Термодинамика потоков уравнение энергии газового потока

ТЕРМОДИНАМИКА ГАЗОВОГО ПОТОКА

4.1. Уравнения и параметры движущегося газа

В рассмотренных выше процессах не учитывалась кинетическая энергия рабочего тела. Однако в теплотехнике широко распространены энергетические установки, в которых преобразование энергии осуществляется в движущемся газе. Такие процессы происходят в турбинах, реактивных двигателях, лопаточных и струйных компрессорах и т.п.

Рассмотрим уравнения термодинамики для стационарного одномерного потока идеального газа.

Для газового потока в любом сечении справедливо уравнение состояния, записанное через плотность:

где p – давление в рассматриваемом сечении;

ρ – плотность газа в этом сечении;

R – газовая постоянная;

T – термодинамическая температура (температура, которую покажет в данном сечении безинерционный термометр, перемещающийся со скоро-стью газового потока).

В термодинамике величину скорости потока газа обозначают с и измеряют в м/с. Часто с целью количественной оценки величины скорости потока ее сравнивают со скоростью распространения слабых возмущений в среде газа. При выведении газа из равновесия в каком-либо месте в нем возникает движение частиц. Эти возмущения передаются по всему газу (подвижному и неподвижному) с так называемой с к о р о с т ь ю з в у к а. Скорость звука обозначается a, измеряется в м/с и вычисляется поизвестной из физики формуле:

. (4.2)

Если c – сверхзвуковой.

4.1.1. Уравнение энергии

В движущемся газе выделим сечениями 1-1 и 2-2, Рис. 4.1, участок потока.

На основании первого закона термодинамики для энергоизолирован- ного потока (данная система не обменивается теплотой и работой с окружающей средой) можем записать Е1 = Е2. Отсюда для m = 1кг газа уравнение (1.7) в сечениях потока будет иметь вид:

= .

Это означает, что для любого сечения потока газа сумма энтальпии и кинетической энергии одинакова, т.е.

. (4.3)

Выражение (4.3) называют у р а в н е н и е м э н е р г и и потока газа. Из него следует, что изменить скорость газа в потоке можно лишь только за счет изменения энтальпии.

Уравнение энергии можно записать в другом виде. Продифференцируем выражение (4.3) и получим: cdc = — di. Из первого закона термодинамики, записанного в виде dq = di -vdp, при dq = 0 следует, что di = vdp. Тогда

Выражение (4.4) приписывают Д. Бернулли, поэтому в технической литературе его называют у р а в н е н и е м Б е р н у л л и.

Это уравнение устанавливает связь скорости с давлением. Из него следует, что для увеличения скорости (dc > 0) необходимо снижение давления (dp

В окончательном виде формула температуры торможения имеет вид:

. (4.5)

Используя адиабатную связь между температурой и давлением, получим формулу для давления торможения:

. (4.6)

Плотность ρ0 определяется по p0 и T0 из уравнения (4.1).

4.1.3. Уравнение скорости движения газа

Уравнение скорости движения газа в произвольном сечении потока получим из уравнения энергии. Пусть газ вытекает из емкости, где его скорость была равна нулю. Тогда уравнение энергии для произвольного сечения потока газа и для сечения, где c = 0, будет иметь вид:

.

c = = .

Если отношение температур заменить отношением давлений, то

c= . (4.7)

Из выражения (4.7) следует, что величина скорости газа в рассматриваемом сечении потока зависит от природы газа, от параметров в его исходном (заторможенном) состоянии и от давления газа в рассматриваемом сечении.

4.1.4. Уравнение расхода

Термодинамика газового потока в основном рассматривает стационарное движение газа. Это означает, что через все сечения канала в любой момент времени протекает одно и то же массовое количество газа. Обозначается секундный массовый расход , который измеряется в кг/с. Уравнение для вычисления секундного массового расхода выводится в дисциплине “Газовая динамика”. Оно имеет вид:

. (4.8)

Выразим секундный массовый расход через параметры заторможенного газового потока, для чего в выражение (4.8) вместо c подставим его значение (4.7), а плотность представим в виде

.

