Точки экстремума функции по уравнению

Экстремумы функции

Необходимое условие экстремума функции одной переменной

Достаточное условие экстремума функции одной переменной

Если в точке x * выполняется условие:

Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке [1; 3].
Решение.

Критическая точка одна x1 = 2 (f’(x)=0). Эта точка принадлежит отрезку [1;3]. (Точка x=0 не является критической, так как 0∉[1;3]).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)= 5 /2, f(3)=3 8 /81
Ответ: fmin= 5 /2 при x=2; fmax=9 при x=1

Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π /3+2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π /3+2πk, k∈Z – точки минимума функции; , значит x=- π /3+2πk, k∈Z – точки максимума функции.

Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

Пример №4 . Разбить число 49 на два слагаемых, произведение которых будет наибольшим.
Решение. Обозначим x — первое слагаемое. Тогда (49-x) — второе слагаемое.
Произведение будет максимальным: x·(49-x) → max
или
49x — x 2

Максимумы, минимумы и экстремумы функций

Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.

Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.

Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.

Минимумы и максимумы вместе именуют экстремумами функции.

Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.

В точках экстремумов (т.е. максимумов и минимумов) производная равна нулю.

Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.

Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. \(y\). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, \(-5\) точка минимума (или точка экстремума), а \(1\) – минимум (или экстремум).

Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?

Давайте вместе найдем количество точек экстремума функции по графику производной на примере:

У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки \(-13\), \(-11\), \(-9\),\(-7\) и \(3\). Количество точек экстремума функции – \(5\).

Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось \(x\)).

Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:

— Производная положительна там, где функция возрастает.
— Производная отрицательна там, где функция убывает.

С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.

Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди \(-13\), \(-11\), \(-9\),\(-7\) и \(3\).

Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.

Начнем с \(-13\): до \(-13\) производная положительна т.е. функция растет, после — производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что \(-13\) – точка максимума.

\(-11\): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что \(-11\) – это минимум.

\(- 9\): функция возрастает, а потом убывает – максимум.

Все вышесказанное можно обобщить следующими выводами:

— Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
— Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.

Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:

  1. Найдите производную функции \(f'(x)\).
  2. Найдите корни уравнения \(f'(x)=0\).
  3. Нарисуйте ось \(x\) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью \(f'(x)\), а под осью \(f(x)\).
  4. Определите знак производной в каждом промежутке (методом интервалов).
  5. Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью).
  6. Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
    — если \(f’(x)\) изменила знак с «\(+\)» на «\(-\)», то \(x_1\) – точка максимума;
    — если \(f’(x)\) изменила знак с «\(-\)» на «\(+\)», то \(x_3\) – точка минимума;
    — если \(f’(x)\) не изменила знак, то \(x_2\) – может быть точкой перегиба.

Всё! Точки максимумов и минимумов найдены.

Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.

Пример(ЕГЭ). Найдите точку максимума функции \(y=3x^5-20x^3-54\).
Решение:
1. Найдем производную функции: \(y’=15x^4-60x^2\).
2. Приравняем её к нулю и решим уравнение:

3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:

Теперь очевидно, что точкой максимума является \(-2\).

Возрастание и убывание функции на интервале, экстремумы

Чтобы определить характер функции и говорить о ее поведении, необходимо находить промежутки возрастания и убывания. Этот процесс получил название исследования функции и построения графика. Точка экстремума используется при нахождении наибольшего и наименьшего значения функции, так как в них происходит возрастание или убывание функции из интервала.

Данная статья раскрывает определения, формулируем достаточный признак возрастания и убывания на интервале и условие существования экстремума. Это применимо к решению примеров и задач. Следует повторить раздел дифференцирования функций, потому как при решении необходимо будет использовать нахождение производной.

Возрастание и убывание функции на интервале

Функция y = f ( x ) будет возрастать на интервале x , когда при любых x 1 ∈ X и x 2 ∈ X , x 2 > x 1 неравенство f ( x 2 ) > f ( x 1 ) будет выполнимо. Иначе говоря, большему значению аргумента соответствует большее значение функции.

