращенное ионное уравнение записывается путем сокращения одинаковых ионов из левой и правой части. Просто, как в математике — остается только то, что сократить нельзя.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Блиц-опрос по теме Электролитическая диссоциация

Электролитическая диссоциация: решение задач

Теоретический материал приведен на страницах:

Освежим в памяти основные моменты, которые необходимы при решении задач.

Степень диссоциации (α) — отношение кол-ва молекул, которые распались на ионы (N’), к общему кол-ву растворенных молекул (N):

α = N’/N
  • α=0 — диссоциация отсутствует;
  • α=0-3% — слабые электролиты — слабые кислоты (H2SO3, H2S, H2SiO3), слабые основания;
  • α=3%-30% — средние электролиты;
  • α=30%-100% — сильные электролиты — соли, сильные кислоты (HCl, HBr, HNO3, H2SO4(разб.)), некоторые основания (LiOH, KOH, NaOH);
  • α=100% — полная диссоциация.

Степень диссоциации зависит от концентрации раствора.

Константа диссоциации электролита (K) — количественная характеристика диссоциации — отношение произведений концентрации ионов, образованных при диссоциации, к концентрации исходных частиц. Для электролита АВ, который диссоциирует по уравнению АВ↔A — +B + :

K = ([A — ][B + ]):[AB]

Константра диссоциации не зависит от концентрации веществ и может колебаться в очень ширком диапазоне — от 10 -16 до 10 15 .

Степень и константа диссоциации связаны между собой соотношением, называемым Законом разведения Оствальда:

K = ([A — ][B + ]):[AB] = C(α 2 :(1-α))

Для слабых электролитов:

K ≈ α 2 C
α ≈ √(K/C)

Диссоциация воды и её константа диссоциации:

H2O ↔ H + +OH —
K = ([OH — ][H + ]):[H2O]

Поскольку вода является очень слабым электролитом, то концентрация [H2O] является практически неизменной, поэтому, остаётся постоянной и константа диссоциации воды (ионное произведение воды):

Kω = [OH — ][H + ] = 10 -14 (при 25°C)

Для чистой воды:

[OH — ]=[H + ] = √10 -14 = 10 -7 моль/л

На практике пользуются водородным показателем pH=-lg[H + ]:

  • pH=7 — нейтральная среда;
  • pH 7 — щелочная среда.

Диссоциация кислот и оснований

Константа диссоциации одноосновных кислот (Ka-кислотный тип диссоциации; А — -кислотный остаток):

Kа = ([А — ][H + ]):[HА]

Многоосновные кислоты диссоциируют в несколько стадий, у каждой из которых своя константа диссоциации.

Константа диссоциации оснований обозначается Kb.

Диссоциация малорастворимых веществ

Константа диссоциации малорастворимых веществ называется произведением растворимости (ПР).

AgClтв=Ag + +Cl —
K = ([Аg + ][Cl — ]):[AgClтв]
ПР(AgCl) = [Аg + ][Cl — ] = const

При наличии в растворе нескольких электролитов они диссоциируют в сторону образования: 1) осадков; 2) газов; 3) слабых электролитов.

Взаимодействие солей с водой с образованием кислой и основной соли называется гидролизом.

Примеры решения задач

Пример 1 . Написать молекулярное уравнение, соответствующее ионному уравнению взаимодействия иона водорода (H + ) с гидроксид-ионом (OH — ).

  • ион водорода реагирует с гидроксид-ионом с образованием молекулы воды (реакция нейтрализации):
  • ионы водорода образуются при диссоциации сильных кислот (HCl);
  • гидроксид-ионы образуются при диссоциации сильных оснований (NaOH);

Пример 2 . Написать молекулярное уравнение, соответствующее ионному уравнению взаимодействия иона водорода с карбонат-ионом.

  • карбонат-ионы реагируют с ионами водорода с образованием гидрокарбонат-ионов (реакция протекает при недостатке ионов водорода):
  • второй вариант данной реакции — образование неустойчивой угольной кислоты, распадающейся на воду и оксид углерода (протекает при избытке ионов водорода):
  • Молекулярные уравнения реакций:

Пример 3 . Написать молекулярное уравнение, соответствующее ионному уравнению взаимодействия иона серебра с гидроксид-ионом.