(4.9)

4.2. Течение газа в каналах

4.2.1. Уравнение обращения воздействия

Каналы, в которых газовый поток увеличивает свою скорость, называются с о п л а м и. Каналы, скорость в которых уменьшается, именуют д и ф -ф у з о р а м и. Геометрическая форма сопел может быть различной. Это зависит от того, каково внешнее воздействие на газовый поток.

В 1948 г. А.А. Вулис получил зависимость, выражающую связь геометрии сопла с характером внешнего воздействия на поток. Для неэнергоизолированного движения газа зависимость Вулиса имеет вид:

. (4.10)

Здесь первое слагаемое правой части уравнения выражает г е о м е т-

р и ч е с к о е в о з д е й с т в и е на движущийся газ, второе – м а с с о в о е, третье – т е п л о в о е и четвертое – м е х а н и ч е с к о е. Уравнение (4.10) является математическим выражением принципа обращения воздействия, суть которого состоит в том, что характер влияния каждого воздействия на газовый поток противоположен при сверхзвуковых и дозвуковых течениях газа.

Проанализируем лишь геометрическое воздействие. В этом случае из уравнения (4.10) следует:

. (4.11)

При дозвуковом течении газа (Мa 0, а в расширяющемся, где dF > 0, – тормозиться, т.е. dc 1) знаки у величин dc/c и dF/F одинаковые. Следовательно, для увеличения скорости необходим расширяющий канал, а для торможения — сужающийся.

Таким образом, канал для разгона газового потока до сверхзвуковой скорости должен быть сужающе-расширяющимся и иметь вид, представленный на рис. 4.2. Впервые канал такой формы предложил шведский инженер Лаваль, в его честь такие каналы именуют соплами Лаваля.

4.2.2 Течение газа в соплах Лаваля

При движении газа вдоль сверхзвукового геометрического сопла своеобразно изменяются его параметры. Для выявления характера изменения давления по длине сопла из уравнений (4.4) и (4.11) можно получит выражение:

Из анализа данного уравнения следует, что давление вдоль сопла уменьшается. Кривая давления в дозвуковой части сопла имеет выпуклый вид, а в сверхзвуковой – вогнутый. Температура вдоль сопла уменьшается, так как процесс расширения газа адиабатный. С такой же закономерностью уменьшается по длине сопла и скорость звука.

Характер изменения скорости вдоль сопла устанавливается уравнением Бернулли (4.4), записанным в виде:

.

В сужающейся части сопла это вогнутая кривая. а в расширяющейся – выпуклая, асимптотически приближающаяся к максимально возможной скорости при р = 0. Качественные изменения давления, температуры, скорости звука и скорости потока по длине геометрического сопла представлены на рис.4.3 .Характерным для канала такой формы является участок перехода дозвукового течения в сверхзвуковой.

Сечение канала, в котором скорость потока достигает величины, равной местной скорости звука, называют к р и т и ч е с к и м .

Параметры газа в критическом сечении обозначают: скр, ркр, Ткр, ρкр, , и т.д.

Получим выражение для ркр и Ткр через параметры торможения. В критическом сечении , следовательно:

После незначительных преобра –

. (4.12)

,

Величина β определяется только

значением показателя адиабаты к . Рис. 4.3

Так, для воздуха при к = 1,4 значение βкр = 0,528. Отсюда следует, что для воздуха критическое давление меньше давления торможения в 1,89 раза.

Значение критической температуры получим из выражения (4.12), заменив отношение давлений отношением температур:

Ткр= Т0 (4.13)

Теперь выражение для критической скорости можно представить в другом виде:

скр = . (4.14)

Скорость газа в каждом сечении сопла и на выходе из него вычисляется по формуле (4.7).

Если секундный массовый расход выразить через параметры торможения и площадь критического сечения, то зависимость (4.9) существенно упрощается:

. (4.15)

Если давление газа в выходном сечении сопла равно давлению окружающей среды ( ), то сопло работает на расчетном режиме; при pa >ph газ на выходе из сопла недорасширяется. Возможны режимы работы сопел, когда давление на выходе в потоке незначительно меньше давления окружающей среды (pa

4.2.3. Дросселирование газа и пара

Д р о с с е л и р о в а н и е м называют процесс понижения давления в газовом потоке при преодолении местного сопротивления в канале.