Функция y = f ( x ) считается убывающей на интервале x , когда при любых x 1 ∈ X , x 2 ∈ X , x 2 > x 1 равенство f ( x 2 ) > f ( x 1 ) считается выполнимым. Иначе говоря, большему значению функции соответствует меньшее значение аргумента. Рассмотрим рисунок, приведенный ниже.

Замечание: Когда функция определенная и непрерывная в концах интервала возрастания и убывания, то есть ( a ; b ) , где х = а , х = b , точки включены в промежуток возрастания и убывания. Определению это не противоречит, значит, имеет место быть на промежутке x .

Основные свойства элементарных функций типа y = sin x – определенность и непрерывность при действительных значениях аргументах. Отсюда получаем, что возрастание синуса происходит на интервале — π 2 ; π 2 , тогда возрастание на отрезке имеет вид — π 2 ; π 2 .

Точки экстремума, экстремумы функции

Точка х 0 называется точкой максимума для функции y = f ( x ) , когда для всех значений x неравенство f ( x 0 ) ≥ f ( x ) является справедливым. Максимум функции – это значение функции в точке, причем обозначается y m a x .

Точка х 0 называется точкой минимума для функции y = f ( x ) , когда для всех значений x неравенство f ( x 0 ) ≤ f ( x ) является справедливым. Минимум функции – это значение функции в точке, причем имеет обозначение вида y m i n .

Окрестностями точки х 0 считаются точки экстремума, а значение функции, которое соответствует точкам экстремума. Рассмотрим рисунок, приведенный ниже.

Экстремумы функции с набольшим и с наименьшим значением функции. Рассмотрим рисунок, приведенный ниже.

Первый рисунок говорит о том, что необходимо найти наибольшее значение функции из отрезка [ a ; b ] . Оно находится при помощи точек максимума и равняется максимальному значению функции, а второй рисунок больше походит на поиск точки максимума при х = b .

Достаточные условия возрастания и убывания функции

Чтобы найти максимумы и минимумы функции, необходимо применять признаки экстремума в том случае, когда функция удовлетворяет этим условиям. Самым часто используемым считается первый признак.

Первое достаточное условие экстремума

Пусть задана функция y = f ( x ) , которая дифференцируема в ε окрестности точки x 0 , причем имеет непрерывность в заданной точке x 0 . Отсюда получаем, что

  • когда f ‘ ( x ) > 0 с x ∈ ( x 0 — ε ; x 0 ) и f ‘ ( x ) 0 при x ∈ ( x 0 ; x 0 + ε ) , тогда x 0 является точкой максимума;
  • когда f ‘ ( x ) 0 с x ∈ ( x 0 — ε ; x 0 ) и f ‘ ( x ) > 0 при x ∈ ( x 0 ; x 0 + ε ) , тогда x 0 является точкой минимума.

Иначе говоря, получим их условия постановки знака:

  • когда функция непрерывна в точке x 0 , тогда имеет производную с меняющимся знаком, то есть с + на — , значит, точка называется максимумом;
  • когда функция непрерывна в точке x 0 , тогда имеет производную с меняющимся знаком с — на + , значит, точка называется минимумом.

Алгоритм для нахождения точек экстремума

Чтобы верно определить точки максимума и минимума функции, необходимо следовать алгоритму их нахождения:

  • найти область определения;
  • найти производную функции на этой области;
  • определить нули и точки, где функция не существует;
  • определение знака производной на интервалах;
  • выбрать точки, где функция меняет знак.

Рассмотрим алгоритм на примере решения нескольких примеров на нахождение экстремумов функции.

Найти точки максимума и минимума заданной функции y = 2 ( x + 1 ) 2 x — 2 .

Область определения данной функции – это все действительные числа кроме х = 2 . Для начала найдем производную функции и получим:

y ‘ = 2 x + 1 2 x — 2 ‘ = 2 · x + 1 2 ‘ · ( x — 2 ) — ( x + 1 ) 2 · ( x — 2 ) ‘ ( x — 2 ) 2 = = 2 · 2 · ( x + 1 ) · ( x + 1 ) ‘ · ( x — 2 ) — ( x + 1 ) 2 · 1 ( x — 2 ) 2 = 2 · 2 · ( x + 1 ) · ( x — 2 ) — ( x + 2 ) 2 ( x — 2 ) 2 = = 2 · ( x + 1 ) · ( x — 5 ) ( x — 2 ) 2

