Теория и критерии подобия критериальные уравнения

Теория подобия и критериальные уравнения

Конвективный теплообмен описывается системой дифференциальных уравнений и условиями однозначности с большим количеством переменных. Попытки аналитического решения полной системы уравнений наталкиваются на серьезные трудности. Поэтому большое значение приобретает экспериментальный путь исследования. Однако при изучении столь сложного процесса, как конвективный теплообмен, не всегда легко проводить и опытное исследование.

Для исследования влияния на процесс какой-либо одной величины остальные нужно сохранять неизменными, что не всегда возможно или затруднительно из-за большого количества переменных. Кроме того, нужно быть уверенным, что результаты, получаемые с помощью какой-либо конкретной установки (модели), можно перенести и на другие аналогичные процессы (образец). Эти трудности помогает разрешить теория подобия. С помощью теории подобия размерные физические величины можно объединить в безразмерные комплексы, причем так, что число комплексов будет меньше числа величин. Полученные безразмерные комплексы можно рассматривать как новые переменные.

При введении в уравнения безразмерных комплексов число величин под знаком искомой функции формально сокращается, что упрощает исследование физических процессов.

Теория подобия устанавливает также условия, при которых результаты лабораторных исследований можно распространить на другие явления, подобные рассматриваемому. Ввиду этого теория подобия является теоретической базой эксперимента, но не только. Теория подобия является важным подспорьем теоретических исследований. Хотя методами теории подобия вид искомой функции не может быть определен, эта теория облегчает в ряде случаев анализ процесса и описание полученных результатов.

Для практического использования выводов теории подобия необходимо уметь приводить к безразмерному виду математические описания изучаемых процессов.

Имеется несколько методов, и один из них — метод масштабных преобразований.

независимые переменные: х, у.

зависимые переменные:

постоянные величины: и др. Для определенной задачи они являются постоянными.

Таким образом, искомые зависимые переменные зависят от большого числа величин: они являются функцией независимых переменных и постоянных величин.

В качестве масштабов удобно принять постоянные величины .

; ; ; ; , тогда

; ; ; ; .

Помимо безразмерных величин и безразмерных координат X, Y, составленных из однородных физических величин, в уравнения входят также безразмерные комплексы, состоящие из разнородных физических величин.

Безразмерные соотношения параметров характеризующих процесс, имеющие у подобных явлений в сходственных точках численно одинаковые значения называются числами подобия.

1). У подобных явлений числа подобия численно одинаковы.

2). Интеграл дифференциальной функции (или системы уравнений) может быть представлен как функция чисел дифференциального уравнения.

3). Подобны те явления, условия однозначности которых подобны, и числа подобия, составленные из условия однозначности, численно одинаковы.

Условия однозначности: Явление, протекающее в геометрически подобных системах; для рассматривания явления можно составить дифференциальные уравнения; установлены существование и единственность решения уравнений при заданных граничных условиях; известны числовые значения коэффициентов и физических параметров.

Реферат: Основы теории подобия (метод обобщенных переменных)

Основы теории подобия (метод обобщенных переменных)

Методы исследования технологических процессов

Теория подобия. Виды подобия

Основные положения теории подобия (теоремы подобия)

Методы исследования технологических процессов

Исследования процессов, протекающих в технологических установках, установление закономерностей их протекания, нахождение зависимостей, необходимых для их анализа и расчета, можно проводить разными методами: теоретическим, экспериментальным, подобия.

Теоретический метод основан на составлении и решении системы дифференциальных уравнений, описывающих процесс. Дифференциальные уравнения описывают целый класс однородных по своей сущности явлений (процессов), поэтому для выделения конкретного явления необходимо ввести определенные ограничения, которые однозначно будут характеризовать данное явление. Эти дополнительные условия называются условиями однозначности. Условия однозначности включают в себя: геометрическую форму и размеры системы, т.е. аппарата, канала и т.д.; физические свойства веществ, участвующих в процессе; начальные условия (начальную температуру, начальную скорость и т.д.); граничные условия, например скорость жидкости у стенок канала, равную нулю.

Однако многие процессы химической технологии так сложны, что удается лишь составить систему дифференциальных уравнений и установить условия однозначности. Решить эти уравнения известными в математике методами не представляется возможным.

