Теория уравнений и систем доклад

Доклад на тему :Виды уравнений и способы их решения
материал по алгебре

Скачать:

ВложениеРазмер
doklad_2.docx27.25 КБ

Предварительный просмотр:

Доклад по математике на тему:

«Виды уравнений и способы их решения»

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположила материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попыталась показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стала ограничиваться только действительным решением, но и указала комплексное, так как считаю, что иначе уравнение просто не законченно. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений.

Математика. выявляет порядок,

симметрию и определенность,

а это – важнейшие виды прекрасного.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37. «, — поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата – «Китаб аль-джебер валь-мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

1. УРАВНЕНИЯ. АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв). Для записи тождества наряду со знаком также используется знак .

Пример: 5 *7 – 6 = 20 + 9

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита: ,,c, . – или теми же буквами, снабженными индексами:, , . или , , . ); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита:x, y, z. По числу неизвестных уравнения разделяются на уравнения с одним, двумя, тремя и т. д. неизвестными

Решением уравнения называют такой буквенный или числовой набор неизвестных, которые обращает его в тождество (соответственно числовое или буквенное). Часто решение уравнения называют его также его корнем.

1.1. Линейное уравнение

Линейным уравнением с одним неизвестным называют уравнение вида

ax + b = c, где a ≠ 0

Это уравнение имеет единственное решение:

1.2 Квадратное уравнение

Квадратным уравнением с одним неизвестным называют уравнение вида

a + bx + c = 0, где a ≠ 0

Дискриминантом квадратного уравнения называют число D =

Справедливы следующие утверждения

  1. Если D 0 , то уравнение решений не имеет
  2. Если D = 0 , то уравнение имеет единственное решение
  3. Если D 0, то уравнение имеет 2 решения

1.2.1 Неполное квадратное уравнение

Неполным квадратным уравнением называют квадратное уравнение, в котором хотя бы один из коэффициентов b или c равен нулю.

При c =0, уравнение принимает вид:

a+ bx = 0 или x (ax + b) = 0

т.е. либо х=0, либо ax + b = 0, откуда х=0,

При b =0, уравнение принимает вид: a+ c = 0

если выражение 0, то уравнение решений не имеет

если с=0, то уравнение имеет единственное решение: х=0

если выражение, 0,то решений два:

1.2.2 Приведённое квадратное уравнение. Теорема Виета

Приведённым квадратным уравнением называют уравнение вида

т.е. квадратное уравнение, в котором первый коэффициент равен единице.

Любое квадратное уравнение можно сделать приведённым. Для этого достаточно каждый коэффициент данного уравнения разделить на первый коэффициент, т.е. на а

Теорема Виета : Если приведённое квадратное уравнение имеет действительные корни, то их сумма равна второму коэффициенту, взятому со знаком минус, т.е. –p, а их произведение- свободному члену q.

Теорема, обратная теореме Виета : Если сумма двух чисел и равна числу –p, а их произведение равно числу q, то они являются корнями приведённого квадратного уравнения + px + q =0

Пример: Используя теорему, обратную теореме Виета, найти корни уравнения

Это уравнение имеет целые корни, Корни легко угадать: это действительно: (-1) * (-2) = 2 и (-1) +(-2) = -3. Значит, числа -1 и -2 являются корнями данного уравнения.

Уравнение вида a + b + c = 0 называют биквадратным

Такое уравнение решается методом замены переменной. Обозначим , тогда . Заметим что t ≥ 0, так как t = исходное уравнение имеет вид

Т.е. является обыкновенной квадратным уравнением, которое решается по приведенной выше схеме.

Пусть и – корни полученного квадратного уравнения. Если > 0 и , исходное биквадратное уравнение имеет четыре корня:

Если одно из чисел или отрицательно, а другое неотрицательно, то имеем два корня, либо один (x = 0).

Введение нового переменного – наиболее распространенный метод решения самых разных уравнений.

Решение. Обозначим и заметим, что t ≥ 0

Тогда исходное уравнение примет вид:

Так как D > 0, то полученное квадратное уравнение имеет два корня

Оба эти корня удовлетворяют условию (*) следовательно, уравнение имеет четыре действительных решения

  1. Разложение квадратного трёхчлена на множители

Из теоремы Виета следует очень важное утверждение:

теорема о разложении квадратного трёхчлена на множители.

Если квадратное уравнение a + bx + c = 0, где a ≠ 0 имеет действительные корни то квадратный трёхчлен

a + bx + c = 0 раскладывается на множители следующим образом: a + bx + c = а ( х- ) ( х — )

Пример: Разложить н множители выражение 3 + 5x

Решение: Найдём корни уравнения 3 + 5x = 0

По теореме о разложении квадратного трёхчлена на множители имеем:

  1. Уравнение, содержащие переменную под знаком модуля

Модулем числа называют само это число, если оно неотрицательно, либо число — | |.

Формальная запись этого определения такова:

При решении уравнений, содержащих переменную плд знаком модуля, используется определение модуля.

пример: решить уравнение: | |=

решение: по определению модуля:

Говорят, что выражение модулем меняет свой знак в точке x=1, поэтому все множество чисел разбивается на два числовых промежутка.

а) При x ≥ 1 исходное уравнение принимает вид:

  1. Иррациональные уравнения
  1. Уравнения, содержащие один знак радикала второй степени

Возведение обеих частей уравнения в степень

При возведении обеих частей уравнения в четную степень (в частности, в квадрат) получается уравнение, неравносильному исходному.

Кроме корней исходного уравнения могут появиться посторонние корни, т.е. числа, являющиеся решениями возведенного в четную степень уравнения, но не являющимися корнями исходного уравнения.

Избавиться от посторонних корней помогает непосредственная проверка полученных корней в исходном уравнении, т.е. корни поочередно подставляет в начальное уравнение и проверяют, верное ли получается числовое неравенство.

Пример. Решить уравнение

Решение возведем обе части уравнения в квадрат. Имеем:

Проверка. При но 1 ≠ -1 следовательно корень x=-1 посторонний

При x = 2; так как 2=2, то проверяемое число действительно является корнем исходного уравнения

1.7 Тригонометрические уравнения

Решение: так как то уравнение можно переписать следующим образом:

2 ( 1 — ) + 7 — 5 = 0, т.е. 27

Полагая, что = y, приходим к квадратному уравнению

2 – 7 y + 3 = 0, откуда = = 3, и получаем совокупность двух простейших уравнений

Первое из них имеет решение

, а второе решений не имеет

1.8 Системы уравнений

Система уравнений состоит из двух и более алгебраических уравнений.

Решением системы называют такой набор значений переменных, который при подстановке обращает каждое уравнение системы в числовое или буквенное тождество.

Решить систему – значит найти все её решения или доказать, что их нет.

2. СПОСОБЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ

Рассмотрим несколько способов решения систем уравнений

2.1 Графический способ решения системы уравнений

Решение. Каждое уравнение системы задаёт линейную функцию. Построим графики этих уравнений в одной системе координат. Координаты пересечений графиков обращают оба уравнения системы в верные равенства. Решением системы является пара значений переменных: х=1,у=1. Ответ можно записать так: ( 1; 1 )

Графический способ решения систем уравнения состоит в следующем:

  1. Строятся графики каждого уравнения системы
  2. Определяются точки пересечения графиков
  3. Записывается ответ: координаты точек пересечения построенных графиков.

2.2 Метод подстановки

Решение: Из первого уравнения выразим x через y:

Подставив полученное выражение во второе уравнение системы, получим уравнение с одним неизвестным

Подставив это число в выражение

Получим ответ: x = 3

Алгоритм решения систем уравнений методом подстановки

  1. Из одного уравнения системы одна переменная выражается через другую.
  2. Полученное выражение подставляется во второе уравнение системы.
  3. Решается полученное после подстановки уравнение
  4. Полученное решение подставляется в выражение из п.1
  5. Если при решении последнего уравнения получается тождество 0=0, то это означает, что исходная система имеет бесконечное множество решений вида (х, у), каждое из которых удовлетворяет первому уравнению системы. Если же при тождественных преобразованиях последнего уравнения получится неверное числовое равенство, то система решений не имеет.

2.3 Метод сложения

Решение: Домножим первое уравнение системы на 2, а второе — на 3. Сложим получившиеся уравнения почленно и запишем результат вместо второго уравнения системы.

Числа, на которые домножают уравнения перед сложением, выбирают так, чтобы при суммировании коэффициент перед одной из переменных стал равен нулю.

В результате преобразований уравнений системы и замены одного из уравнений результатом суммирования других получены равносильные системы.

Две системы называют равносильными, если каждое решение одной системы является решением другой системы и наоборот.

2.4 Метод введения новой переменной

При решении систем нелинейных уравнений, как правило, применя-ются различные комбинации нескольких методов решения систем.

Решение. Преобразуем второе уравнение системы воспользовавшись формулой сокращенного умножения

Из первого уравнения системы x-y =1; подставим 1 во второе уравнение. Запишем получившуюся систему:

К этой системе уже вполне применим метод – выразить одно неизвестное из первого уравнения системы и подставить во второе:

Математика, как и любая другая наука не стоит на месте, вместе с развитием общества меняются и взгляды людей, возникают новые мысли и идеи. И XXI век не стал в этом смысле исключением. Появление компьютеров внесло свои корректировки в способы решения уравнений и значительно их облегчило. Но компьютер не всегда может быть под рукой (экзамен, контрольная), поэтому знание хотя бы самых главных способов решения уравнений необходимо знать. Использование уравнений в повседневной жизни – редкость. Они нашли свое применение во многих отраслях хозяйства и практически во всех новейших технологиях.

В данной работе были представлены далеко не все, способы решения уравнений и даже не все их виды, а только самые основные. Я надеюсь, что мой доклад может послужить неплохим справочным материалом при решении тех или иных уравнений. В заключении хотелось бы отметить, что при написании данного доклада я не ставила себе цели показать все виды уравнений, а излагал лишь имеющийся у меня материал.

На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.

1. Большой справочник для школьников, поступающие в вузы

П.И. Алтынов, И. И. Баврин, Е. М. Бойченко и др. – М. Дрофа, 2016-840 с.

2. Цыпкин А. Г. Под ред. С. А. Степанова. Справочник по математике для средней школы. – М.: Наука, 1980.- 400 с.

Реферат: Способы решения систем линейных уравнений

– очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. Поэтому первая глава моего реферата посвящена теме матриц и определителей. В ней я рассматривала различные действия над матрицами, свойства определителей, метод Гаусса вычисления ранга матрицы, а так же некоторые другие теоретические вопросы. Во второй главе непосредственно рассматриваются системы линейных уравнений и некоторые методы их решения: правило Крамера, метод Гаусса, а так же теорема Кронекера – Капелли. И в той и в другой главах приведены примеры, которые составляют практическую часть моего реферата.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, определителей и систем линейных уравнений; изучить современное состояние данного вопроса; отобрать и классифицировать исследуемый материал; а также провести практическую часть работы. Давайте рассмотрим некоторые примеры важнейших моментов этой работы.

Пусть дана система n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ;

a n1 x 1 + a n2 x 2 + …+ a nn x n = b n ;

a). Если  , то система (1) имеет единственное решение,

которое может быть найдено по формулам Крамера: x 1 = , где

определитель n-го порядка  i ( i=1,2. n) получается из определителя системы путем замены i-го столбца свободными членами b 1 , b 2 . b n .

б). Если  , то система (1) либо имеет бесконечное множество решений , либо несовместна ,т.е. решений нет . Например:

решить систему уравнений

.

Вычислим определитель системы:

Так как определитель не равен нулю, система уравнений может быть решена по формулам Крамера. Найдем определители ∆x , ∆y:

.

Практическое значение правила Крамера для решения системы n линейных уравнений с п неизвестными невелико, так как при его применении приходится вычислять п +1 определителей n -го порядка:  ,  x 1 ,  x 2 , …,  x n . Более удобным является так называемый метод Гаусса. Он применим и в более общем случае системы линейных уравнений, т. е. когда число уравнений не совпадает с числом неизвестных.

Итак, пусть дана система, содержащая m линейных уравнений с п неизвестными:

а 11 х 1 + а 12 х 2 + …+ а 1 n х n = b 1 ;

а 21 х 1 + а 22 х 2 + …+ а 2 n х n = b 2 ;

а m1 х 1 + а m2 х 2 + …+ а m n х n = b m

Метод Гаусса решения системы (19) заключается в последовательном исключении переменных. Например:

Решить методом Гаусса систему уравнений

x 1 – 2 x 2 + x 3 + x 4 = –1;

3 x 1 + 2 x 2 – 3 x 3 – 4 x 4 = 2;

2 x 1 – x 2 + 2 x 3 – 3 x 4 = 9;

x 1 + 3 x 2 – 3 x 3 – x 4 = –1.

Р е ш е н и е. Составим матрицу В и преобразуем ее. Для удобства вычислений отделим вертикальной чертой столбец, состоящий из свободных членов:

1 –2 1 1 –1

Умножим первую строку матрицы В последовательно на 3, 2 и 1 и вычтем соответственно из второй, третьей и четвертой строк. Получим матрицу, эквивалентную исходной:

1 –2 1 1 –1

Третью строку матрицы умножим на 3 и вычтем ее из второй строки. Затем новую вторую строку умножим на 3 и на 5 и вычтем из третьей и четвертой строк. Получим матрицу, эквивалентную исходной:

1 –2 1 1 –1

Из коэффициентов последней матрицы составим систему, равносильную исходной:

x 1 – 2 x 2 + x 3 + x 4 = –1;

X 2 – 6 x 3 + 8 x 4 = –28;

Решим полученную систему методом подстановки, двигаясь последовательно от последнего уравнения к первому. Из четвертого уравнения x 4 = –1 , из третьего х 3 = 3 . Подставив значения х 3 и x 4 во второе уравнение, найдем x 2 = 2 . Подставив значения x 2 , x 3 , x 4 в первое уравнение, найдем x 1 = 1.