Отсюда видим, что нули функции – это х = — 1 , х = 5 , х = 2 , то есть каждую скобку необходимо приравнять к нулю. Отметим на числовой оси и получим:

Теперь определим знаки производной из каждого интервала. Необходимо выбрать точку, входящую в интервал, подставить в выражение. Например, точки х = — 2 , х = 0 , х = 3 , х = 6 .

y ‘ ( — 2 ) = 2 · ( x + 1 ) · ( x — 5 ) ( x — 2 ) 2 x = — 2 = 2 · ( — 2 + 1 ) · ( — 2 — 5 ) ( — 2 — 2 ) 2 = 2 · 7 16 = 7 8 > 0 , значит, интервал — ∞ ; — 1 имеет положительную производную. Аналогичным образом получаем, что

y ‘ ( 0 ) = 2 · ( 0 + 1 ) · 0 — 5 0 — 2 2 = 2 · — 5 4 = — 5 2 0 y ‘ ( 3 ) = 2 · ( 3 + 1 ) · ( 3 — 5 ) ( 3 — 2 ) 2 = 2 · — 8 1 = — 16 0 y ‘ ( 6 ) = 2 · ( 6 + 1 ) · ( 6 — 5 ) ( 6 — 2 ) 2 = 2 · 7 16 = 7 8 > 0

Так как второй интервал получился меньше нуля, значит, производная на отрезке будет отрицательной. Третий с минусом, четвертый с плюсом. Для определения непрерывности необходимо обратить внимание на знак производной, если он меняется, тогда это точка экстремума.

Получим, что в точке х = — 1 функция будет непрерывна, значит, производная изменит знак с + на — . По первому признаку имеем, что х = — 1 является точкой максимума, значит получаем

y m a x = y ( — 1 ) = 2 · ( x + 1 ) 2 x — 2 x = — 1 = 2 · ( — 1 + 1 ) 2 — 1 — 2 = 0

Точка х = 5 указывает на то, что функция является непрерывной, а производная поменяет знак с – на +. Значит, х=-1 является точкой минимума, причем ее нахождение имеет вид

y m i n = y ( 5 ) = 2 · ( x + 1 ) 2 x — 2 x = 5 = 2 · ( 5 + 1 ) 2 5 — 2 = 24

Ответ: y m a x = y ( — 1 ) = 0 , y m i n = y ( 5 ) = 24 .

Стоит обратить внимание на то, что использование первого достаточного признака экстремума не требует дифференцируемости функции с точке x 0 , этим и упрощает вычисление.

Найти точки максимума и минимума функции y = 1 6 x 3 = 2 x 2 + 22 3 x — 8 .

Область определения функции – это все действительные числа. Это можно записать в виде системы уравнений вида:

— 1 6 x 3 — 2 x 2 — 22 3 x — 8 , x 0 1 6 x 3 — 2 x 2 + 22 3 x — 8 , x ≥ 0

После чего необходимо найти производную:

y ‘ = 1 6 x 3 — 2 x 2 — 22 3 x — 8 ‘ , x 0 1 6 x 3 — 2 x 2 + 22 3 x — 8 ‘ , x > 0 y ‘ = — 1 2 x 2 — 4 x — 22 3 , x 0 1 2 x 2 — 4 x + 22 3 , x > 0

Точка х = 0 не имеет производной, потому как значения односторонних пределов разные. Получим, что:

lim y ‘ x → 0 — 0 = lim y x → 0 — 0 — 1 2 x 2 — 4 x — 22 3 = — 1 2 · ( 0 — 0 ) 2 — 4 · ( 0 — 0 ) — 22 3 = — 22 3 lim y ‘ x → 0 + 0 = lim y x → 0 — 0 1 2 x 2 — 4 x + 22 3 = 1 2 · ( 0 + 0 ) 2 — 4 · ( 0 + 0 ) + 22 3 = + 22 3