  • ион серебра реагирует с гидроксид-ионом с образованием неустойчивого соединения гидроксида серебра, распадающегося на воду и оксид серебра:
  • ионы серебра образуются при диссоциации растворимых солей серебра (AgNO3);
  • гидроксид-ионы образуются при диссоциации сильных оснований (NaOH);

Пример 4 . При взаимодействии каких растворов получится карбонат кальция (CaCO3)?

Из таблицы растворимости видно, что карбонат кальция нерастворим в воде.

  • Сокращенное ионное уравнение для получения CaCO3 будет иметь следующий вид:
  • Для решения задачи подойдет любое растворимое соединение кальция, которое будет диссоциировать с образованием ионов Ca 2+ , например, хлорид или нитрат кальция — CaCl2 или Ca(NO3)2;
  • В качестве донора ионов CO3 2- сойдет любой растворимый в воде карбонат, например, Na2CO3 или K2CO3;
  • Один из вариантов молекулярного уравнения:

Пример 5 . Растворы каких солей нужны для получения:

Пример 6 . Какие вещества образуются при взаимодействии растворов сульфата натрия (Na2SO4) и хлорида бария (BaCl2)?

  • Из таблицы растворимости видно, что обе соли растворимы в воде:
  • При слиянии растворов образуются катионы натрия и бария и анионы хлора и оксида серы. Из таблицы растворимости видно, что нерастворимую в воде соль даст сочетание Ba 2+ и SO4 2- :
  • Уравнение реакции будет иметь вид:

Пример 7 . Какая соль выпадет в осадок при взаимодействии нитрата серебра (AgNO3) и хлорида кальция (CaCl2)? Написать уравнение реакции.

Пример 8 . Каким образом можно очистить поваренную соль (NaCl) от сульфата натрия (Na2SO4)?

Идея решения задачи заключается в добавлении в раствор поваренной соли и сульфата натрия вещества, способного распадаться на ионы, которые свяжут ионы оксида серы в нерастворимую соль, высвободив тем самым ионы натрия.

Роль связывающего вещества выполнит хлорид кальция CaCl2.

После того, как CaSO4↓ выпадет в осадок, полученный раствор необходимо будет отфильтровать, после чего в фильтрате будет присутствовать чистая поваренная соль.

Пример 9 . Написать молекулярное и ионное уравнение реакции хлорида алюминия с нитратом серебра.

  • Молекулярное уравнение:
  • Полное ионное уравнение:
  • Сокращенное ионное уравнение:

Пример 10 . Рассчитать концентрацию ионов, образующихся при смешении 1 литра 0,25М раствора BaCl2 и 1 литра 0,5М раствора Na2SO4, после выпадения BaSO4 в осадок.

  • Молекулярное уравнение реакции:
  • Сокращенное ионное уравнение:
  • Рассчитаем исходные кол-ва ионов:
  • (Ba 2+ ) в обменной реакции присутствует в недостатке, поэтому, в реакцию вступает не 0,5, а только 0,25 SO4 2- ;
  • Объем полученного раствора 1+1=2 литра;
  • Рассчитаем молярные концентрации ионов:

Пример 11 . Рассчитать pH водного раствора 0,1М HCl; 0,1M NaOH.

  • HCl — сильная кислота, диссоциирует полностью, уравнение диссоциации:
  • NaOH — сильное основание, диссоциирует полностью, уравнение диссоциации:

Пример 12 . Рассчитать концентрацию ионов водорода в растворе аммиака с концентрацией 1,5 моль/л (K=1,7·10 -5 ).

  • Формула равновесия, установленного в водном растворе аммиака:
  • Обозначим через x равновесную концентрацию [OH — ]; тогда [NH4 + ]=x; [NH3]=1,5-x:

Пример 13 . Какое кол-во осадка образуется при смешении 250 мл растворов нитрита лития (концентрация 0,3 моль/л) и фторида натрия (0,2 моль/л), если произведение растворимости фторида лития ПР(LiF)=1,5·10 -3 .

  • Уравнение реакции:
  • Рассчитаем исходные кол-ва ионов:
  • Объем раствора равен 0,25+0,25=0,5 л
  • Если обозначить через x моль кол-во выпавшего осадка LiF, тогда произведение концентрации ионов в растворе будет равно:
  • Масса выпавшего осадка:

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Теория электролитической диссоциации

Темы кодификатора ЕГЭ: Электролитическая диссоциация электролитов вводных растворах. Сильные и слабые электролиты.