Теорема совместности Кронекера – Капелли звучит следующим образом: Для того, чтобы система неоднородных линейных уравнений была совместной, необходимо и достаточно, чтобы ранг расширенной матрицы системы был равен рангу её основной матрицы. Рассмотрим следующий пример:

5 x 1 – x 2 + 2 x 3 + x 4 = 7;

2 x 1 + x 2 – 4 x 3 – 2 x 4 = 1;

x 1 – 3 x 2 + 6 x 3 – 5 x 4 = 0.

Ранг основной матрицы этой системы равен 2, так как сцществует отличный от нуля минор второго порядка этой матрицы, например

5 –1 = 7,

а все миноры третьего порядка равны нулю.

Ранг расширенной матрицы этой системы равен 3, так как существует отличный от нуля минор третьего порядка этой матрицы, например

5 –1 7

Согласно критерию Кронекера – Капелли система несовместна, т.е. не имеет решений.

В процессе работы я узнала много нового: какие действия можно выполнять над матрицами, какой путь решения систем линейных уравнений наиболее простой и быстрый, а так же многие другие теоретические вопросы и провела практические исследования, приводя примеры в тексте.

Тема решения систем линейных уравнений предлагается на вступительных экзаменах в различные математические вузы, на выпускных экзаменах, поэтому умение их решать очень важно.

Реферат может использоваться как учащимися, так и преподавателями в процессе факультативных занятий, как пособие для самостоятельного изучения по теме „Способы решения систем линейных уравнений ”, а также в качестве дополнительного материала.

МОУ Гимназия № 11

Способы решения систем линейных уравнений

МОУ Гимназия № 11

Способы решения систем линейных уравнений

Реферат по математике

Ученица 9 2 класса

Введение. 2

Глава I. Матрицы и действия над ними. 5

1.1. Основные понятия. –

1.2. Действия над матрицами. 8

1.3. Обратная матрица. 11

1.4. Ранг матрицы. 16

Глава II. Системы линейных уравнений. 23

2.1. Основные понятия. –

2.2. Система n линейных уравнений с n неизвестными. Правило

2.3. Однородная система n линейных уравнений с n

2.4. Метод Гаусса решения общей системы линейных

2.5. Критерий совместности общей системы линейных

Список литературы. 46

Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений , т.е. системы m уравнений 1ой степени с n неизвестными:

a 11 x 1 + … + a 1n x n = b 1 ;

a 21 x 1 + … + a 2n x n = b 2 ;

a m1 x 1 + … + a mn x n = b m .

Здесь x 1 , … , x n – неизвестные, а коэффициенты записаны так, что индексы при них указывают на номер уравнения и номер неизвестного. Значение систем 1ой степени определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г.Лейбниц (1693) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэффициентов, и показал, как из этих коэффициентов (в случае m = n ) строить так называемые определители , при помощи которых исследуются системы линейных уравнений. Впоследствии такие матрицы, или матрицы , стали предметом самостоятельного изучения, так как обнаружилось, что их роль не исчерпывается приложениями к теории систем линейных уравнений. Современная алгебра, понимаемая как учение об операциях над любыми математическими объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Для современной алгебры характерно то, что в центре внимания оказываются свойства операций, а не объектов, над которыми проводятся данные операции. Классическим разделом алгебры является линейная алгебра , т.е. теория

векторных пространств и модулей, частью которых являются сформировавшиеся ещё в XIX веке теория линейных уравнений и теория матриц. Идеи и методы линейной алгебры применяются во многих разделах математики. Так, основным предметом изучения функционального анализа являются бесконечномерные векторные пространства.

Г.Крамером в 1750 году было установлено правило, применимое к любой системе n линейных уравнений c n неизвестными. Оно носит название правила Крамера . Построение полной теории произвольных систем линейных уравнений было закончено только спустя 100 лет Л.Кронекером.

Применение правила Крамера при практическом решении большого числа линейных уравнений может встретить различные трудности, так как нахождение определителей высокого порядка связано с весьма большими вычислениями. Поэтому были разработаны методы численного (приближённого) решения систем линейных уравнений, наиболее известным из которых является метод Гаусса . Система линейных уравнений может иметь как одно единственное решение ( определённая система ), так и несколько (и даже бесконечное множество) решений ( неопределённая система ); может также оказаться, что система линейных уравнений не имеет ни одного решения ( несовместная система ). Вопрос о совместности системы линейных уравнений, т.е. вопрос о существовании решения системы линейных уравнений, решается сравнением ранга матриц [ а ij ] и [ a ij , b j ]. Если ранги совпадают, то система совместна; если ранг матрицы В строго больше ранга матрицы А , то система несовместна ( теорема Кронекера-Капелли ).

Несколько уравнений вида a 1 x 1 + …+ a n x n = b образуют систему линейных уравнений

a j1 x 1 + …+ a jn x n = b j , j = 1, …, m,

которую можно записать как

x 1 a 1 + …+ x n a n = b,

где а 1 , …, а n , b m -мерные векторы, являющиеся столбцами расширенной матрицы В системы. Отсюда следует, что различные линейные уравнения в функциональных пространствах, линейные дифференциальные уравнения, линейные интегральные уравнения

являются бесконечномерными аналогами обычных систем линейных уравнений.

Способы решения систем линейных уравнений – очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. В процессе знакомства с данной работой приобретаются навыки, с помощью которых в последующем решение систем линейных уравнений станет намного проще, понятнее и быстрее.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, определителей и систем линейных уравнений; изучить современное состояние данного вопроса; отобрать и классифицировать исследуемый материал; а также провести практическую часть работы.

Глава I. Матрицы и действия над ними.

Матрица размерами m Ч n – совокупность mn чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов, например (обозначим за А )

А = 3 10 7 — матрица.

Числа, из которых состоит матрица, называются элементами матрицы. В общем виде матрицы:

а 11 a 12 … a 1n

a 21 a 22 … a 2n

M = a 31 a 32 … a 3n

a m1 a m2 … a mn

они обозначаются буквами с двумя индексами: 1ый индекс указывает номер строки, а 2ой – номер столбца, в которых содержится этот элемент.

Если m = n , то матрица называется квадратной , а число строк (или столбцов) – её порядком .

Две матрицы, имеющие одинаковое количество строк и столбцов, называются матрицами одинакового типа. Две матрицы А = [ a ij ] и В = [ b ij ] одинакового типа называются равными , если a ij = b ij при всех i и j .

Матрица, состоящая из одной строки (одного столбца), называется матрицей-строкой ( матрицей-столбцом ), а матрица, у которой все элементы а ij = 0 , – нулевой или нуль матрицей.

