Типы систем уравнений с параметром

Решение систем линейных уравнений с параметрами

Разделы: Математика

Цель:

  • повторить решение систем линейных уравнений с двумя переменными
  • дать определение системы линейных уравнений с параметрами
  • научит решать системы линейных уравнений с параметрами.

Ход урока

  1. Организационный момент
  2. Повторение
  3. Объяснение новой темы
  4. Закрепление
  5. Итог урока
  6. Домашнее задание

2. Повторение:

I. Линейное уравнение с одной переменной:

1. Дайте определение линейного уравнения с одной переменной

[Уравнение вида ax=b, где х – переменная, а и b некоторые числа, называется линейным уравнением с одной переменной]

2. Сколько корней может иметь линейное уравнение?

[- Если а=0, b0, то уравнение не имеет решений, х

— Если а=0, b=0, то х R

— Если а0, то уравнение имеет единственное решение, х =

3. Выясните, сколько корней имеет уравнение (по вариантам)

I ряд – I вариант

Ответ: много корнейII ряд – II вариант

Ответ: корней нетIII ряд – III вариант

Ответ: единственный корень

II. Линейное уравнение с 2 –мя переменными и система линейных уравнений с 2- мя переменными.

1. Дайте определение линейного уравнения с двумя переменными. Приведите пример.

[Линейным уравнением с двумя переменными называются уравнения вида ах +by=с, где х и у – переменные, а, b и с – некоторые числа. Например, х-у=5]

2. Что называется решением уравнения с двумя переменными?

[Решением уравнения с двумя переменными называются пара значений переменных, обращающие это уравнение в верное равенство.]

3. Является ли пара значений переменных х = 7, у = 3 решением уравнения 2х + у = 17?

4. Что называется графиком уравнения с двумя переменными?

[Графиком уравнения с двумя переменными называется множество всех точек координатной плоскости, координаты которых является решениями этого уравнения.]

5. Выясните, что представляет собой график уравнения:

[Выразим переменную у через х: у=-1,5х+3

Формулой у=-1,5х+3 является линейная функция, графиком которой служит прямая. Так как, уравнения 3х+2у=6 и у=-1,5х+3 равносильны, то эта прямая является и графиком уравнения 3х+2у=6]

6. Что является графиком уравнения ах+bу=с с переменными х и у, где а0 или b0?

[Графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов при переменных не равен нулю, является прямая.]

7. Что называется решением системы уравнений с двумя переменными?

[Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство]

8. Что значит решить систему уравнений?

[Решить систему уравнений – значит найти все ее решения или доказать, что решений нет.]

9. Выясните, всегда ли имеет такая система решения и если имеет, то сколько (графическим способом).

10. Сколько решений может иметь система двух линейных уравнений с двумя переменными?

[Единственное решение, если прямые пересекаются; не имеет решений, если прямые параллельны; бесконечно много, если прямые совпадают]

11. Каким уравнением обычно задается прямая?

12. Установите связь между угловыми коэффициентами и свободными членами:

I вариант:
  • у=-х+2
  • y= -x-3,

k1 = k2, b1b2, нет решений;II вариант:

  • y=-х+8
  • y=2x-1,

k1k2, одно решение;III вариант:

  • y=-x-1
  • y=-x-1,

k1 = k2, b1 = b2, много решений.

Вывод:

  1. Если угловые коэффициенты прямых являющихся графиками этих функций различны, то эти прямые пересекаются и система имеет единственное решение.
  2. Если угловые коэффициенты прямых одинаковы, а точки пересечения с осью у различны, то прямые параллельны, а система не имеет решений.
  3. Если угловые коэффициенты и точки пересечения с осью у одинаковы, то прямые совпадают и система имеет бесконечно много решений.

На доске таблица, которую постепенно заполняет учитель вместе с учениками.

III. Объяснение новой темы.

где A1, A2, B1,B2, C1 C2 – выражения, зависящие от параметров, а х и у – неизвестные, называется системой двух линейных алгебраических уравнений с двумя неизвестными в параметрах.

Возможны следующие случаи:

1) Если , то система имеет единственное решение

2) Если , то система не имеет решений

3) Если , то система имеет бесконечно много решений.

IV. Закрепление

Пример 1.

При каких значениях параметра а система

  • 2х — 3у = 7
  • ах — 6у = 14

а) имеет бесконечное множество решений;

б) имеет единственное решение

а) , а=4

б) , а?4

а) если а=4, то система имеет бесконечное множество решений;

б) если а4, то решение единственное.