При дросселировании газа или пара протекает необратимый процесс снижения давления без совершения внешней работы. Если в канале имеется местное сопротивление в виде резкого сужения вида перегородки с отверстием, задвижки, клапана и т.п., то газовый поток перестраивает свою геометрическую форму, как до сужения, так и после него. Перестройка формы потока и перетекание через само сужение связано с образованием вихревых движений газа. Часть кинетической энергии потока идет на образование вихрей, часть – на преодоление сопротивления трения. Затраченная на это энергия необратимо превращается в теплоту, которая воспринимается газом. Поэтому давление после местного сопротивления не восстанавливается до первоначального. Изменение давления, скорости и температуры по длине канала приведено на рис.4.4. Скорость газа при протекании его через сужение возрастает, что вызывает снижение давления и температуры. После сужения скорость понижается, но давление, вследствие указанных причин, не восстанавливается до первоначального.

Степень снижения давления газа при дросселировании зависит от природы газа и его состояния, относительной величины сужения, скорости газа. Обозначим степень снижения давления через ; тогда ее величина будет равна:

,

где ∆р – величина снижения давления;

р – давление на входе в сужение.

В энергетических установках дросселирование нежелательно, т.к. при падении давления снижаются энергетические возможности газа. Но иногда дросселирование является необходимым и создается искусственно, например, в редукторах, регуляторах и т.п.

При термодинамическом анализе особенностей процесса дросселирования целесообразно использовать общее уравнение энергии:

В канале можно обеспечить с1 = с2 , тогда i1 =i2. Из чего следует, что энта-

льпия газа в процессе дросселирования

остается постоянной. Рис. 4.4

Этот вывод справедлив как для идеальных, так и для реальных газов. При дросселирования идеального газа Т1 = Т2 , поскольку i1 = i2 . Это значит, что для идеального газа температура после дросселирования равна температуре на входе в дроссель.

Для реального газа изменение температуры при его дросселировании в отличие от идеального газа имеет своеобразный характер. Как показывают опыты, температура реального газа в результате дросселирования повышается, понижается или не изменяется. Это свойство впервые обнаружили ученые Д. Джоуль и У. Томсон, поэтому оно носит название э ф ф е к т а Д ж о у л я-Т о м с о н а.

Используя дифференциальные уравнения, связывающие i, s, ρ и T, можно получить для газа, подчиняющегося уравнению Ван-дер-Ваальса, следующую зависимость:

(4.16)

Отношение бесконечно малого изменения температуры к бесконечно малому изменению давления при дросселировании называется д р о с с е л ьэ ф ф е к т о м и обозначается

α =

Так как при дросселировании dp 0, т.е. dT 0 ( при T > ), тогда α 0;

в) = 0 ( при T = ), тогда α = 0, т.е. dT = 0.

Изменение знака дроссель — эффекта α называется и н в е р с и е й,

а температура, при которой dT = 0, называется т е м п е р а т у о й и н в е р с и и и обозначается Tинв .

(4.17)

Рис. 4.4

Понятие температуры инверсии особенно широко используется в холодильной и криогенной технике.

Каждый конкретный газ имеет индивидуальную температуру инверсии. Так, например, для воздуха Тинв = 650 К; для водорода Тинв = 204 К; для водяного пара Тинв= 682 К.

Для установления температуры реального газа после дросселя необходимо сравнить Tвх с Tинв .Если температура газа на входе в дроссель равна его температуре инверсии, то после дросселя она восстановится до прежнего значения. При Tвх Tинв — она возрастет. Характер изменения температуры при дросселировании

Глава 5

Основные уравнения газового потока

Основные уравнения газового потока

  • Если движение газа по каналу стабильно, то одинаковое количество газа в единицу времени протекает по каждому участку канала. В этом случае (рис. 10.1), при определенном расходе газа в каждом участке канала расход газа равен(10.1). Где O-2-й массовый расход газа. Рх, РГ-площадь поперечного сечения канала. w и r-это скорости потока соответствующих поперечных сечений. Определенный объем одного и того же поперечного сечения; формула (10.1) называется уравнением неразрывности или непрерывности, поскольку постоянство массового расхода всех участков канала в каждый момент времени устанавливает условия неразрывности струи.