Элементы квадратной матрицы, имеющие одинаковые значения индексов, составляют главную диагональ , а элементы квадратной

матрицы порядка n ,сумма индексов каждого из которых равна n+1 , –

Сумма элементов главной диагонали квадратной матрицы называется следом матрицы. Квадратные матрицы, у которых все элементы вне главной диагонали равны нулю, называются диагональными (обозначается Е ):

1 0 … 0

Е = 0 1 … 0

Квадратная матрица, все элементы которой, стоящие ниже (выше) главной диагонали, равны нулю, называется треугольной :

a 11 а 12 … а 1n b 11 0 … 0

А = 0 а 22 … а 2n ; B = b 21 b 22 … 0

0 0 … a nn b n1 b n2 … b nn

Диагональная матрица является частным случаем треугольной. Преобразование элементов квадратной матрицы, состоящее в замене строк соответствующими столбцами, называется транспонированием матрицы. Таким образом, если

a 11 a 12 … a 1n

A = a 21 a 22 … a 2n ;

a n1 a n2 … a nn

a 11 a 21 … a n1

A T = a 12 a 22 … a n2 .

a 1n a 2n … a nn

Определитель n -го порядка матрицы

а 11 а 12 … а 1n

А = а 21 а 22 … а 2n

а n1 а n2 … а nn

а 11 а 12 … а 1n

∆ = а 21 а 22 … а 2n = ∑ (-1) I(k , k , …, k ) a 1k a 2k … a nk

а n1 а n2 … а nn

Здесь суммирование распространяется на всевозможные перестановки индексов элементов а ij , т.е. на всевозможные перестановки ( k 1 , k 2 , …, k n ). Числа а ij называют элементами определителя .

Квадратная матрица, определитель которой отличен от нуля, называется невырожденной, а матрица с определителем, равным нулю – вырожденной .

Определитель обладает некоторыми свойствами. Перечислим их:

При транспонировании матрицы её определитель не изменяется.

2. Если все элементы некоторой строки определителя состоят из

нулей, определитель равен нулю.

3.От перестановки двух строк определитель меняет знак.

Определитель, содержащий две одинаковые строки, равен нулю.

Общий множитель всех элементов некоторой строки определителя можно вынести за знак определителя, или, если все элементы некоторой строки определителя умножить на одно и тоже число, то определитель умножается на это число.

Определитель, содержащий две пропорциональные строки, равен нулю.

Если все элементы i -й строки определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки, кроме i -й, те же, что и у данного определителя; i -я строка определителя состоит из первых слагаемых элементов i -й строки данного определителя, а i -я

строка другого – из вторых слагаемых элементов i -й строки.

Определитель не изменяется, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и тоже число.

1.2. Действия над матрицами.

Основные операции, которые производятся над матрицами, – сложение, вычитание, умножение, а также умножение матрицы на число. Указанные операции являются основными операциями алгебры матриц – теории, играющей весьма важную роль в различных разделах математики и естествознания.

Суммой двух матриц А и В одинаковых размеров называется матрица того же размера, элементы которой равны сумме соответствующих элементов матриц А и В . Таким образом, если

а 11 … а 1n b 11 … b 1n

А = ………….. ; (1) В = …………… , то (2)

a m1 … а mn b m1 … b mn

a 11 + b 11 … a 1n + b 1n

a m1 + b m1 … a mn + b mn

Операция нахождения суммы матриц называется сложением матриц и распространяется на случай конечного числа матриц одинаковы размеров.

Так же, как и сумма, определяется разность двух матриц

a 11 – b 11 … a 1n – b 1n

A – B = ………………………

a m1 – b m1 … a mn – b mn

Операция нахождения разности двух матриц называется вычитанием матриц . Проверкой можно убедиться, что операция сложения матриц удовлетворяет следующим свойствам:

А + В = В + А ; (коммутативность)

А + (В + С) = (А + В) + С ; (ассоциативность)

Здесь А, В, С – произвольные матрицы одинаковых размеров; О – нулевая матрица того же размера.

Произведением матрицы А = [а ij ] на число λ называется матрица, элементы которой получаются из соответствующих элементов матрицы А умножением их на число λ. Произведение обозначим

λА. Таким образом от умножения матрицы (1) на число, получим:

a 11 … a 1n λa 11 … λa 1n

a m1 … a mn λa m1 … λa mn

Операция нахождения произведения матрицы на число называется умножением матрицы на число. Матрица –А = –1А называется противоположной матрице А . Проверкой можно убедиться, что операция умножения матрицы на число удовлетворяет следующим свойствам:

Здесь А, В – произвольные матрицы; μ, λ — произвольные числа; О – нулевая матрица.

Произведение АВ матрицы А на матрицу В определяется только в том случае, когда число столбцов матрицы А равно числу строк матрицы В . Пусть матрицы А и В такие, что число столбцов матрицы А равно числу строк матрицы В :

а 11 … а 1 n b 11 … b 1n

a m1 … a mn b m1 … b mn

В этом случае произведением матрицы А на матрицу В , которые

заданы в определенном порядке ( А – 1ая, В – 2ая ), является матрица С , элемент которой с ij определяется по следующему правилу:

c ij = a i1 b 1j + a i2 b 2j + … + a in b nj = ∑ n α = 1 a iα b αj,

где i = 1,2, …, m ; j = 1, 2, …, k.

Для получения элемента с ij матрицы произведения С = АВ нужно элементы i -й строки матрицы А умножить на соответствующие элементы j -го столбца матрицы В и полученные произведения сложить. Например, если:

1 2 3 7 8

А = ; В = 9 10 , то (1)

4 5 6 11 12

1 7 + 2 9 + 3 11 1 8 + 2 10 + 3 12 58 64

АВ = = (2)

4 7 + 5 9 + 6 11 4 8 + 5 10 + 6 12 139 154

Число строк матрицы С = АВ равно числу строк матрицы А , а число столбцов – числу столбцов матрицы В .

Операция нахождения произведения двух матриц называется умножением матриц . Умножение матриц некоммутативно, т.е.

АВ ≠ ВА . Убедимся в примере матриц (1). Перемножив их в обратном порядке, получим:

39 54 69

Сравнив правые части выражений (2) и (3), убедимся, что АВ ≠ ВА.

Матрицы А и В , для которых АВ = ВА, называются перестановочными . Например:

1 2 -3 2

А = ; В = перестановочны, т.к.

-2 0 -2 -4

-7 -6

Проверкой можно показать, что умножение матриц удовлетворяет следующим свойствам:

А(ВС) = (АВ)С ; (ассоциативность)

А(В + С) = АВ + АС . (дистрибутивность)

Здесь А, В, С – матрицы соответствующих определению умножения матриц размеров; λ — произвольное число.

Операция умножения двух прямоугольных матриц распространяется на случай, когда число столбцов в 1ом множителе равно числу строк во 2ом, в остальных случаях произведение не определяется. А также, если матрицы А и В – квадратные одного и того же порядка, то умножение матриц всегда выполнимо при любом порядке следования сомножителей.