Пример 2.

Решите систему уравнений

  • x+(m+1)y=1
  • x+2y=n

Решение: а) , т.е. при m1 система имеет единственное решение.

б) , т.е. при m=1 (2=m+1) и n1 исходная система решений не имеет

в) , при m=1 и n=1 система имеет бесконечно много решений.

Ответ: а) если m=1 и n1, то решений нет

б) m=1 и n=1, то решение бесконечное множество

  • у — любое
  • x=n-2y

в) если m1 и n — любое, то

y= x=

Пример 3.

Для всех значений параметра а решить систему уравнений

  • ах-3ау=2а+3
  • х+ау=1

Решение: Из II уравнения найдем х=1-ау и подставим в I уравнение

1) а=0. Тогда уравнение имеет вид 0*у=3 [у ]

Следовательно, при а=0 система не имеет решений

Следовательно, у . При этом х=1-ау=1+3у

3) а0 и а-3. Тогда у=-, х=1-а(-=1+1=2

1) если а=0, то (х; у)

2) если а=-3, то х=1+3у, у

3) если а0 и а?-3, то х=2, у=-

Рассмотрим II способ решения системы (1).

Решим систему (1) методом алгебраического сложения: вначале умножим первое уравнение системы на В2, второе на – В1 и сложим почленно эти уравнения, исключив, таким образом, переменную у:

Т.к. А1В22В10, то х =

т.к. А2В11В2 0 у =

Для удобства решения системы (1) введем обозначения:

главный определитель

Теперь решение системы (1) можно записать с помощью определителей:

х= ; у=

Приведенные формулы называют формулами Крамера.

— Если , то система (1) имеет единственное решение: х=; у=

— Если , или , , то система (1) не имеет решений

— Если , , , , то система (1) имеет бесконечное множество решений.

В этом случае систему надо исследовать дополнительно. При этом, как правило, она сводится к одному линейному уравнению. В случае часто бывает удобно исследовать систему следующим образом: решая уравнение , найдем конкретные значения параметров или выразим один из параметров через остальные и подставим эти значения параметров в систему. Тогда получим систему с конкретными числовыми коэффициентами или с меньшим числом параметров, которую надо и исследовать.

Если коэффициенты А1, А2, В1, В2, системы зависят от нескольких параметров, то исследовать систему удобно с помощью определителей системы.

Пример 4.

Для всех значений параметра а решить систему уравнений

  • (а+5)х+(2а+3)у=3а+2
  • (3а+10)х+(5а+6)у=2а+4

Решение: Найдем определитель системы:

= (а+5)(5а+6) – (3а+10) (2а+3)= 5а 2 +31а+30-6а 2 -29а-30=-а 2 +2а=а(2-а)

= (3а+2) (5а+6) –(2а+4)(2а+3)=15а 2 +28а+12-4а 2 -14а-12=11а 2 +14а=а(11а+14)

=(а+5) (2а+4)-(3а+10)(3а+2)=2а 2 +14а+20-9а 2 -36а-20=-7а 2 -22а=-а(7а+22)

1) Тогда

х= у=

2) или а=2

При а=0 определители

Тогда система имеет вид:

  • 5х+3у=2 5х+3у=2
  • 10х+6у=4

При а=2 Этого достаточно, чтобы утверждать, что система не имеет решений.

1) если а и а, то х= у=

2) если а=0, то х,

3) если а=2, то (х; у)

Пример 5.

Для всех значений параметров а и b решить систему уравнений

Решение: = =а+1-2b

= = b -6; = 3a+3-b

1) . Тогда

х= у=

2)

Подставив выражение параметра а в систему, получим:

  • 2bx+2y=b 2bx+2y=b
  • bx+y=3 2bx+2y=6

Если b6, то система не имеет решений, т.к. в этом случае I и II уравнения системы противоречат друг другу.

Если b=6, а=2b-1=2*6-1=11, то система равносильна одному уравнению

12х+2у=6 у=3-6х

1) если , (а), то x=, y=

2) если b, a, то система не имеет решений

3) если b=6, а=11, то х, у=3-6х

Итог урока: Повторить по таблице и поставить оценки.