В рассматриваемом процессе первый закон термодинамики. Форма газа урав-кг газа через канал является = Фунт / + 4-С—(- (3% Си、 (10.2), где же буква «Л». Основное количество тепла, подаваемого или отводимого к газу в целевом участке движения. L / — изменение внутренней энергии газа в соответствующем сечении. го /. ’- Работа газа против внешних сил; С-приращение кинетической энергии газа при движении газа в выбранной области. С ^ а ^ — элемент Сила против работы тары 10.1 Этот компонент в олове; газ можно проигнорировать. Работа газа по противодействию внешним силам движущегося газа — это работа, которая тратится на прессование. Рассмотрим поток газа в канале рис.

За пределами пограничного слоя градиент скорости, нормальный к направлению потока, обычно настолько мал, что вязкостью можно пренебречь. Людмила Фирмаль

В 1-мерном измерении stream. In в разделах/-/и 11-11 различают газы определенной массы. Поток, поступающий в секцию 1-1, действует как поршень, отталкивая газ, заполняющий канал. сила pP действует на массу газа, выделенную в левом канале, а сила (p + Lp) (P4-LR) действует справа. Учитывая признаки работы, признанные в термодинамике, работа движения является Л ’=(П 4-С / П)(П 4-ЛХ) (Н + Ла») — ППУ>-(10 3) Если вы уменьшите небольшое количество 2 или более и отбросите его, это будет выглядеть так: Л ’ — rRLchi 4-Рих / Р 4-shRLr, (10.4) L ’= pL (Pu>) 4-PsLr.

Где N-уравнение неразрывности ТЧ = ТС. Расход потока постоянн и в непрерывной среде Если мы связываем работу против внешних сил с 1 кг газа、 L ’=(1 (ri) = Рио + ойр. (U. Seven) Количество cir, масса экстрагируемого вещества Это за гранью несжимаемости. 2-й член pc1i представляет собой основную работу, выполняемую движущимся телом продукта газа в результате деформации под действием равномерно распределенного давления. При замене работы на внешние силы в уравнениях первого закона термодинамики записывается около 1 кг газа 1е = c1u + c1G + =(1и + С1 (ПУ) 4- = я(п + Пи)+.(10.8) Потому что, как известно,+ ri = I — Си+ .

  • Эта формула показывает, что тепло, подводимое к движущемуся газу, расходуется в двух направлениях: увеличение энтальпии газа и увеличение внешней кинетической энергии. То есть скорость потока газа увеличивается. Формула (10.9) является основой течения газа или пара, она эффективна как для обратимых течений без действия сил трения, так и для необратимых течений с трением.

Для потока, в котором присутствует сила трения, необходимо добавить 2 члена к формуле (10.9).1 учитывает работу, затраченную на преодоление силы трения — / тр, еще 1 представляет собой приращение теплоты газового потока за счет трения-поскольку работа над силой трения проходит полностью, в тепле эти 2 элемента имеют одинаковый размер, а так как знаки различны, то они исчезают друг от друга. Поэтому наличие сил трения не может нарушить общий энергетический баланс.

Это явление, весьма важное для гидродинамики и теории теплообмена, было впервые установлено Людвигам Прандтлем в 1904 г. Людмила Фирмаль

В изолированных потоках газа, если тепло не передается при движении газа ПО КАНАЛУ (1 / = 0)、 Из уравнения (10.10) следует, что в изолированном стационарном потоке газа через канал сумма удельной энтальпии и удельной кинетической энергии остается постоянной. Выражение (10.9), как и в (10.10), справедливо как для обратимых, так и для необратимых flows. It следует отметить, что эти формулы эффективны только в том случае, если газ на ходу выполняет работу расширения и не производит полезной (технической) работы (например, вращение рабочего класса турбины).

Приводимый в движение потоком газа. Первый закон термодинамики (10.8). Вам нужно записать В форме че = ух + ^(Р’) + ^ МС,+ — ^ г — = а + г(ТЭН+ -^ -, (10.11) Здесь/ т» — техническая работа*. Если техническая работа осуществляется потоком, то работа деформации при расширении отдается внешнему потребителю, но в канале она воспринимается соседними элементами, изменяя его кинетическую энергию. Из сравнения формулы (10.11) и формулы первого закона термодинамики (4.9) получается интегральная форма, записанная о выделенных элементах деформированного, но не смещенного потока. ’тек = С П’ ^ + P1V!-.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Тема 6. ТЕРМОДИНАМИКА ГАЗОВОГО ПОТОКА 6.1. УРАВНЕНИЕ ЭНЕРГИИ ГАЗОВОГО ПОТОКА 6.1. УРАВНЕНИЕ ЭНЕРГИИ ГАЗОВОГО ПОТОКА Процессы движения газа, происходящие. — презентация