Экспериментальный метод позволяет на основе опытных данных получить эмпирические уравнения, описывающие данный процесс. Сложности экспериментального метода заключаются в необходимости проведения большого количества опытов на реальных технологических установках. Это связано с большими затратами средств и времени. Вместе с тем результаты проведенных экспериментов будут справедливы только для тех условий, для которых они получены, и не могут быть с достаточной надежностью перенесены на процессы, аналогичные изученным, но протекающие в других аппаратах.

Метод теории подобия позволяет с достаточной для практики точностью изучать сложные процессы на более простых моделях, обобщать результаты опытов и получать закономерности, справедливые не только для данного процесса, но и для всей группы подобных процессов. При моделировании процессов можно вместо дорогостоящих трудоемких опытов на промышленных установках проводить исследования на моделях значительно меньших размеров, а вместо зачастую опасных и вредных веществ использовать безопасные модельные вещества, опыты проводить в условиях, отличных от производственных. Кроме того, материальную модель можно заменить физической схемой (моделью), отражающей существенные особенности данного процесса. Поэтому в данном учебном пособии наиболее подробно будет рассмотрена теория подобия.

Теория подобия. Виды подобия

Метод обобщенных переменных составляет основу теории подобия. Одним из основных принципов теории подобия является выделение из класса явлений (процессов), описываемых общим законом (процессы движения жидкостей, диффузии, теплопроводности и т.п.), группы подобных явлений.

Подобными называются такие явления, для которых отношения сходственных и характеризующих их величин постоянны.

Различают следующие виды подобия: геометрическое; временное; физических величин; начальных и граничных условий.

Геометрическое подобие соблюдается при равенстве отношений всех сходственных линейных размеров натуры и модели. Например, при изучении движения жидкости в канале длиной L , диаметром D . В модели сходственные размеры равныl и d . Тогда

Безразмерная величина k (а в Дытнерском), называется константой геометрического подобия , или масштабным (переходным) множителем . Константы подобия характеризуют отношение однородных сходственных величин в подобных системах и позволяют перейти от размеров одной системы (модели) к другой (натуре).

Временное подобие предполагает, что сходственные частицы в геометрически подобных системах, двигаясь по геометрически подобным траекториям, проходят геометрически подобные пути за промежутки времени, отношение которых является константой подобия kх , т.е.

(1)

На рис.1. изображен канал (натура) с размерами L и D и модель с размерами l и d . Некая частица в точке А (натура) находится в момент времени τА , в точке В — в момент времени τв . В геометрически подобной модели сходственная частица находится в подобной точке а в момент времени τа , в точке b— в момент времени τ b .

Рис. 1. Условия подобия в натуре (a) и в модели (б)

теория подобие переменная обобщенный

При соблюдении геометрического и временного подобия константа подобия скоростей kυ определяется из соотношений

(2)

Подобие физических величин предполагает, что для двух любых сходственных точек натуры и модели, размещенных подобно в пространстве и во времени, соотношение физических величин (μ,ρи т.д.) является величиной постоянной:

(3)

Подобие начальных и граничных условий заключается в том, что для начальных и граничных условий должно соблюдаться геометрическое, временное и физическое подобие так же, как и для других сходственных точек натуры и модели.

Рассмотренные константы подобия постоянны для различных сходственных точек подобных систем, но могут изменяться в зависимости от соотношения размеров натуры и модели, т. е. если имеется другая модель, подобная натуре, константы подобия будут другими.

Если подобные величины выразить в относительных единицах, т.е. в виде отношений сходственных величин в пределах одной системы (натуры или модели), то получим инварианты подобия:

(4)

Инварианты подобия не зависят от соотношения размеров натуры и модели, т.е. для всех моделей, подобных натуре, они будут одни и те же. Инварианты подобия, представляющие собой отношение однородных величин, называются симплексами, или параметрическими критериями , например отношение L / D — геометрический симплекс.

Инварианты подобия, выраженные отношением разнородных величин, называются критериями подобия. Критерии подобия обозначаются начальными буквами имен ученых, которые внесли большой вклад в развитие данной области знаний.