При каких значениях параметра система уравнений

  • 3х-2у=5
  • 6х-4у=b

а) имеет бесконечное множество решений

б) не имеет решений

б) b10

Системы уравнений с двумя переменными и параметрами

п.1. Решение системы линейных уравнений с параметром

Например:
При каком значении a система уравнений имеет одно решение: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \).
Система имеет одно решение, если главный определитель не равен нулю: $$ \Delta = \begin \mathrm & 1 \\ 1 & \mathrm \end= a^2-1\neq 0 \Rightarrow a\neq \pm 1 $$

Ответ: при всех действительных a, кроме a ≠ ± 1.

п.2. Решение системы нелинейных уравнений с параметром

При решении системы нелинейных уравнений с параметром чаще всего используем графический метод (см. §15 данного справочника).

Например:
При каком значении a система уравнений имеет одно решение: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \).
\( \mathrm \) – уравнение окружности с центром в начале координат, и переменным радиусом a.
\( \mathrm \) – уравнение прямой.
Система имеет одно решение, если прямая является касательной к окружности:

Точка A является решением: x = 1, y = 1.
Подставляем найденное решение в уравнение для окружности: 1 2 + 1 2 = 2 $$ \mathrm> $$

п.3. Примеры

Пример 2. Найти все значения параметра a, при каждом из которых система
\( \left\< \begin < l >\mathrm <|x|+|y|=4>& \\ \mathrm <(x-3)^2+(y-3)^2=(a+1)^2>& \end\right. \) имеет единственное решение.
Первое уравнение – квадрат с вершинами (±4; 0),(0; ±4); второе уравнение – окружность переменного радиуса с центром в точке (3; 3).

Единственное решение соответствует радиусу \( \mathrm>. \)
При увеличении радиуса будет 2, 3 или 4 точки пересечения. При дальнейшем увеличении окружность становится слишком большой, пересечений с квадратом нет.
Получаем:\( \mathrm<|a+1|=\sqrt<2>\Rightarrow a+1=\pm\sqrt<2>\Rightarrow a_<1,2>=-1\pm\sqrt<2>>. \)

Пример 3. Найти все значения параметра a, при каждом из которых система
\( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \) имеет единственное решение. $$ \left\< \begin < l >\mathrm \left[\begin < l >\mathrm <4-2x,\ \ x\lt 0>& \\ \mathrm <4,\ \ 0\leq x\leq 4>& \\ \mathrm <2x-4,\ \ x\gt 0>& \end\right. & \\ \mathrm & \end\right. $$ Первое уравнение – ломаная, второе – парабола ветками вниз с подвижной вершиной на оси x = 2.

При (a – 1) 2 2 = 4 одно решение.
При (a – 1) 2 > 4 два решения.
Получаем:\( \mathrm <(a-1)^2=4\Rightarrow a-1=\pm 2\Rightarrow>\left[\begin < l >\mathrm & \\ \mathrm & \end\right. \)

Исследовательская работа «Основные типы задач с параметром и их решение»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Основные типы задач с параметром и их решение»

Оглавление

Задачи с параметром — одна из самых интересных и многогранных тем в математике. Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры у школьников, но их решение вызывает у них значительные затруднения. Это связано с тем, что каждое уравнение с параметрами представляет собой целый класс обычных уравнений, для каждого из которых должно быть получено решение.

Актуальность данной темы очевидна. Ведь уравнения и неравенства с параметром стали привычной частью всех сложных экзаменационных заданий и вступительных экзаменов в ВУЗы, а также задания данного типа являются неотъемлемой частью практически всех олимпиад разного уровня.

Проблема в том, что в школьной программе такие задачи встречаются редко, и только самые простые вариации. Многие учащиеся не до конца понимают, как решать задания такого типа. Учащиеся выпускных классов лишают себя возможности получить высокие баллы за задания этого типа.

Цель данной работы: изучение основных способов решения уравнений и неравенств с параметром, рассмотрение основных типов заданий в которых применяется параметр в школьной программе.

1) сбор и обработка материала по данной теме;

2) систематизация различных методов решения;

3) проведение мастер-класса по решению уравнений с параметром;

Объект исследования : уравнения и неравенства с параметром.

Предмет исследования : методы решений уравнений и неравенств, содержащих параметр.

Глава 1. Основные понятия.

1.1 Что такое параметр.

Толковый словарь определяет параметр, как величину, характеризующую какое-нибудь основное свойство машины, устройства, системы или явления, процесса. Рассмотрение параметров — это всегда выбор. Покупая какую-либо вещь, мы внимательно изучаем ее основные характеристики. Так, приобретая компьютер, мы обращаем внимание на следующие его параметры: производительность, габариты, состав комплектующих, цену и др. Перед выбором мы стоим и в различных жизненных ситуациях.