Презентация была опубликована 6 лет назад пользователемНаталия Ассеева

Похожие презентации

Презентация на тему: » Тема 6. ТЕРМОДИНАМИКА ГАЗОВОГО ПОТОКА 6.1. УРАВНЕНИЕ ЭНЕРГИИ ГАЗОВОГО ПОТОКА 6.1. УРАВНЕНИЕ ЭНЕРГИИ ГАЗОВОГО ПОТОКА Процессы движения газа, происходящие.» — Транскрипт:

1 Тема 6. ТЕРМОДИНАМИКА ГАЗОВОГО ПОТОКА 6.1. УРАВНЕНИЕ ЭНЕРГИИ ГАЗОВОГО ПОТОКА 6.1. УРАВНЕНИЕ ЭНЕРГИИ ГАЗОВОГО ПОТОКА Процессы движения газа, происходящие в различных теплотехнических установках, связаны с преобразованием энергии в газовом потоке. Расчеты рабочих процессов этих установок строятся на общих положениях теории газового потока. Эта теория базируется на основных положениях термодинамики и на ряде допущений, к числу которых относятся следующие: Процессы движения газа, происходящие в различных теплотехнических установках, связаны с преобразованием энергии в газовом потоке. Расчеты рабочих процессов этих установок строятся на общих положениях теории газового потока. Эта теория базируется на основных положениях термодинамики и на ряде допущений, к числу которых относятся следующие: 1. Течение газа установившееся, т.е. в каждом выделенном сечении параметры газа во всех его точках остаются постоянными. 1. Течение газа установившееся, т.е. в каждом выделенном сечении параметры газа во всех его точках остаются постоянными. 2. От сечения к сечению происходят бесконечно малые изменения параметров газа по сравнению со значениями самих параметров. Течение газа стационарное. 2. От сечения к сечению происходят бесконечно малые изменения параметров газа по сравнению со значениями самих параметров. Течение газа стационарное. При таких допущениях газ при движении будет проходить ряд последовательных равновесных состояний.Стационарное течение газа описывается системой уравнений, включающей уравнение неразрывности потока, уравнение состояния и уравнение энергии (уравнение 1-го закона термодинамики применительно к газовому потоку). При таких допущениях газ при движении будет проходить ряд последовательных равновесных состояний.Стационарное течение газа описывается системой уравнений, включающей уравнение неразрывности потока, уравнение состояния и уравнение энергии (уравнение 1-го закона термодинамики применительно к газовому потоку). Уравнение неразрывности характеризует неизменность массового расхода газа в любом сечении канала при установившемся течении. Уравнение неразрывности характеризует неизменность массового расхода газа в любом сечении канала при установившемся течении.

2 Это уравнение имеет вид, Это уравнение имеет вид, или, или, где G – массовый секундный расход газа; F1, F2 – площади поперечных сечений канала; w1, w2 – скорости в соответствующих сечениях; r1, r2 – плотности газа для тех же сечений потока ( ). где G – массовый секундный расход газа; F1, F2 – площади поперечных сечений канала; w1, w2 – скорости в соответствующих сечениях; r1, r2 – плотности газа для тех же сечений потока ( ). Для одномерного газового потока в соответствии со вторым законом Ньютона (сила равна массе, умноженной на ускорение) можно записать следующее соотношение, где – Для одномерного газового потока в соответствии со вторым законом Ньютона (сила равна массе, умноженной на ускорение) можно записать следующее соотношение, где – изменение давления по координате x; – изменение скорости по координате x; – сила, действующая на выделенный элементарный объем dV; – ускорение элементарной массы газа. изменение давления по координате x; – изменение скорости по координате x; – сила, действующая на выделенный элементарный объем dV; – ускорение элементарной массы газа. Последнее соотношение можно переписать в виде. Последнее соотношение можно переписать в виде. Учитывая, что, получим.(6.1) Учитывая, что, получим.(6.1) Полученное соотношение показывает, что приращения давления dp и скорости dw имеют разные знаки. Следовательно, скорость одномерного потока возрастает с уменьшением давления. Полученное соотношение показывает, что приращения давления dp и скорости dw имеют разные знаки. Следовательно, скорость одномерного потока возрастает с уменьшением давления.