Пусть дана квадратная матрица

a 11 … a 1n

= A – её определитель.

Если существует матрица Х такая, что АХ = ХА = Е, где Е – единичная матрица, то матрица Х называется обратной по отношению к матрице А , а сама матрица А – обратимой . Обратная матрица для А обозначается А -1 .

Теорема 1.1. Для каждой обратимой матрицы существует только одна обратная ей матрица.

Д о к а з а т е л ь с т в о. Пусть для матрицы А наряду с матрицей Х существует еще хотя бы одна отличная от Х обратная матрица, которую обозначим за Х 1 . Тогда должны выполняться следующие условия: ХА = Е, АХ 1 = Е . Умножив второе равенство на матрицу Х , получим ХАХ 1 = ХЕ =Х. Но, т.к. ХА = Е , то предыдущее равенство можно записать в виде ЕХ 1 = Х или Х = Х 1 .

Т е о р е м а д о к а з а н а.

Найдем теперь выражение для матрицы А -1 при условии, что матрица

А – обратимая. Пусть дана обратимая квадратная матрица А с элементами а ij . Обозначим через А ij алгебраическое дополнение элемента а ij в определителе ∆ матрицы А и составим матрицу В :

А 11 A 21 … A n1

A 1n A 2n … A nn

Заметим, что в i -й строке матрицы В расположены алгебраические дополнения элементов j -го столбца определителя ∆ . Матрица (4) называется присоединённой для матрицы А . Докажем, что матрицы А и В удовлетворяют матричному равенству

Для этого вычислим элемент, стоящий в i -й строке и j -м столбце произведения АВ . Искомый элемент равен сумме произведений элементов i -й строки матрицы А на соответствующие элементы j -го столбца матрицы В:

a i1 A j1 + a i2 A j2 + … + a in A jn . (6)

Согласно правилу разложения определителя по элементам строки (или столбца) выражение (6) равно определителю ∆ при i = j и нулю при i ≠ j . Следовательно, мы установили, что произведение АВ есть матрица вида

∆ 0 … 0 1 0 … 0

Таким образом, АВ = ∆Е. Аналогично доказывается и равенство

Пусть теперь А – невырожденная матрица (т.е. ∆ ≠ 0 ). Тогда, умножив обе части равенства (5) на числовой множитель 1/∆ , получим

Сравнивая равенства (5) и (7) и учитывая единственность обратной

матрицы, замечаем, что

Таким образом, доказано, что, во-первых, обратимы только невырожденные матрицы, и, во-вторых, для матрицы А обратной является матрица

Пусть А невырожденная матрица, тогда АА -1 = Е. Переходя в этом равенстве к определителям, получаем А А -1 = 1 , откуда

А -1 = А -1 .

Таким образом, определитель обратной матрицы равен обратной величине определителя данной матрицы. Из этого следует, что если матрица А – невырожденная, то обратная матрица А -1 также невырожденная.

Пусть теперь дана матрица А -1 . Для неё обратной будет матрица

(А -1 ) -1 .Поэтому из определения обратной матрицы будем иметь

А -1 (А -1 ) -1 = Е . Умножив это соотношение слева на А , получим

АА -1 (А -1 ) -1 = АЕ или (А -1 ) -1 = А.

Пример 1. Найти матрицу обратную матрице

Р е ш е н и е. Проверим, обратима матрица А или нет, т.е. является ли она невырожденной:

1 2 3 1 2 5

∆ А = –3 –1 1 = –3 –1 0 = 5 –3 1 = 5 (–3 + 2) = –5 ≠ 0.

2 1 –1 2 1 0 2 1

Найдем алгебраические дополнения всех элементов матрицы А :

А 11 = –1 1 = 0; А 12 = –­­ –3 1 = –1;

А 13 = –3 –1 = –1; А 21 = – 2 3 = 5;

А 22 = 1 3 = –7; А 23 = – 1 2 = 3;

А 31 = 2 3 = 5; А 32 = 1 3 = –10;

–1 1 –3 1

А 33 = 1 2 = 5.

Составим присоединённую матрицу для матрицы А :

Отсюда находим обратную матрицу:

Пример 2. Найти неизвестную матрицу Х из уравнения АХ = В , если:

Р е ш е н и е. Умножив обе части данного матричного уравнения слева на матрицу А -1 , получим:

А -1 АХ = А -1 В; Х = А -1 В.

Найдем А -1 : ∆ А = 1, А 11 = 2, А 12 = -1, А 21 = -3, А 22 = 1 , следовательно,

Найдем матрицу Х:

Х = А -1 В = 2 -3 3 4 = 9 5 .

1.4. Ранг матрицы.

Рассмотрим произвольную прямоугольную матрицу

а 11 … а 1 n

Выделим некоторое число k строк этой матрицы и такое же число столбцов. Элементы матрицы (8), стоящие на пересечение выделенных строк и столбцов, образуют квадратную матрицу k -го порядка. Определитель этой матрицы называется минором k -го порядка матрицы А . Если не все числа а ij матрицы А равны нулю, то всегда можно указать число r такое, что у матрицы А имеется минор,

имеющий порядок r + 1 и выше, равен нулю.

Число r , представляющее собой наибольший из порядков отличных от нуля миноров матрицы А , называется рангом матрицы и обозначается rangA . Если все элементы а ij равны нулю, то ранг матрицы принимается равным нулю. Отличный от нуля минор r -го порядка матрицы A (таких миноров у матрицы А может быть несколько, но все они имеют один и тот же порядок r ) называется базисным минором матрицы А. Строки и столбцы, из которых построен базисный минор, называют базисными . Понятие ранга матрицы широко применяется в различных приложениях теории матриц.

Выделим в матрице А произвольно k строк. Пусть это будут строки

а α 1 1 , а α 1 2 , … , а α 1 n ;

а α 2 1 , а α 2 2 , … , а α 2 n ;

а α k 1 , а α k 2 , … , а α k n .

Если существуют такие числа λ 1 , λ 2 , …, λ k , не все равные нулю, что для элементов некоторой другой, отличной от выделенной, строки i выполняются следующие соотношения:

то говорят, что i -я строка линейно выражается через строки

α 1 , α 2 , …, α k . В случае, если равенства (9) выполняются тогда и только тогда, когда все числа λ 1 , λ 2 , …, λ k – нули, то говорят, что i -я строка линейно зависима от строк α 1 , α 2 , …, α k . Аналогичным образом можно ввести понятие линейной зависимости и линейной независимости между столбцами матрицы.

Теорема 1.2.(о базисном миноре) Любая строка матрицы А является линейной комбинацией её базисных строк.

Д о к а з а т е л ь с т в о. Предположим, что базисный минор матрицы (8) расположен в её верхнем левом углу, т.е. в первых r строках и первых r столбцах. Такое предположение не уменьшает общности рассуждения. Пусть k – номер любой строки матрицы А ( k может принимать значения от 1 до m ), а l – номер любого её столбца (l может принимать значения от 1 до n ).