Критерии подобия безразмерны, их значения для разных точек системы могут быть различными, но для сходственных точек подобных систем они одинаковые и не зависят от относительных размеров натуры и модели.

Критерии подобия имеют физический смысл, являясь мерами соотношения между какими-то двумя эффектами, силами и т.п., оказывающими влияние на протекание данного процесса.

Критерии подобия могут быть получены для любого процесса, если известны уравнения, описывающие этот процесс.

Основные положения теории подобия (теоремы подобия)

Основные положения теории подобия заключены в теоремах подобия, которые лежат в основе практического применения теории подобия.

Первая теорема подобия( теорема Ньютон-Бертрана): подобные явления характеризуются численно равными критериями подобия .

Теорема была сформулирована Ньютоном. Она устанавливает, что единственным количественным условием подобия процессов является равенство критериев подобия натуры и модели.

Отсюда очевидно, что отношение критериев одной системы (натуры) к критериям другой подобной ей системы (модели) всегда равно 1. Например,

Если отношение констант подобия равно 1, оно носит название индикатора подобия и указывает на равенство критериев подобия.

Следовательно, у подобных явлений индикаторы подобия равны 1.

Первая теорема подобия указывает, какие величины следует измерять при проведении опытов, результаты которых требуется обобщить: надо измерять те величины, которые входят в критерии подобия.

Вторая теорема подобия (теорема Бэкингем-Федермана): решение любого дифференциального уравнения, связывающего между собой переменные, влияющие на процесс, может быть представлено в виде зависимости между критериями К подобия. Такие уравнения называются уравнениями обобщенных переменных , или критериальными уравнениями , например

Обычно критериальное уравнение записывается в виде зависимости определяемого критерия подобия от определяющих критериев подобия:

где А, т, п — эмпирические показатели.

Определяемым критерием является тот критерий, в который входит определяемая величина. Критерии, в которые входят величины, определяющие ход процесса (v ,μ,ρ, d э и т.д.), называются определяющими .

Если какой-либо эффект в исследуемом процессе мало влияет на его протекание, то критерии подобия, характеризующие интенсивность данного эффекта, могут не учитываться. В этом случае процесс по отношению к этому эффекту и к критерию подобия становится автомодельным , т.е. независимым. В соответствии с этой теоремой результаты эксперимента, проведенного на модели, можно представлять в виде критериальных уравнений.

Третья теорема подобия (теорема Киринчен-Гухмана): явления подобны, если их определяющие критерии равны.

Следствием равенства определяющих критериев подобия является равенство и определяемых критериев для натуры и модели, поэтому полученная на модели в результате опытов критериальная зависимость будет справедлива для всех подобных процессов, в том числе и для протекающих в промышленной установке. При этом следует учитывать, что полученные уравнения надежно можно использовать только в тех интервалах изменения переменных, которые были использованы при проведении опытов.

Таким образом, для исследования технологических процессов методом подобия необходимо:

1. выбрать дифференциальное уравнение и условия однозначности, описывающие данный процесс; затем путем преобразования найти критерии подобия;

2. опытным путем с помощью моделей установить зависимость между критериями подобия; полученное обобщенное уравнение будет справедливым для всех подобных процессов в пределах изменения определяющих критериев подобия.

Преобразование дифференциальных уравнений методом теории подобия проводится в следующем порядке:

1. каждый из членов дифференциального уравнения умножается на соответствующие константы подобия кτ , кv , кl ит.д.;

2. полученные коэффициенты перед членами уравнения для соблюдения тождественности приравниваются;

3. в полученных индикаторах подобия константы подобия заменяются соответствующими отношениями величин, и полученные комплексы являются критериями подобия.

В табл. 1 приведены основные критерии гидродинамического подобия, которые будут равны для сходственных точек натуры и модели, если они подобны.