3 Величина –vdp совпадает с формулой для располагаемой работы dl в уравнении первого закона термодинамики вида. Величина –vdp совпадает с формулой для располагаемой работы dl в уравнении первого закона термодинамики вида. Отсюда уравнение первого закона термодинамики для газового потока при отсутствии сил тяжести и сил трения в газе примет Отсюда уравнение первого закона термодинамики для газового потока при отсутствии сил тяжести и сил трения в газе примет вид,(6.2) где – приращение вид,(6.2) где – приращение кинетической энергии газа на выделенном участке. кинетической энергии газа на выделенном участке. Так как, то,(6.3) Так как, то,(6.3) где – элементарная работа проталкивания. где – элементарная работа проталкивания. Последнее уравнение показывает, что теплота, сообщаемая газу, затрачивается на изменение внутренней энергии, на работу проталкивания и на изменение внешней кинетической энергии газа. Последнее уравнение показывает, что теплота, сообщаемая газу, затрачивается на изменение внутренней энергии, на работу проталкивания и на изменение внешней кинетической энергии газа. Уравнения (6.2), (6.3) являются основными для потоков газа и пара, причем они справедливы как для обратимых (не сопровождающихся действием сил трения), так и для необратимых течений (при наличии сил трения). Уравнения (6.2), (6.3) являются основными для потоков газа и пара, причем они справедливы как для обратимых (не сопровождающихся действием сил трения), так и для необратимых течений (при наличии сил трения).

4 Последнее уравнение показывает, что теплота, сообщаемая газу, затрачивается на изменение внутренней энергии, на работу проталкивания и на изменение внешней кинетической энергии газа. Последнее уравнение показывает, что теплота, сообщаемая газу, затрачивается на изменение внутренней энергии, на работу проталкивания и на изменение внешней кинетической энергии газа. Уравнения (6.2), (6.3) являются основными для потоков газа и пара, причем они справедливы как для обратимых (не сопровождающихся действием сил трения), так и для необратимых течений (при наличии сил трения). При наличии сил трения должна затрачиваться работа трения стр, которая полностью переходит в теплоту стр. Вследствие равенства стр = стр обе эти величины, имеющие противоположные знаки, взаимно сокращаются. Уравнение (6.3) с учетом гравитационных сил Уравнения (6.2), (6.3) являются основными для потоков газа и пара, причем они справедливы как для обратимых (не сопровождающихся действием сил трения), так и для необратимых течений (при наличии сил трения). При наличии сил трения должна затрачиваться работа трения стр, которая полностью переходит в теплоту стр. Вследствие равенства стр = стр обе эти величины, имеющие противоположные знаки, взаимно сокращаются. Уравнение (6.3) с учетом гравитационных сил принимает вид, принимает вид, где gdz – элементарная работа против сил тяжести. Этой составляющей в газах ввиду ее малости обычно пренебрегают. где gdz – элементарная работа против сил тяжести. Этой составляющей в газах ввиду ее малости обычно пренебрегают. При адиабатном течении газа (dq=0) уравнение (6.2) При адиабатном течении газа (dq=0) уравнение (6.2) принимает вид.(6.4) принимает вид.(6.4) После интегрирования получим.(6.5) После интегрирования получим.(6.5)

5 Таким образом, при адиабатном течении газа сумма удельных энтальпии и кинетической энергии остается неизменной. Таким образом, при адиабатном течении газа сумма удельных энтальпии и кинетической энергии остается неизменной. Отметим, что уравнения (6.2), (6.3), (6.4) справедливы в случае, когда газ при своем движении совершает лишь работу расширения и не производит полезной технической работы (например, работа на лопатках турбины и проч.). При совершении технической работы уравнение первого закона термодинамики (3.3) для потока газа Отметим, что уравнения (6.2), (6.3), (6.4) справедливы в случае, когда газ при своем движении совершает лишь работу расширения и не производит полезной технической работы (например, работа на лопатках турбины и проч.). При совершении технической работы уравнение первого закона термодинамики (3.3) для потока газа примет вид,(6.6) примет вид,(6.6) где dlтех – элементарная техническая работа. где dlтех – элементарная техническая работа. Сравнивая уравнение (6.5) с уравнением первого закона термодинамики (2.17) для расширяющегося, но не перемещающегося Сравнивая уравнение (6.5) с уравнением первого закона термодинамики (2.17) для расширяющегося, но не перемещающегося газа, получим. газа, получим. Таким образом, техническая работа равна работе расширения газа за вычетом работы проталкивания и работы, затрачиваемой на приращение кинетической энергии газа. Таким образом, техническая работа равна работе расширения газа за вычетом работы проталкивания и работы, затрачиваемой на приращение кинетической энергии газа.