Рассмотрим следующий минор матрицы (8):

a 11 a 12 … a 1r a 1 l

a 21 a 22 … a 11 a 1l

a r1 a r2 … a rr a rl

………………………

a k1 a k2 … a kr a k l

Если k r , то ∆ = 0, так как в нем имеется две одинаковые строки. Аналогично ∆ = 0 и при l r .

Разложив определитель ∆ по элементам последнего столбца, получим

a 1 l A 1 l + a 2 l A 2 l + … + a r l A r l + a k l A k l = 0,

Придавая l значения, получаем:

Равенства (11) показывают, что k -я строка матрицы А является линейной комбинацией первых r строк с коэффициентами

λ 1 , λ 2 , …, λ r . Так как эти равенства справедливы при любом k от 1 до n , то т е о р е м а д о к а з а н а полностью.

Основываясь на теореме о базисном миноре, докажем справедливость следующих предложений.

1. Ранг матрицы не изменяется, если к ней приписать строку, являющуюся линейной комбинацией строк матрицы.

Действительно, базисные строки исходной матрицы будут также базисными строками в дополнительной матрице, так как строку из линейной комбинации всех строк исходной матрицы можно

представить как линейную комбинацию базисных строк.

2. Ранг матрицы А не изменится, если вычеркнуть из неё строку, являющуюся линейной комбинацией остальных строк матрицы.

В самом деле, исходная матрица А получается из матрицы с вычеркнутой строкой путем добавления строки, являющейся линейной комбинацией строк матрицы А . Таким образом, предложение 2 сводится к предложению 1.

Нахождение ранга матрицы, как это следует из его определения, требует вычисления большого числа миноров (т.е. определителей разных порядков) матрицы. Однако этот процесс можно упростить: вычисляя ранг матрицы, гораздо удобнее переходить от миноров меньших порядков к минорам больших порядков. Если найден минор r -го порядка, отличный от нуля, то при следующем шаге нужно вычислять миноры ( r + 1 )-го порядка, окаймляющие прежний минор. Если все они равны нулю, то ранг матрицы равен r.

Другим простым способом вычисления ранга матрицы является метод Гаусса, основанный на так называемых элементарных преобразованиях , выполняемых над матрицей. Такими преобразованиями будем считать:

вычеркивание строки состоящей из нулей;

прибавление к элементам одной из строк соответствующих элементов других строк, умноженных на любое число;

перестановку двух столбцов.

Теорема 1.3. Элементарные преобразования не изменяют ранга матрицы.

Д о к а з а т е л ь с т в о. Преобразование 1 следует из теоремы о линейной комбинации элементов любой строки матрицы. В самом деле, так как нулевая строка не может быть базисной, то её исключение, как и включение, не изменит ранга матрицы.

Преобразование 3 очевидно, так как перестановка двух столбцов матрицы не нарушает никаких линейных зависимостей между её строками.

Остается рассмотреть преобразование 2. Пусть к k элементам i -ой строки матрицы А прибавляются соответствующие элементы j -ой строки, умноженные на число k . Указанное преобразование можно выполнить в два приёма: сначала добавить к матрице А новую строку

с элементами a il + ka jl , вставив её после i -й строки, затем из полученной матрицы вычеркнуть j -ю строку. При первой операции ранг полученной матрицы будет равен рангу матрицы А согласно предложению 1, а при второй операции – согласно предложению 2.

Т е о р е м а д о к а з а н а.

Метод Гаусса вычисления ранга матрицы заключается в том, что путем элементарных преобразований можно привести данную матрицу А к виду

b 1 l b 1 2 … b 1 r … b 1 n

B = 0 b 22 … b 2r … b 2n

0 0 … b rr … b rn

в котором все диагональные элементы b 1 l , b 22 , …, b rr отличны от нуля, а элементы других строк, расположенные ниже диагональных, равны нулю.

Учитывая, что ранг не меняется при элементарных преобразованиях, имеем rang A = rang B .

Пример 1. Вычислить ранг матрицы

1 –2 –1 3

Р е ш е н и е. Выберем минор второго порядка, стоящий в верхнем левом углу:

М 2 = 1 –2 = 4.

Так как М 2 ≠ 0, то, следовательно, ранг матрицы не меньше двух. Составляем миноры третьего порядка, окаймляющие минор второго порядка отличный от нуля. Для этого добавим к М 2 третью строку и третий столбец:

М 3 = 2 0 1 = 2 + 4 + 2 – 8 = 0.

Заменим третий столбец четвертым:

М′ 3 = 2 0 –1 = –2 – 12 – 2 + 16 = 0.

В миноре М 3 заменим третью строку четвертой:

1 –2 –1

М″ 3 = 2 0 1 = –14 + 12 + 6 – 4 = 0.

В миноре М′ 3 заменим третью строку четвертой:

1 –2 3

М′″ 3 = 2 0 –1 = 14 – 36 – 6 + 28 = 0.

Все миноры третьего порядка, окаймляющие минор второго порядка, равны нулю. А это значит, что rang A = 2.

Пример 2. Найти ранг матрицы

1 2 3 4 5

Р е ш е н и е. Произведем следующие элементарные преобразования над матрицей А . Путем умножения элементов строк на числа и сложения их с соответствующими элементами других строк добьемся, чтобы все элементы первого столбца, кроме первого, были бы нулями. Один нуль там уже имеется, поэтому, сложив четвертую строку со второй, умноженной на два, получим

1 2 3 4 5

Применим теперь элементарные преобразования таким образом, чтобы в матрице В все элементы второго столбца, кроме первых двух, были бы нулями. Один нуль там уже имеется, поэтому, сложив четвертую строку со второй, умноженной на 2, получим

Оставив три строки матрицы С без изменения и сложив четвертую строку с третьей, умноженной на –1, получим

1 2 3 4 5

Очевидно, что ранг матрицы D равен трем, так как минор третьего порядка

1 2 5

а все миноры четвертого порядка, окаймляющие минор М , равны нулю. На основании теоремы 1.3. заключаем, что rang А = 3.

Глава II. Системы линейных уравнений.

2.1. Основные понятия

В самом общем случае система линейных уравнений имеет следующий вид:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ; (13)

a m1 x 1 + a m2 x 2 + …+ a mn x n = b m ;

где х 1 , х 2 , … , х n — неизвестные, значения которых подлежат нахождению. Как видно из структуры системы (2.1), в общем случае число неизвестных не обязательно должно быть равно числу уравнений самой системы. Числа а 11 , а 12 , … , а mn называются коэффициентами системы , а b 1 , b 2 , … , b m — её свободными членами. Для удобства коэффициенты системы а ij

( i = 1, 2, . . ., m ; j = 1, 2, . . .,n ) и свободные члены b i ( i=1, 2, . . .,m ) снабжены индексами. Первый индекс коэффициентов а ij соответствует номеру уравнения, а второй индекс – номеру неизвестной х i , при которой коэффициент поставлен. Индекс свободного члена b i соответствует номеру уравнения, в которое входит b i .