Что такое параметр в математике? Если вы вспомните некоторые основные уравнения (например, kx+l=0, ax²+bx+c=0), то обратите внимание, что при поиске их корней значения остальных переменных, входящих в уравнения, считаются фиксированными и заданными. Все разночтения в существующей литературе связаны с толкованием того, какими фиксированными и заданными могут быть эти значения остальных переменных.

Поскольку в школьных учебниках нет определения параметра, возьмем за основу следующий его простейший вариант.

Определение: параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

Независимость параметра заключается в его «неподчинении» свойствам, вытекающим из условия задачи. Например, из неотрицательности левой части уравнения |x|= a – 1 не следует неотрицательность значений выражения a – 1, и если a – 1

1.2 Что означает «решить задачу с параметром».

Естественно, это зависит от вопроса в задаче. Если, например, требуется решить уравнение, неравенство, их систему или совокупность, то это означает предъявить обоснованный ответ либо для любого значения параметра, либо для значения параметра, принадлежащего заранее оговоренному множеству.

Если же требуется найти значения параметра, при которых множество решений уравнения, неравенства и т. д. удовлетворяет объявленному условию, то, очевидно, решение задачи и состоит в поиске указанных значений параметра.

Отмечу сразу, что запись ответа – важнейший этап решения, отличающий задачу с параметром от других задач. Ответ в задаче с параметром – это описание множества ответов к задачам, полученным при конкретных значениях параметра.

1.3. Основные типы задач с параметрами.

Тип 1. Уравнения и т.п., которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству.

Тип 2. Уравнения и т.п., для которых требуется определить количество решений в зависимости от значения параметра (параметров).

Тип 3. Уравнения и т.п., для которых требуется найти все те значения параметра, при которых указанные уравнения, неравенства, их системы и совокупности имеют заданное число решений (в частности, не имеют или имеют бесконечное множество решений).

Легко увидеть, что задачи типа 3 в каком-то смысле обратны задачам типа 2.

Тип 4. Уравнения и т.п., для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых:

Многообразие задач с параметром охватывает весь курс школьной математики (и алгебры, и геометрии), но подавляющая часть из них на выпускных и вступительных экзаменах относится к одному из четырех перечисленных типов, которые по этой причине названы основными.

1.4 Основные способы решения задач с параметром.

Способ I (аналитический). Это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Иногда говорят, что это способ силового, в хорошем смысле «наглого» решения.

Аналитический способ решения задач с параметром есть самый трудный способ, требующий высокой грамотности и наибольших усилий по овладению им.

Способ II (графический). В зависимости от задачи (с переменной x и параметром a) рассматриваются графики или в координатной плоскости (x; y), или в координатной плоскости (x; a).

Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными, и выбирается та переменная, относительно которой аналитическое решение признается более простым. После естественных упрощений возвращаемся к исходному смыслу переменных x и a и заканчиваем решение.

Перейдем теперь к демонстрации указанных способов решения задач с параметром.

Глава 2. Основные способы решения задач с параметром

2.1 Аналитический способ.

Универсальных методов решения уравнений и неравенств с параметрами не существует. Одно из немногих исключений – линейные уравнения и неравенства.

Пример 1. Решить уравнение: а ( а – 2) х = а – 2.

Решение. Перед нами линейное уравнение, имеющее смысл при всех допустимых значениях а . Будем его решать «как обычно»: делим оби части уравнения на коэффициент при неизвестном.

Полное решение см. в приложении 1

Пример 2 . Решить неравенство ( а + 3) х а – 1.

Решение. Рассмотрим случаи:

1) а + 3 = 0, а = -3, тогда неравенство примет вид 0 ∙ х

2) а + 3 > 0, а > -3, тогда

Ответ: 1) если а = -3, то х – любое число;

Другое важное исключение – уравнения и неравенства, связанные с квадратичной функцией.

Пример3. Решить уравнение ( а – 2) х 2 + (2 а – 3) х + а + 2 = 0.

Решение рассмотрим в приложении 2.

2.2 Графический способ.

Алгоритм графического решения уравнений с параметром:

-Находим область определения уравнения.

-Выражаем α как функцию от х.

-В системе координат строим график функции α (х) для тех значений х, которые входят в область определения данного уравнения.

