Теплоемкость при изопроцессах уравнение майера

Теплоемкость при изопроцессах уравнение майера

Теплоёмкость идеального газа. Уравнение Майера

Теплоёмкость тела характеризуется количеством теплоты, необходимой для нагревания этого тела на один градус:

(4.2.1)

Однако, теплоёмкость – величина неопределённая, поэтому пользуются понятиями удельной и молярной теплоёмкости.

Удельная теплоёмкостьуд) есть количество теплоты, необходимое для нагревания единицы массы вещества на 1 градус [Cуд] = Дж/К.

Для газов удобно пользоваться молярной теплоемкостью количество теплоты, необходимое для нагревания 1 моля газа на 1 градус:

(4.2.2)

Из п. 1.2 известно, что молярная масса – масса одного моля:

Теплоёмкость термодинамической системы зависит от того, как изменяется состояние системы при нагревании.

Если газ нагревать при постоянном объёме, то всё подводимое тепло идёт на нагревание газа, то есть изменение его внутренней энергии. Теплоёмкость при этом обозначается СV.

СР – теплоемкость при постоянном давлении. Если нагревать газ при постоянном давлении Р в сосуде с поршнем, то поршень поднимется на некоторую высоту h, то есть газ совершит работу (рис. 4.2).

Итак, проводимое тепло и теплоёмкость зависят от того, каким путём осуществляется передача тепла. Значит, Q и С не являются функциями состояния.

Величины СР и СV оказываются связанными простыми соотношениями. Найдём их.

Пусть мы нагреваем один моль идеального газа при постоянном объёме(dA = 0). Тогда первое начало термодинамики запишем в виде:

,(4.2.3)

Теплоемкость при постоянном объёме будет равна:

,(4.2.4)
,

Из (4.2.4) следует, что

,
,(4.2.5)

Для произвольной идеальной массы газа:

,(4.2.6)

При изобарическом процессе, кроме увеличения внутренней энергии, происходит совершение работы газом:

.
.(4.2.7)
.(4.2.8)

Из этого следует, что физический смысл универсальной газовой постоянной в том, что R – численно равна работе, совершаемой одним молем газа при нагревании на один градус в изобарическом процессе.

Используя это соотношение, Роберт Майер в 1842 г. вычислил механический эквивалент теплоты: 1 кал = 4,19 Дж.

Полезно знать формулу Майера для удельных теплоёмкостей:

Уравнение Майера

Уравнение Майера связывает теплоемкости идеального газа в двух изопроцессах, тогда перейдем к самому его определению.

Теплоемкость. Уравнение Майера

Переданное телу количество теплоты для его нагревания на 1 К получило название теплоемкости тела данной системы. Обозначение принимается буквой » С » :

Значение теплоемкости единицы молярной массы тела:

c μ = C v ( 2 ) . Выражение называется молярной теплоемкостью.

Теплоемкость не считается функцией состояния, так как является характеристикой бесконечно близких состояний системы или выражается в качестве функции бесконечно малого процесса, совершаемого в системе. В количественном выражении это означает, что из ( 1 ) , применяя первое начало термодинамики, дифференциальная форма получится:

C = δ Q d T = d U + p d V d T ( 3 ) .

Уравнение Майера для идеального газа

Определение термодинамической системы производится при помощи трех параметров p , V , T . Существующее между ними отношение получило название уравнения состояния. Для идеального газа используется уравнение Менделеева-Клапейрона. Данная связь запишется в виде:

p = p ( T , V ) или T = T ( p , V ) , V = V ( p , T ) .

При выборе независимых переменных в качестве V и T внутренняя энергия системы выражается в виде функции U = U ( T , V ) . Получим, что значение полного дифференциала от внутренней энергии примет вид:

d U = ∂ U ∂ T V d T + ∂ U ∂ V T d V ( 4 ) .

Произведем подстановку из ( 4 ) в ( 3 ) , тогда

c = ∂ U ∂ T V d T + ∂ U ∂ V T d V + p d V d T = ∂ U ∂ T V + p + ∂ U ∂ V T d V d T ( 5 ) .