Дадим определения некоторых понятий, необходимых при изучении системы уравнений. Решением системы уравнений (13) называется всякая совокупность чисел α 1 , α 2 , α n , которая будучи поставлена в систему (13) на место неизвестных х 1 , х 2 , …, х n , обращает все уравнения системы в тождества. Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если не имеет решений. Совместная система уравнений называется определенной , если она имеет одно единственное решение, и неопределенной , если она имеет по крайней мере два различных решения.

Две системы уравнений называются равносильными или эквивалентными , если они имеют одно и тоже множество решений.

2.2. Система n линейных уравнений с n

неизвестными. Правило Крамера.

Пусть дана система n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ; (14)

a n1 x 1 + a n2 x 2 + …+ a nn x n = b n ;

Определителем системы (14) называется определитель, составленный из коэффициентов а ij .

a 11 a 12 … a 1n

∆ = a 21 a 22 … a 2n

a n1 a n2 … a nn

Рассмотрим случай, когда ∆ ≠ 0. Докажем, что в этом случае система (14) является определенной, т.е. имеет одно единственное решение. Как и ранее, через А ij будем обозначать алгебраическое дополнение элемента а ij в определителе ∆.

Умножим каждое уравнение системы (14) на алгебраические дополнения элементов i -го столбца определителя ∆ , т.е. первое уравнение умножим на А 1i , второе – на А 2i и т.д., наконец, последнее уравнение – на А ni , а затем все полученные уравнения системы сложим. В результате будем иметь

( a 11 x 1 + a 12 x 2 + …+ a 1i x i + …+ a 1n x n ) A 1i + ( a 21 x 1 + a 22 x 2 + …+ a 2i x i +

+ …+ a 2n x n ) A 2i + …+ ( a n1 x 1 + a n2 x 2 + …+ a ni x i + …+ a n x nn ) A ni = b 1 A 1i + b 2 A 2i + …+ b n A ni

или, сгруппировав члены относительно известных x 1 , x 2 , …, x n , получим

( a 11 A 1i + a 21 A 2i + …+ a n1 A ni ) x 1 + … +

+ ( a 1i A 1i + a 2i A 2i + …+ a ni A ni ) x i + … +

+ ( a 1n A 1i + a 2n A 2i + …+ a nn A ni ) x n =

= b 1 A 1i + b 2 A 2i + …+ b n A ni . (15)

Коэффициент при неизвестной х i равен определителю ∆, а коэффициенты при всех других неизвестных равны нулю. Свободный

член уравнения (15) отличается от коэффициента при х 1 тем, что коэффициенты а 1i , а 2i , …, а ni заменены свободными членами

b 1 , b 2 , …, b n уравнения (14). Следовательно, выражение

b 1 A 1i + b 2 A 2i + …+ b n A ni есть определитель i -го порядка, отличающийся от определителя только i -м столбцом, который заменен столбцом свободных членов. Обозначив этот определитель ∆ x i , будем иметь

a 11 a 12 … b 1 … a 1n

Доклад по математике на тему: «Виды уравнений и способы их решения»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И МОЛОДЕЖНОЙ ПОЛИТИКИ КАМЧАТСКОГО КРАЯ

КРАЕВОЕ ГОСУДАРСТВЕННОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧЕРЕЖДЕНИЕ «КАМЧАТСКИЙ ИНДУСТРИАЛЬНЫЙ ТЕХНИКУМ»

Доклад по математике на тему:

«Виды уравнений и способы их решения»

Малиновская Вероника Андреевна

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположила материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попыталась показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стала ограничиваться только действительным решением, но и указала комплексное, так как считаю, что иначе уравнение просто не законченно. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений.

Математика. выявляет порядок,

симметрию и определенность,

а это – важнейшие виды прекрасного.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37. «, — поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата – «Китаб аль-джебер валь-мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

1. УРАВНЕНИЯ. АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв). Для записи тождества наряду со знаком также используется знак .

Пример: 5 *7 – 6 = 20 + 9

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита: ,, c , . – или теми же буквами, снабженными индексами:, , . или , , . ); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита: x , y , z . По числу неизвестных уравнения разделяются на уравнения с одним, двумя, тремя и т. д. неизвестными

Решением уравнения называют такой буквенный или числовой набор неизвестных, которые обращает его в тождество (соответственно числовое или буквенное). Часто решение уравнения называют его также его корнем.

1.1. Линейное уравнение

Линейным уравнением с одним неизвестным называют уравнение вида

ax + b = c , где a ≠ 0

Это уравнение имеет единственное решение:

1.2 Квадратное уравнение

Квадратным уравнением с одним неизвестным называют уравнение вида

a + bx + c = 0, где a ≠ 0

Дискриминантом квадратного уравнения называют число D =

Справедливы следующие утверждения

Если D 0 , то уравнение решений не имеет

Если D = 0 , то уравнение имеет единственное решение

Если D 0, то уравнение имеет 2 решения

Обе эти формулы часто записывают в виде

1.2.1 Неполное квадратное уравнение

Неполным квадратным уравнением называют квадратное уравнение, в котором хотя бы один из коэффициентов b или c равен нулю.

При c =0, уравнение принимает вид:

a+ bx = 0 или x (ax + b) = 0

т.е. либо х=0, либо ax + b = 0, откуда х=0,

При b =0, уравнение принимает вид: a + c = 0

если выражение 0, то уравнение решений не имеет

если с=0, то уравнение имеет единственное решение: х=0

если выражение, 0,то решений два:

1.2.2 Приведённое квадратное уравнение. Теорема Виета

Приведённым квадратным уравнением называют уравнение вида

т.е. квадратное уравнение, в котором первый коэффициент равен единице.

Любое квадратное уравнение можно сделать приведённым. Для этого достаточно каждый коэффициент данного уравнения разделить на первый коэффициент, т.е. на а

Теорема Виета : Если приведённое квадратное уравнение имеет действительные корни, то их сумма равна второму коэффициенту, взятому со знаком минус, т.е. –p, а их произведение- свободному члену q.

Теорема, обратная теореме Виета : Если сумма двух чисел и равна числу –p, а их произведение равно числу q, то они являются корнями приведённого квадратного уравнения + px + q =0

Пример: Используя теорему, обратную теореме Виета, найти корни уравнения

Это уравнение имеет целые корни, Корни легко угадать: это действительно: (-1) * (-2) = 2 и (-1) +(-2) = -3. Значит, числа -1 и -2 являются корнями данного уравнения.

Уравнение вида a + b + c = 0 называют биквадратным

Такое уравнение решается методом замены переменной. Обозначим , тогда . Заметим что t ≥ 0, так как t = исходное уравнение имеет вид

Т.е. является обыкновенной квадратным уравнением, которое решается по приведенной выше схеме.