-Находим точки пересечения прямой a = с, с графиком функции a (х). Если прямая a = с пересекает график a (х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение c = a (х) относительно х.

Рассмотрим на примерах:

Пример 1: Решить уравнение | x 2 – 2 x – 3| = a в зависимости от параметра а .

Решение. Понятно, что при а ≥ 0:

Но все ли корни подходят? Чтобы выяснить это, построим график функции а = | x 2 – 2 x – 3|. Количество корней можно увидеть на рисунке 1, мысленно проводя прямые линии, соответствующие значениям а . Получим:

если а = 0 и а > 4, то два корня.

Найдем эти корни:

При а = 0 получим x 2 – 2 x – 3 = 0,

уравнения x 2 – 2 x – 3 – а = 0.

4) при а = 4 – три корня:

x 2 – 2 x – 3 = 4 x 2 – 2 x – 3 = – 4 Ответ: 1) если a

x 2 – 2 x – 7 = 0 x 2 – 2 x + 1 = 0 2) если а = 0, то х 1 = –1, х 2 = 3;

2.3 Решение относительно параметра.

Если степень неизвестного слишком высока, а степень параметра не превосходит двух, то здесь эффективен метод решения уравнения (неравенства) относительно параметра.

Пример 1. Решить уравнение 2 х 3 – ( а + 2) х 2 – ах + а 2 = 0.

Решение. Перепишем уравнение в виде

Решим уравнение относительно параметра а.

D = ( х 2 + х ) 2 – 4(2 х 3 – 2 х 2 ) = х 2 ( х + 1) 2 – 8 х 2 ( х – 1) = х 2 ( х 2 + 2 х + 1 – 8 х + 8) = х 2 ( х 2 – 6 х + 9) = х 2 ( х – 3) 2

Осталось решить полученные уравнения относительно х .

Дальнейшее решение смотри в приложении 3.

Заключение.

В процессе проделанной работы в соответствии с ее целями и задачами были получены следующие выводы и результаты:

1. Рассмотрели основные способы решения уравнений и неравенств с параметром:

— решение относительно параметра;

2. Графический метод является удобным и быстрым способом решения уравнений и систем уравнений с параметрами, но нельзя полностью представить себе сложность и нестандартность решения каждой задачи с параметром, изучая только графический способ. Нельзя научиться решать любые задачи с параметрами, используя какой-то алгоритм или формулы.

3. В заданиях ОГЭ по математике в 9 классе уравнения, системы уравнений с параметром проще, удобнее и нагляднее решать графическим способом. В связи с этим разработали ряд задач с параметром в помощь учителю и ученику (см. приложение 4). Разработанный ряд задач можно использовать на факультативах по математике при подготовке к ОГЭ, при подготовке к олимпиадам или для привития интереса к математике, совершенствования математической культуры, навыков дедуктивного мышления и творческих исследовательских способностей. Данный справочник предложен 9-классникам.

Планирую продолжить работу над этой темой, и расширить круг изучаемых типов заданий с параметрами.

Литература.

1. Алгебра. 9 класс. Учебник для учащихся общеобразовательных учреждений/ А.Г.Мордкович.- М.:Мнемозина, 2013;

2. Горнштейн П.И. «Задачи с параметрами. » Москва 2003г.;

3. Математика. 9 класс. Подготовка к ГИА – 2014: учебно-методические пособие/ Под ред.Ф.Ф.Лысенко, С.Ю.Кулабухова. – Ростов-на-Дону: Легион, 2013г.;

4. Математика. Подготовка к ЕГЭ-2013 : учебно-методические пособие/ Под ред.Ф.Ф.Лысенко, С.Ю.Кулабухова. – Ростов-на-Дону: Легион, 2012г.;

5. Солуковцева Л. «Линейные и дробно-линейные уравнения и неравенства с параметрами. Москва.2007г.;

6. Шарыгин И.Ф. Факультативный курс по математике: Решение задач: Учеб. Пособие для 10 кл. сред.шк. – М.: Просвещение, 1989.;

7. ЯстребинецкийГ.А.«Уравнения и неравенства, содержащие параметры», 1972г.


источники:

http://reshator.com/sprav/algebra/9-klass/sistemy-uravnenij-s-dvumya-peremennymi-i-parametrami/

http://infourok.ru/issledovatelskaya-rabota-osnovnye-tipy-zadach-s-parametrom-i-ih-reshenie-4314439.html