Электролиты – это вещества, растворы и расплавы которых проводят электрический ток.

Электрический ток – это упорядоченное движение заряженных частиц под действием электрического поля. Таким образом, в растворах или расплавах электролитов есть заряженные частицы. В растворах электролитов, как правило, электрическая проводимость обусловлена наличием ионов.

Ионы – это заряженные частицы (атомы или группы атомов). Разделяют положительно заряженные ионы (катионы) и отрицательно заряженные ионы (анионы).

Электролитическая диссоциация — это процесс распада электролита на ионы при его растворении или плавлении.

Разделяют вещества — электролиты и неэлектролиты. К неэлектролитам относятся вещества с прочной ковалентной неполярной связью (простые вещества), все оксиды (которые химически не взаимодействуют с водой), большинство органических веществ (кроме полярных соединений — карбоновых кислот, их солей, фенолов) — альдегиды, кетоны, углеводороды, углеводы.

К электролитам относят некоторые вещества с ковалентной полярной связью и вещества с ионной кристаллической решеткой.

В чем же суть процесса электролитической диссоциации?

Поместим в пробирку несколько кристаллов хлорида натрия и добавим воду. Через некоторое время кристаллы растворятся. Что произошло?
Хлорид натрия – вещество с ионной кристаллической решеткой. Кристалл NaCl состоит из ионов Na + и Cl — . В воде этот кристалл распадается на структурные единицы-ионы. При этом распадаются ионные химические связи и некоторые водородные связи между молекулами воды. Попавшие в воду ионы Na + и Cl — вступают во взаимодействие с молекулами воды. В случае хлорид-ионов можно говорить про электростатическое притяжение дипольных (полярных) молекул воды к аниону хлора, а в случае катионов натрия оно приближается по своей природе к донорно-акцепторному (когда электронная пара атома кислорода помещается на вакантные орбитали иона натрия). Окруженные молекулами воды ионы покрываются гидратной оболочкой. Диссоциация хлорида натрия описывается уравнением:

NaCl = Na + + Cl –

При растворении в воде соединений с ковалентной полярной связью, молекулы воды, окружив полярную молекулу, сначала растягивают связь в ней, увеличивая её полярность, затем разрывают её на ионы, которые гидратируются и равномерно распределяются в растворе. Например, соляная ксилота диссоциирует на ионы так: HCl = H + + Cl — .

При расплавлении, когда происходит нагревание кристалла, ионы начинают совершать интенсивные колебания в узлах кристаллической решётки, в результате чего она разрушается, образуется расплав, который состоит из ионов.

Процесс электролитической диссоциации характеризуется величиной степени диссоциации молекул вещества:

Степень диссоциации — это отношение числа продиссоциировавших (распавшихся) молекул к общему числу молекул электролита. Т.е., какая доля молекул исходного вещества распадается в растворе или расплаве на ионы.

Nпродисс — это число продиссоциировавших молекул,

Nисх — это исходное число молекул.

По степени диссоциации электролиты делят на делят на сильные и слабые.

Сильные электролиты (α≈1):

1. Все растворимые соли (в том числе соли органических кислот — ацетат калия CH3COOK, формиат натрия HCOONa и др.)

2. Сильные кислоты: HCl, HI, HBr, HNO3, H2SO4 (по первой ступени), HClO4 и др.;

3. Щелочи: NaOH, KOH, LiOH, RbOH, CsOH; Ca(OH)2, Sr(OH)2, Ba(OH)2.

Сильные электролиты распадаются на ионы практически полностью в водных растворах, но только в ненасыщенных. В насыщенных растворах даже сильные электролиты могут распадаться только частично. Т.е. степень диссоциации сильных электролитов α приблизительно равна 1 только для ненасыщенных растворов веществ. В насыщенных или концентрированны растворах степень диссоциации сильных электролитов может быть меньше или равна 1: α≤1.

Слабые электролиты (α

1. Слабые кислоты, в т.ч. органические;

2. Нерастворимые основания и гидроксид аммония NH4OH;

3. Нерастворимые и некоторые малорастворимые соли (в зависимости от растворимости).