Отсюда следует, что функция непрерывна в точке х = 0 , тогда вычисляем

lim y x → 0 — 0 = lim x → 0 — 0 — 1 6 x 3 — 2 x 2 — 22 3 x — 8 = = — 1 6 · ( 0 — 0 ) 3 — 2 · ( 0 — 0 ) 2 — 22 3 · ( 0 — 0 ) — 8 = — 8 lim y x → 0 + 0 = lim x → 0 — 0 1 6 x 3 — 2 x 2 + 22 3 x — 8 = = 1 6 · ( 0 + 0 ) 3 — 2 · ( 0 + 0 ) 2 + 22 3 · ( 0 + 0 ) — 8 = — 8 y ( 0 ) = 1 6 x 3 — 2 x 2 + 22 3 x — 8 x = 0 = 1 6 · 0 3 — 2 · 0 2 + 22 3 · 0 — 8 = — 8

Необходимо произвести вычисления для нахождения значения аргумента, когда производная становится равной нулю:

— 1 2 x 2 — 4 x — 22 3 , x 0 D = ( — 4 ) 2 — 4 · — 1 2 · — 22 3 = 4 3 x 1 = 4 + 4 3 2 · — 1 2 = — 4 — 2 3 3 0 x 2 = 4 — 4 3 2 · — 1 2 = — 4 + 2 3 3 0

1 2 x 2 — 4 x + 22 3 , x > 0 D = ( — 4 ) 2 — 4 · 1 2 · 22 3 = 4 3 x 3 = 4 + 4 3 2 · 1 2 = 4 + 2 3 3 > 0 x 4 = 4 — 4 3 2 · 1 2 = 4 — 2 3 3 > 0

Все полученные точки нужно отметить на прямой для определения знака каждого интервала. Поэтому необходимо вычислить производную в произвольных точках у каждого интервала. Например, у нас можно взять точки со значениями x = — 6 , x = — 4 , x = — 1 , x = 1 , x = 4 , x = 6 . Получим, что

y ‘ ( — 6 ) = — 1 2 x 2 — 4 x — 22 3 x = — 6 = — 1 2 · — 6 2 — 4 · ( — 6 ) — 22 3 = — 4 3 0 y ‘ ( — 4 ) = — 1 2 x 2 — 4 x — 22 3 x = — 4 = — 1 2 · ( — 4 ) 2 — 4 · ( — 4 ) — 22 3 = 2 3 > 0 y ‘ ( — 1 ) = — 1 2 x 2 — 4 x — 22 3 x = — 1 = — 1 2 · ( — 1 ) 2 — 4 · ( — 1 ) — 22 3 = 23 6 0 y ‘ ( 1 ) = 1 2 x 2 — 4 x + 22 3 x = 1 = 1 2 · 1 2 — 4 · 1 + 22 3 = 23 6 > 0 y ‘ ( 4 ) = 1 2 x 2 — 4 x + 22 3 x = 4 = 1 2 · 4 2 — 4 · 4 + 22 3 = — 2 3 0 y ‘ ( 6 ) = 1 2 x 2 — 4 x + 22 3 x = 6 = 1 2 · 6 2 — 4 · 6 + 22 3 = 4 3 > 0

Изображение на прямой имеет вид

Значит, приходим к тому, что необходимо прибегнуть к первому признаку экстремума. Вычислим и получим, что

x = — 4 — 2 3 3 , x = 0 , x = 4 + 2 3 3 , тогда отсюда точки максимума имеют значени x = — 4 + 2 3 3 , x = 4 — 2 3 3

Перейдем к вычислению минимумов:

y m i n = y — 4 — 2 3 3 = 1 6 x 3 — 2 2 + 22 3 x — 8 x = — 4 — 2 3 3 = — 8 27 3 y m i n = y ( 0 ) = 1 6 x 3 — 2 2 + 22 3 x — 8 x = 0 = — 8 y m i n = y 4 + 2 3 3 = 1 6 x 3 — 2 2 + 22 3 x — 8 x = 4 + 2 3 3 = — 8 27 3

Произведем вычисления максимумов функции. Получим, что

y m a x = y — 4 + 2 3 3 = 1 6 x 3 — 2 2 + 22 3 x — 8 x = — 4 + 2 3 3 = 8 27 3 y m a x = y 4 — 2 3 3 = 1 6 x 3 — 2 2 + 22 3 x — 8 x = 4 — 2 3 3 = 8 27 3

y m i n = y — 4 — 2 3 3 = — 8 27 3 y m i n = y ( 0 ) = — 8 y m i n = y 4 + 2 3 3 = — 8 27 3 y m a x = y — 4 + 2 3 3 = 8 27 3 y m a x = y 4 — 2 3 3 = 8 27 3

Второй признак экстремума функции

Если задана функция f ‘ ( x 0 ) = 0 , тогда при ее f » ( x 0 ) > 0 получаем, что x 0 является точкой минимума, если f » ( x 0 ) 0 , то точкой максимума. Признак связан с нахождением производной в точке x 0 .