Пусть и – корни полученного квадратного уравнения. Если > 0 и , исходное биквадратное уравнение имеет четыре корня:

Если одно из чисел или отрицательно, а другое неотрицательно, то имеем два корня, либо один ( x = 0).

Введение нового переменного – наиболее распространенный метод решения самых разных уравнений.

Решение. Обозначим и заметим, что t ≥ 0

Тогда исходное уравнение примет вид:

Так как D > 0, то полученное квадратное уравнение имеет два корня

Оба эти корня удовлетворяют условию (*) следовательно, уравнение имеет четыре действительных решения

Разложение квадратного трёхчлена на множители

Из теоремы Виета следует очень важное утверждение:

теорема о разложении квадратного трёхчлена на множители.

Если квадратное уравнение a + bx + c = 0, где a ≠ 0 имеет действительные корни то квадратный трёхчлен

a + bx + c = 0 раскладывается на множители следующим образом: a + bx + c = а ( х- ) ( х — )

Пример: Разложить н множители выражение 3 + 5 x

Решение: Найдём корни уравнения 3 + 5 x = 0

По теореме о разложении квадратного трёхчлена на множители имеем:

Уравнение, содержащие переменную под знаком модуля

Модулем числа называют само это число, если оно неотрицательно, либо число — | |.

Формальная запись этого определения такова:

При решении уравнений, содержащих переменную плд знаком модуля, используется определение модуля.

пример: решить уравнение: | |=

решение: по определению модуля:

Говорят, что выражение модулем меняет свой знак в точке x =1, поэтому все множество чисел разбивается на два числовых промежутка.

а) При x ≥ 1 исходное уравнение принимает вид:

Уравнения, содержащие один знак радикала второй степени

Возведение обеих частей уравнения в степень

При возведении обеих частей уравнения в четную степень (в частности, в квадрат) получается уравнение, неравносильному исходному.

Кроме корней исходного уравнения могут появиться посторонние корни, т.е. числа, являющиеся решениями возведенного в четную степень уравнения, но не являющимися корнями исходного уравнения.

Избавиться от посторонних корней помогает непосредственная проверка полученных корней в исходном уравнении, т.е. корни поочередно подставляет в начальное уравнение и проверяют, верное ли получается числовое неравенство.

Пример. Решить уравнение

Решение возведем обе части уравнения в квадрат. Имеем:

Проверка. При но 1 ≠ -1 следовательно корень x =-1 посторонний

При x = 2; так как 2=2, то проверяемое число действительно является корнем исходного уравнения

1.7 Тригонометрические уравнения

Решение: так как то уравнение можно переписать следующим образом:

2 ( 1 — ) + 7 — 5 = 0, т.е. 27

Полагая, что = y , приходим к квадратному уравнению

2 – 7 y + 3 = 0, откуда = = 3, и получаем совокупность двух простейших уравнений

Первое из них имеет решение

, а второе решений не имеет

1.8 Системы уравнений

Система уравнений состоит из двух и более алгебраических уравнений.

Решением системы называют такой набор значений переменных, который при подстановке обращает каждое уравнение системы в числовое или буквенное тождество.

Решить систему – значит найти все её решения или доказать, что их нет.

2. СПОСОБЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ

Рассмотрим несколько способов решения систем уравнений

2.1 Графический способ решения системы уравнений

Решение. Каждое уравнение системы задаёт линейную функцию. Построим графики этих уравнений в одной системе координат. Координаты пересечений графиков обращают оба уравнения системы в верные равенства. Решением системы является пара значений переменных: х=1,у=1. Ответ можно записать так: ( 1; 1 )

Графический способ решения систем уравнения состоит в следующем:

Строятся графики каждого уравнения системы

Определяются точки пересечения графиков

Записывается ответ: координаты точек пересечения построенных графиков.

2.2 Метод подстановки

Решение: Из первого уравнения выразим x через y :

Подставив полученное выражение во второе уравнение системы, получим уравнение с одним неизвестным

Подставив это число в выражение

Получим ответ: x = 3

Алгоритм решения систем уравнений методом подстановки

Из одного уравнения системы одна переменная выражается через другую.

Полученное выражение подставляется во второе уравнение системы.

Решается полученное после подстановки уравнение

Полученное решение подставляется в выражение из п.1

Если при решении последнего уравнения получается тождество 0=0, то это означает, что исходная система имеет бесконечное множество решений вида (х, у), каждое из которых удовлетворяет первому уравнению системы. Если же при тождественных преобразованиях последнего уравнения получится неверное числовое равенство, то система решений не имеет.

2.3 Метод сложения

Решение: Домножим первое уравнение системы на 2, а второе — на 3. Сложим получившиеся уравнения почленно и запишем результат вместо второго уравнения системы.

Числа, на которые домножают уравнения перед сложением, выбирают так, чтобы при суммировании коэффициент перед одной из переменных стал равен нулю.

В результате преобразований уравнений системы и замены одного из уравнений результатом суммирования других получены равносильные системы.

Две системы называют равносильными, если каждое решение одной системы является решением другой системы и наоборот.

2.4 Метод введения новой переменной

При решении систем нелинейных уравнений, как правило, применя-ются различные комбинации нескольких методов решения систем.

Решение. Преобразуем второе уравнение системы воспользовавшись формулой сокращенного умножения

Из первого уравнения системы x — y =1; подставим 1 во второе уравнение. Запишем получившуюся систему:

К этой системе уже вполне применим метод – выразить одно неизвестное из первого уравнения системы и подставить во второе:

Математика, как и любая другая наука не стоит на месте, вместе с развитием общества меняются и взгляды людей, возникают новые мысли и идеи. И XX I век не стал в этом смысле исключением. Появление компьютеров внесло свои корректировки в способы решения уравнений и значительно их облегчило. Но компьютер не всегда может быть под рукой (экзамен, контрольная), поэтому знание хотя бы самых главных способов решения уравнений необходимо знать. Использование уравнений в повседневной жизни – редкость. Они нашли свое применение во многих отраслях хозяйства и практически во всех новейших технологиях.

В данной работе были представлены далеко не все, способы решения уравнений и даже не все их виды, а только самые основные. Я надеюсь, что мой доклад может послужить неплохим справочным материалом при решении тех или иных уравнений. В заключении хотелось бы отметить, что при написании данного доклада я не ставила себе цели показать все виды уравнений, а излагал лишь имеющийся у меня материал.

На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.


источники:

http://www.bestreferat.ru/referat-46762.html

http://infourok.ru/doklad-po-matematike-na-temu-vidi-uravneniy-i-sposobi-ih-resheniya-3699326.html

Название: Способы решения систем линейных уравнений
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:42:34 10 июля 2005 Похожие работы
Просмотров: 13600 Комментариев: 22 Оценило: 14 человек Средний балл: 3.9 Оценка: 4 Скачать