Неэлектролиты:

1. Оксиды, не взаимодействующие с водой (взаимодействующие с водой оксиды при растворении в воде вступают в химическую реакцию с образованием гидроксидов);

2. Простые вещества;

3. Большинство органических веществ со слабополярными или неполярными связями (альдегиды, кетоны, углеводороды и т.д.).

Как диссоциируют вещества? По степени диссоциации различают сильные и слабые электролиты.

Сильные электролиты диссоциируют полностью (в насыщенных растворах), в одну ступень, все молекулы распадаются на ионы, практически необратимо. Обратите внимание — при диссоциации в растворе образуются только устойчивые ионы. Самые распространенные ионы можно найти в таблице растворимости — это ваша официальная шпаргалка на любом экзамене. Степень диссоциации сильных электролитов примерно равна 1. Например, при диссоциации фосфата натрия образуются ионы Na + и PO4 3– :

Диссоциация слабых электролитов : многоосновных кислот и многокислотных оснований происходит ступенчато и обратимо. Т.е. при диссоциации слабых электролитов распадается на ионы только очень небольшая часть исходных частиц. Например, угольная кислота:

HCO3 – ↔ H + + CO3 2–

Гидроксид магния диссоциирует также в 2 ступени:

Mg(OH)2 ⇄ Mg(OH) + OH –

Mg(OH) + ⇄ Mg 2+ + OH –

Кислые соли диссоциируют также ступенчато, сначала разрываются ионные связи, затем — ковалентные полярные. Например, гидрокабонат калия и гидроксохлорид магния:

KHCO3 ⇄ K + + HCO3 – (α=1)

HCO3 – ⇄ H + + CO3 2– (α + + Cl – (α=1)

MgOH + ⇄ Mg 2+ + OH – (α 1. При растворении в воде электролиты диссоциируют (распадаются) на ионы.

2. Причина диссоциации электролиты в воде – это его гидратация, т.е. взаимодействие с молекулами воды и разрыв химической связи в нем.

3. Под действием внешнего электрического поля положительно заряженные ионы двигаюися к положительно заряженному электроду — катоду, их называют катионами. Отрицательно заряженные электроны двигаются к отрицательному электроду – аноду. Их называют анионами.

4. Электролитическая диссоциация происходит обратимо для слабых электролитов, и практически необратимо для сильных электролитов.

5. Электролиты могут в разной степени диссоциировать на ионы — в зависимости от внешних условий, концентрации и природы электролита.

6. Химические свойства ионов отличаются от свойств простых веществ. Химические свойства растворов электролитов определяются свойствами тех ионов, которые из него образуются при диссоциации.

Примеры .

1. При неполной диссоциации 1 моль соли общее количество положительных и отрицательных ионов в растворе составило 3,4 моль. Формула соли – а) K2S б) Ba(ClO3)2 в) NH4NO3 г) Fe(NO3)3

Решение: для начала определим силу электролитов. Это легко можно сделать по таблице растворимости. Все соли, приведенные в ответах — растворимые, т.е. сильные электролиты. Далее, запишем уравнения электролитической диссоциации и по уравнению определим максимально число ионов в каждом растворе:

а) K2S ⇄ 2K + + S 2– , при полном распаде 1 моль соли образуется 3 моль ионов, больше 3 моль ионов не получится никак;

б) Ba(ClO3)2 ⇄ Ba 2+ + 2ClO3 , опять при распаде 1 моль соли образуется 3 моль ионов, больше 3 моль ионов не образуется никак;

в) NH4NO3 ⇄ NH4 + + NO3 , при распаде 1 моль нитрата аммония образуется 2 моль ионов максимально, больше 2 моль ионов не образуется никак;

г) Fe(NO3)3 ⇄ Fe 3+ + 3NO3 , при полном распаде 1 моль нитрата железа (III) образуется 4 моль ионов. Следовательно, при неполном распаде 1 моль нитрата железа возможно образование меньшего числа ионов (неполный распад возможен в насыщенном растворе соли). Следовательно, вариант 4 нам подходит.


источники:

http://prosto-o-slognom.ru/chimia_primery/007-elektroliticheskaya_dissotsiatsiya.html

http://chemege.ru/ted/