Таблица 1 — Основные критерии гидродинамического подобия

Название: Основы теории подобия (метод обобщенных переменных)
Раздел: Рефераты по экономико-математическому моделированию
Тип: реферат Добавлен 03:53:33 03 июня 2011 Похожие работы
Просмотров: 9858 Комментариев: 23 Оценило: 7 человек Средний балл: 4.1 Оценка: 4 Скачать

l — определяющий размер, м;

μ — динамическая вязкость, Па-с;

ν — кинематическая вязкость, м 2 /с;

g — ускорение свободного падения, м/с 2 ;

КритерийВыражение критерияХарактеристика критериевЕдиницы измерения входящих в критерии подобия величин
Кинематический (критерий Рейнольдса)Rе=υl/ν= υlρ/μХарактеризует меру соотношения сил инерции и сил трения
Гравитационный (критерий Фруда)Fr =υ 2 /glХарактеризует меру соотношения сил инерции и сил тяжести
Гидравлического сопротивления (критерий Эйлера)Еu =∆p/ρ υ 2Характеризует меру соотношения сил гидростатического давления и сил инерции
ГомохронностиНо =υ τ/lХарактеризует неустановившееся движение жидкости

Таким образом, дифференциальное уравнение Навье — Стокса, описывающее движение вязкой жидкости, может быть представлено в виде критериального уравнения:

f (Rе, Но, Fr, Еu) = 0 (8)

Уравнение (8) является обобщенным критериальным уравнением гидродинамики. Все критерии уравнения (8), кроме критерия Ей, являются определяющими, так как они составлены из величин, входящих в условия однозначности. Критерий Эйлера, в который входит величина ∆р, являющаяся целью расчета, будет определяемым критерием.

Еu = f (Rе, Но, Fr) или

Еu = AНо с Rе т Fr п , (9)

где А,c,т,п- эмпирические показатели.

В ряде случаев уравнение (19) дополняют геометрическим симплексом l / d :

Еu = AНо с Rе т Fr п (l / d ) b , (10)

где b- эмпирический показатель.

При установившемся движении критерий Но исключается из критериального уравнения:

Еu = ARе т Fr п (l / d ) b . (11)

В случае, если скорость движения жидкости не определена, в расчеты вводят производные или модифицированные критерии подобия, составленные из основных критериев. В этих критериях подобия неизвестная величина υ заменяется другими величинами, которые сравнительно легко определяются экспериментально или аналитически.

Возьмем отношение критериев Rе и Fr:

(12)

Полученный безразмерный комплекс величин называется критерием Галилея. Если умножить этот критерий на отношение ( ρ 1 ρ 2 )/ ρ 2 , то получается новый критерий подобия — критерий Архимеда

(13)

где ρ 1 , ρ 2 — плотности жидкости в разных точках, кг/м 3 .

Критерий подобия: определение и примеры

Слово «критерий» греческого происхождения, означает признак, являющийся основой для формирования оценки объекта или явления. На протяжении последних лет широко используется как в научной среде, так и в образовании, управлении, экономике, сфере обслуживания, в социологии. Если критерии научности (это определенные условия и требования, обязательные к соблюдению) представлены в абстрагированной форме для всего научного сообщества, то критерии подобия затрагивают только те области науки, которые имеют дело с физическими явлениям и их параметрами: аэродинамикой, теплообменом и массообменом. Для того чтобы разобраться в практической ценности применения критериев, необходимо изучить некоторые понятия из категориального аппарата теории. Стоит отметить, что критерии подобия использовались в технических специальностях задолго до того, как получили свое название. Самым тривиальным критерием подобия можно назвать нахождение процента от целого. Подобную операцию проделывали все без особых проблем и сложностей. А коэффициент полезного действия, который отражает зависимость потребляемой мощности машины и отдаваемой, всегда являлся критерием подобия и от этого не стал восприниматься как нечто туманно-заоблачное.

Основания возникновения теории

Физическое подобие явлений, будь то природа или рукотворный технический мир, применяется человеком в исследованиях по аэродинамике, массо- и теплообмену. В научной среде неплохо зарекомендовал себя метод исследования процессов и механизмов при помощи моделирования. Естественно, что при планировании и проведении эксперимента опорой является энергодинамическая система величин и понятий (ЭСВП). Следует сделать оговорку, что система величин и система единиц (СИ) не равнозначны. На практике ЭСВП существует в окружающем мире объективно, и исследования лишь выявляют их, поэтому основные величины (или критерии физического подобия) не обязаны совпадать с основными единицами. А вот основные единицы (систематизированные в СИ), отвечая требованиям практики, утверждаются (условно) при помощи международных конференций.