6 6.2. РАСЧЕТ ИСТЕЧЕНИЯ РЕАЛЬНЫХ ГАЗОВ И ПАРОВ В этом случае для расчета преимущественно используется is– диаграмма. Из уравнения энергии газового потока для адиабатного истечения (dq=0 при dlтех=0 получаем уравнение (6.4), после интегрирования которого находим. В этом случае для расчета преимущественно используется is– диаграмма. Из уравнения энергии газового потока для адиабатного истечения (dq=0 при dlтех=0 получаем уравнение (6.4), после интегрирования которого находим. При. При. По этой формуле рассчитывается скорость истечения реального газа с помощью is –диаграммы. Расход газа определяется по формулам: По этой формуле рассчитывается скорость истечения реального газа с помощью is –диаграммы. Расход газа определяется по формулам: если, то ;если, то если, то ;если, то Критическая скорость Критическая скорость может быть приближенно найдена по формуле для идеального газа, т.е. приняв может быть приближенно найдена по формуле для идеального газа, т.е. приняв (k=1,3 – для перегретого пара, k = 1, ,1 х – для влажного пара со степенью сухости х). (k=1,3 – для перегретого пара, k = 1, ,1 х – для влажного пара со степенью сухости х).

7 При необратимом истечении действительная скорость w будет меньше теоретической wт, т.к. в этом случае имеют место потери кинетической энергии на трение газа как внутри потока, так и на стенках канала. При необратимом истечении действительная скорость w будет меньше теоретической wт, т.к. в этом случае имеют место потери кинетической энергии на трение газа как внутри потока, так и на стенках канала. Потеря кинетической энергии будет Потеря кинетической энергии будет, где – коэффициент потерь энергии; где – коэффициент потерь энергии; – коэффициент скорости. – коэффициент скорости. Отсюда, где. Отсюда, где. Рис. 6.1.

8 На рис. 6.1 процесс 1–2 является теоретическим процессом адиабатного обратимого истечения пара или газа от давления р 1 до давления p2; 1–2′ – действительный необратимый процесс истечения. Значение i’2 находится по формуле На рис. 6.1 процесс 1–2 является теоретическим процессом адиабатного обратимого истечения пара или газа от давления р 1 до давления p2; 1–2′ – действительный необратимый процесс истечения. Значение i’2 находится по формуле. Эта формула позволяет по значению находить конечную точку 2′ действительного процесса истечения. Определив i2, по этой формуле находим i’2. Проведя изоэнтальпу i’2=const до пересечения с изобарой p2, находим конечное состояние процесса истечения – точку 2′. Эта формула позволяет по значению находить конечную точку 2′ действительного процесса истечения. Определив i2, по этой формуле находим i’2. Проведя изоэнтальпу i’2=const до пересечения с изобарой p2, находим конечное состояние процесса истечения – точку 2′.

9 6.3. АДИАБАТНОЕ ДРОССЕЛИРОВАНИЕ Адиабатным дросселированием (или мятием) называется необратимый переход рабочего тела от высокого давления р 1 к низкому давлению р 2 без теплообмена. Дросселирование, близкое к адиабатному, имеет место на практике при прохождении жидкости или газа через вентили, задвижки и измерительные диафрагмы (рис. 6.2). Адиабатным дросселированием (или мятием) называется необратимый переход рабочего тела от высокого давления р 1 к низкому давлению р 2 без теплообмена. Дросселирование, близкое к адиабатному, имеет место на практике при прохождении жидкости или газа через вентили, задвижки и измерительные диафрагмы (рис. 6.2). Рис Из уравнения энергии газового потока для адиабатного дросселирования (dq = 0) при условии dlтех = 0 после интегрирования получаем соотношение (6.5). Из уравнения энергии газового потока для адиабатного дросселирования (dq = 0) при условии dlтех = 0 после интегрирования получаем соотношение (6.5).