Исходя из формулы ( 5 ) , теплоемкость находится в зависимости от процесса. Если он изохорный, то

Значение теплоемкости изохорного процесса запишется как:

C V = ∂ U ∂ T V ( 6 ) .

При изобарном теплоемкость выражается через формулу:

C p = ∂ U ∂ T V + p + ∂ U ∂ V T ∂ V ∂ T p = C V + p + ∂ U ∂ V T ∂ V ∂ T p ( 7 ) .

Перейдем к рассмотрению исследуемой системе идеального газа. Запись малого приращения энергии идеального газа:

d U = i 2 v R d T ( 8 ) .

d U d V T = 0 ( 9 ) .

Состояние идеального газа описывается при помощи уравнения Менделеева-Клапейрона:

∂ V ∂ T p = v R p ( 11 ) .

Произведем подстановку в ( 7 ) из ( 10 ) и ( 11 ) :

C p = C V + p + 0 v R p = C V + v R ( 12 ) .

Выражение ( 12 ) называют выведенным соотношением Майера.

Или для молярных теплоемкостей:

C μ p = C μ V + R ( 13 ) .

Найти удельную теплоемкость смеси 16 г кислорода и 10 г гелия в процессе с постоянным давлением.

Если Q считается количеством тепла, получаемым смесью газов в процессе, то

Q = c p m ∆ T ( 1 . 1 ) , где m является массой смеси, c p – удельной теплоемкостью смеси при неизменном давлении.

Q O 2 — это количество тепла, получаемое кислородом:

Q O 2 = c p O 2 m O 2 ∆ T ( 1 . 2 ) , m O 2 выражается массой кислорода, c p O 2 – теплоемкостью кислорода с постоянным давлением.

Для гелия аналогично:

Q H e = c p H e m H e ∆ T ( 1 . 3 ) .

Кроме этого рассмотрим:

Q = c p m ∆ T = Q O 2 + Q H e = c p O 2 m O 2 ∆ T + c p H e m H e ∆ T ( 1 . 4 ) .

Нахождение массы смеси производится по закону сохранения массы:

m = m O 2 + m H e ( 1 . 5 ) .

Произведем выражение теплоемкости c p из ( 1 . 4 ) , учитывая ( 1 . 5 ) . Тогда имеем:

c p = c p O 2 m O 2 + c p H e m H e m O 2 + m H e ( 1 . 6 ) .

Существует связь между молярной теплоемкостью и удельной:

c μ = c · μ → c = c μ μ ( 1 . 7 ) .

Если c μ V = i 2 R , то по уравнению Роберта Майера c μ p = c μ V + R :

c μ p = i + 2 2 R ( 1 . 8 ) ; i H e = 3 , i O 2 = 5 .

В данном случае удельные теплоемкости запишутся как:

c p H e = 5 2 R μ H e , c p O 2 = 7 R 2 μ O 2 ( 1 . 9 ) .

Результатом будет записанная формула удельной теплоемкости смеси:

c p = 7 R 2 μ O 2 m O 2 + 5 2 R μ H e m H e m O 2 + m H e ( 1 . 10 ) .

c p = 3 , 5 · 8 , 31 · 16 32 + 2 , 5 · 8 , 31 · 10 4 26 = 14 , 5 + 51 , 94 26 = 2 , 56 Д ж г К .

Ответ: удельная теплоемкость смеси равняется 2 , 56 Д ж г К .

При проведении опытов Джоулем было получено, что с μ p — c μ V = 1 , 986 к а л К · м о л ь . Значение газовой постоянной, измеренной в механических единицах R = 8 , 314 · 10 7 э р г К · м о л ь . Определите, как соотносятся 1 к а л , э р г , Д ж .

Основой решения данного задания принято считать уравнение Майера, формула записывается:

с μ p = c μ V + R → c μ p — c μ V = R ( 2 . 1 ) .

Отсюда получим, что:

c μ p — c μ V = 1 , 986 к а л К · м о л ь = 8 , 314 · 10 7 э р г К · м о л ь → 1 к а л = 4 , 18 · 10 7 э р г = 4 , 18 Д ж .