Понятийный аппарат подобий

Теория подобия — понятия и правила, целью которых является определение подобия процессов и явлений и обеспечение возможности переноса исследуемых явлений с опытного образца на реальный объект. Основу терминологического словаря составляют такие понятия, как однородные, одноименные и безразмерные величины, константа подобия. Для облегчения понимания сути теории следует рассмотреть значение перечисленных терминов.

  • Однородные — величины, которые имеют равные физический смысл и размерность (выражение, показывающее, каким образом единица измерения данной величины составляется из единиц основных величин; скорость имеет размерность длины, разделённой на время).
  • Одноименные — процессы, которые различаются по значению, но имеют одинаковую размерность (индукция и взаимоиндукция).
  • Безразмерные — величины, в размерность которых основные физические величины входят в степени, равной нулю.

Константа — безразмерная величина, в которой базовой является величина с фиксированным размером (например, элементарный электрический заряд). Она позволяет произвести переход от модели к натуральной системе.

Основные виды подобия

Подобными могут быть любые физические величины. Принято выделять четыре вида:

  • геометрическое (наблюдается при равенстве отношений сходных линейных размеров образца и модели);
  • временное (наблюдается на сходных частицах подобных систем, двигающихся по подобным путям за определенный промежуток времени);
  • физических величин (можно наблюдать на двух сходных точках модели и образца, для которых соотношение физических величин будет постоянным);
  • начальных и граничных условий (можно наблюдать при соблюдении трех предыдущих подобий).

Инвариант подобия (обычно обозначается idem в расчетах и обозначает инвариантно или «такой же») – это выражение величин в относительных единицах (т. е. отношение сходных величин в рамках одной системы).

В том случае, если инвариант содержит отношения однородных величин, его называют симплексом, а если разнородных величин, то критерием подобия (им присущи все свойства инвариантов).

Законы и правила теории подобия

В науке все процессы регулируются при помощи аксиом и теорем. Аксиоматическая составляющая теории включает три правила:

  • значение h величины H такое же, как отношение величины к единице ее измерения [H];
  • физическая величина независима от выбора единицы ее измерения;
  • математическое описание явления не подчиняется конкретному выбору единиц измерения.

Основные постулаты

При помощи теорем описаны следующие правила теории:

  • Теорема Ньютон-Бертрана: для всех подобных процессов все исследуемые критерии подобия попарно равны друг другу (π1*=π1**; π2*=π2** и т. д.). Отношение критериев двух систем (модели и образца) всегда равно 1.
  • Теорема Бэкингема-Федермана: критерии подобия связаны при помощи уравнения подобия, которое представляется безразмерным решением (интегралом) и называется критериальным уравнением.
  • Теорема Киринчен-Гухмана: для подобия двух процессов необходимы качественная их равнозначность и попарная равнозначность определяющих критериев подобия.
  • Теорема π (иногда именуется Бэкингема или Ваши): взаимосвязь между h величинами, которые измеряются при помощи m единиц измерения, представляется в виде отношения h – m безразмерными сочетаниями π1,…, πh-m этих h величин.

Критерий подобия – это комплексы, объединенные при помощи π–теоремы. Вид критерия можно установить при помощи составления списка величин (A1,…, An) описывающих процесс, и применить рассматриваемую теорему к зависимости F(a1,…,an)=0, являющейся решением задачи.

Критерии подобия и методы исследования

Бытует мнение, что наиболее точно описывающее название теории подобия должно звучать как метод обобщенных переменных, поскольку она является одним из способов обобщения в науке и экспериментальных исследованиях. Основными сферами влияния теории являются методы моделирования и аналогии. Использование основных критериев подобия как частной теории существовало задолго до введения этого термина (ранее назывались коэффициентами или степенями). В качестве примера можно привести тригонометрические функции всех углов подобных треугольников – они безразмерны. Они представляют пример геометрического подобия. В математике самым известным критерием является число Пи (отношение размеров окружности и диаметра круга). На сегодняшний день теория подобия является широко распространенным орудием научных исследований, которое качественно преобразовывается.