10 Если сечения канала до (сечение 1–1) и после (сечение 2–2) Если сечения канала до (сечение 1–1) и после (сечение 2–2) расширения одинаковы, то. Тогда расширения одинаковы, то. Тогда и, следовательно, энтальпия газа в результате дросселирования не изменяется. Последнее уравнение является уравнением процесса дросселирования. Оно позволяет с помощью is – диаграммы по состоянию рабочего тела до дросселирования находить его состояние после дросселирования так, как это показано на рис и, следовательно, энтальпия газа в результате дросселирования не изменяется. Последнее уравнение является уравнением процесса дросселирования. Оно позволяет с помощью is – диаграммы по состоянию рабочего тела до дросселирования находить его состояние после дросселирования так, как это показано на рис Рис. 6.3.

11 7.8. ДРОССЕЛЬНЫЙ ЭФФЕКТ (ЭФФЕКТ ДЖОУЛЯ– ТОМСОНА) Дроссельный эффект был обнаружен Джоулем и Томсоном опытным путем в 1852 г. Опытами было установлено, что в результате дросселирования изменяется температура рабочего тела. Это явление было названо эффектом Джоуля- Томсона. Изменение температуры при дросселировании связано с тем, что в каждом реальном газе действуют силы притяжения и отталкивания между молекулами. При дросселировании происходит расширение газа, сопровождающееся увеличением расстояния между ними. Все это приводит к уменьшению внутренней энергии рабочего тела, связанному с затратой работы, что, в свою очередь, приводит к изменению температуры. Дроссельный эффект был обнаружен Джоулем и Томсоном опытным путем в 1852 г. Опытами было установлено, что в результате дросселирования изменяется температура рабочего тела. Это явление было названо эффектом Джоуля- Томсона. Изменение температуры при дросселировании связано с тем, что в каждом реальном газе действуют силы притяжения и отталкивания между молекулами. При дросселировании происходит расширение газа, сопровождающееся увеличением расстояния между ними. Все это приводит к уменьшению внутренней энергии рабочего тела, связанному с затратой работы, что, в свою очередь, приводит к изменению температуры. Температура идеального газа в результате дросселирования не изменяется, и эффект Джоуля-Томсона в данном случае равен нулю. Таким образом, изменение температуры реального газа при дросселировании определяется величиной отклонения свойств реального газа от идеального, что связано с действием межмолекулярных сил. Температура идеального газа в результате дросселирования не изменяется, и эффект Джоуля-Томсона в данном случае равен нулю. Таким образом, изменение температуры реального газа при дросселировании определяется величиной отклонения свойств реального газа от идеального, что связано с действием межмолекулярных сил.

12 Дроссельный эффект может быть положительным, отрицательным и равным нулю. Положительный дроссель– эффект имеет место в случае, когда при дроселировании температура газа понижается. Отрицательный – когда повышается. В случае неизменности температуры при дросселировании наблюдается нулевой эффект Джоуля- Томсона. Дроссельный эффект может быть положительным, отрицательным и равным нулю. Положительный дроссель– эффект имеет место в случае, когда при дроселировании температура газа понижается. Отрицательный – когда повышается. В случае неизменности температуры при дросселировании наблюдается нулевой эффект Джоуля- Томсона. Состояние реального газа при дросселировании, когда дроссельный эффект равен нулю, называется точкой инверсии. В этой точке происходит смена знака температурного эффекта. Если температура газа перед дросселированием меньше температуры инверсии, то газ при дросселировании охлаждается, если больше – то нагревается. Состояние реального газа при дросселировании, когда дроссельный эффект равен нулю, называется точкой инверсии. В этой точке происходит смена знака температурного эффекта. Если температура газа перед дросселированием меньше температуры инверсии, то газ при дросселировании охлаждается, если больше – то нагревается.


источники:

http://lfirmal.com/osnovnye-uravneniya-gazovogo-potoka/

http://www.myshared.ru/slide/1251018/