Ответ: 1 к а л = 4 , 18 · 10 7 э р г = 4 , 18 Д ж .

Уравнение Майера

Вы будете перенаправлены на Автор24

Что такое теплоемкость

Так как данный раздел посвящен уравнению Майера, а это уравнение, связывающее теплоемкости идеального газа в двух изопроцессах, то напомним само определение теплоемкости.

Количество теплоты, переданное телу с целью нагреть его на $1К$ — теплоемкость тела (системы). Обычно обозначается «C»:

Теплоемкость единицы молярной массы тела:

Теплоемкость не является функцией состояния, она — характеристика двух бесконечно близких состояний системы (начального и конечного) или скорее функция бесконечно малого процесса, который совершается в системе. Что это значит в количественном выражении? Из уравнения (1) и при использовании первого начала термодинамики в дифференциальной форме запишем:

Три параметра термодинамической системы

Термодинамическая система однозначно определяется тремя параметрами (p,V,T). Между ними существует соотношение — уравнение состояния. Для идеального газа, например, уравнение Менделеева — Клайперона. В общем виде функциональная связь:

\[p=p\left(T,V\right)\ или\ T=T\left(p,V\right),\ V=V(p,T)\]

в зависимости от выбора. Если в качестве независимых переменных выбраны V и T, то внутренняя энергия системы будет функцией U=U(T,V), тогда полный дифференциал от внутренней энергии будет иметь вид:

Подставим (4) в (3), получим:

Из формулы (5) очевидно, что теплоемкость зависит от процесса. Так, если процесс изохорный, то

Тогда теплоемкость в изохорном процессе имеет вид:

Если процесс изобарный, то теплоёмкость для изобарного процесса будет иметь вид:

Рассмотрим в качестве исследуемой системы идеальный газ. Малое приращение внутренней энергии идеального газа можно записать в виде:

Состояние идеального газа описывается уравнением Менделеева — Клайперона:

\[pV=\nu RT\ \left(10\right).\]

Подставим (10) и (11) в (7), получим:

\[C_p=C_V+\left[p+0\right]\frac<\nu R>

=C_V+\nu R\ \left(12\right).\]

Уравнение (12) называется соотношением Майера.

Или для молярных теплоемкостей:

Задание: Найти удельную теплоемкость смеси 16 грамм кислорода и 10 грамма гелия в процессе при постоянном давлении.

Если $Q$ — количество тепла, которое получает смесь газов в процессе, то

\[Q=c_pm\triangle T\ \left(1.1\right),\]

где $m$ — масса смеси, $c_p$- удельная теплоемкость смеси при постоянном давлении.

$Q_$ — количество тепла, которое получает кислород:

$m_$ — масса кислорода, $_$- теплоемкость кислорода при постоянном давлении.

Для гелия аналогично:

Кроме того, мы знаем, что:

Масса смеси находится по закону сохранения массы:

Выразим теплоемкость смеси $c_p$из (1.4), учитывая (1.5), получим:

Зная, что молярная теплоемкость с удельной связана, как:

Если $с_<\mu V>=\frac<2>R$, следовательно из соотношения Майера ($с_<\mu p>=с_<\mu V>+R$):

Удельные теплоемкости в таком случае:

В результате, формула для удельной теплоёмкости смеси:

Ответ: Удельная теплоемкость смеси 2,56 $\frac<Дж><гК>$.

Задание: В своих опытах Джоуль получил, что $с_<\mu p>-с_<\mu V>=1,986\frac<кал><К\cdot \ моль>$. Газовая постоянная измеренная в механических единицах $R=8,314\cdot <10>^7\frac<эрг><К\ моль>$. Определите, как соотносятся 1 кал, эрг и Дж.

В качестве основы решения примем уравнение Майера:

Ответ: $1кал=4,18\cdot <10>^7эрг=4,18\ Дж$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 26 11 2021


источники:

http://zaochnik.com/spravochnik/fizika/termodinamika/uravnenie-majera/

http://spravochnick.ru/fizika/termodinamika/uravnenie_mayera/