Физические явления, изучаемые посредством теории подобия

В современном мире трудно представить изучение процессов гидродинамики, теплообмена, массообмена, аэродинамики в обход теории подобий. Критерии выводятся для любых явлений. Главное, что между их переменными существовала зависимость. Физический смысл критериев подобия отражается в записи (формуле) и предшествующих ей вычислениях. Обычно критерии, как и некоторые законы, называются в честь знаменитых ученых.

Изучение теплообмена

Критерии теплового подобия состоят из величин, которые способны описать процесс теплоотдачи и теплообмена. Наиболее известных критериев четыре:

В формуле представлены следующие величины:

  • с – скорость носителя тепла;
  • l – геометрический параметр (размер);
  • v – коэффициент кинематической вязкости

При помощи критерия установлена зависимость сил инерции и вязкости.

В него входят такие составляющие:

  • α – является коэффициентом теплоотдачи;
  • l – геометрический параметр (размер);
  • λ – является коэффициентом теплопроводности.

Данный критерий описывает зависимость между интенсивностью теплоотдачи и проводимостью теплоносителя.

  • Критерий Прандтля (Pr)

В формуле представлены следующие величины:

  • v – является коэффициентом кинематической вязкости;
  • α – является коэффициентом температуропроводности.

Данный критерий описывает соотношение температурных и скоростных полей в потоке.

Формула составлена при помощи таких переменных:

  • g – обозначает ускорение земного притяжения;
  • β – является коэффициентом объемного расширения теплоносителя;
  • ∆T – обозначает разность температур между теплоносителем и проводником.

Данный критерий описывает соотношение двух сил молекулярного трения и подъемной силы (происходит благодаря разной плотности жидкости).

Критериями подобия теплообмена при свободной конвенции обычно называются критерии Нуссельта, Грасгофа и Прандтля, а при вынужденной конвенции – Пекле, Нуссельта, Рейнольдса и Прандтля.

Изучение гидродинамики

Критерии гидродинамического подобия представлены следующими примерами.

В формуле представлены следующие величины:

  • υ – обозначает скорость вещества на расстоянии от обтекаемого ею предмета;
  • l – описывает геометрические (линейные) параметры предмета;
  • g – обозначает ускорение силы тяжести.

Данный критерий описывает соотношение сил инерции и тяжести в потоке вещества.

  • Критерий подобия Струхаля (St).

Формула содержит такие переменные:

  • υ – обозначает скорость;
  • l – обозначает геометрические (линейные) параметры;
  • Т – обозначает интервал времени.

Данный критерий описывает неустановившиеся движения вещества.

В формуле представлены следующие величины:

  • υ – обозначает скорость вещества в конкретной точке;
  • с – обозначает скорость звука (в жидкости) в конкретной точке.

Данный критерий гидродинамического подобия описывает зависимость движения вещества от его сжимаемости.

Кратко об остальных критериях

Перечислены наиболее встречающиеся критерии физического подобия. Не менее важными являются такие как:

  • Вебера (We) – описывает зависимость сил поверхностного натяжения.
  • Архимеда (Ar) – описывает зависимость подъемных сил и инерции.
  • Фурье (Fo) – описывает зависимость скорости изменения температурного поля, физических свойств и размеров тела.
  • Померанцева (Po) – описывает соотношения интенсивности внутренних источников теплоты и температурного поля.
  • Пекле (Pe) – описывает соотношения конвективного и молекулярного переносов теплоты в потоке.
  • Гидродинамической гомохронности (Ho) – описывает зависимость переносного (конвективного) ускорения и ускорения в данной точке.
  • Эйлера (Eu) — описывает зависимость сил давления и инерции в потоке.
  • Галилея (Ga) – описывает соотношение сил вязкости и тяжести в потоке.

Заключение

Критерии подобия могут состоять из определенных величин, но могут выводиться и из других критериев. И такая комбинация также будет являться критерием. Из приведенных примеров видно, что принцип подобия является незаменимым в гидродинамике, геометрии, механике, существенно упрощая в некоторых случаях процесс исследования. Достижения современной науки стали возможными во многом благодаря возможности моделировать сложные процессы с большой точностью. Благодаря теории подобия, было сделано не одно научное открытие, отмеченное затем Нобелевской премией.


источники:

http://www.bestreferat.ru/referat-217101.html

http://fb.ru/article/342231/kriteriy-podobiya-opredelenie-i-primeryi