Найти максимумы и минимумы функции y = 8 x x + 1 .

Для начала находим область определения. Получаем, что

D ( y ) : x ≥ 0 x ≠ — 1 ⇔ x ≥ 0

Необходимо продифференцировать функцию, после чего получим

y ‘ = 8 x x + 1 ‘ = 8 · x ‘ · ( x + 1 ) — x · ( x + 1 ) ‘ ( x + 1 ) 2 = = 8 · 1 2 x · ( x + 1 ) — x · 1 ( x + 1 ) 2 = 4 · x + 1 — 2 x ( x + 1 ) 2 · x = 4 · — x + 1 ( x + 1 ) 2 · x

При х = 1 производная становится равной нулю, значит, точка является возможным экстремумом. Для уточнения необходимо найти вторую производную и вычислить значение при х = 1 . Получаем:

y » = 4 · — x + 1 ( x + 1 ) 2 · x ‘ = = 4 · ( — x + 1 ) ‘ · ( x + 1 ) 2 · x — ( — x + 1 ) · x + 1 2 · x ‘ ( x + 1 ) 4 · x = = 4 · ( — 1 ) · ( x + 1 ) 2 · x — ( — x + 1 ) · x + 1 2 ‘ · x + ( x + 1 ) 2 · x ‘ ( x + 1 ) 4 · x = = 4 · — ( x + 1 ) 2 x — ( — x + 1 ) · 2 x + 1 ( x + 1 ) ‘ x + ( x + 1 ) 2 2 x ( x + 1 ) 4 · x = = — ( x + 1 ) 2 x — ( — x + 1 ) · x + 1 · 2 x + x + 1 2 x ( x + 1 ) 4 · x = = 2 · 3 x 2 — 6 x — 1 x + 1 3 · x 3 ⇒ y » ( 1 ) = 2 · 3 · 1 2 — 6 · 1 — 1 ( 1 + 1 ) 3 · ( 1 ) 3 = 2 · — 4 8 = — 1 0

Значит, использовав 2 достаточное условие экстремума, получаем, что х = 1 является точкой максимума. Иначе запись имеет вид y m a x = y ( 1 ) = 8 1 1 + 1 = 4 .

Ответ: y m a x = y ( 1 ) = 4 ..

Третье достаточное условие экстремума

Функция y = f ( x ) имеет ее производную до n -го порядка в ε окрестности заданной точки x 0 и производную до n + 1 -го порядка в точке x 0 . Тогда f ‘ ( x 0 ) = f » ( x 0 ) = f ‘ ‘ ‘ ( x 0 ) = . . . = f n ( x 0 ) = 0 .

Отсюда следует, что когда n является четным числом, то x 0 считается точкой перегиба, когда n является нечетным числом, то x 0 точка экстремума, причем f ( n + 1 ) ( x 0 ) > 0 , тогда x 0 является точкой минимума, f ( n + 1 ) ( x 0 ) 0 , тогда x 0 является точкой максимума.

Найти точки максимума и минимума функции y y = 1 16 ( x + 1 ) 3 ( x — 3 ) 4 .

Исходная функция – целая рациональная, отсюда следует, что область определения – все действительные числа. Необходимо продифференцировать функцию. Получим, что

y ‘ = 1 16 x + 1 3 ‘ ( x — 3 ) 4 + ( x + 1 ) 3 x — 3 4 ‘ = = 1 16 ( 3 ( x + 1 ) 2 ( x — 3 ) 4 + ( x + 1 ) 3 4 ( x — 3 ) 3 ) = = 1 16 ( x + 1 ) 2 ( x — 3 ) 3 ( 3 x — 9 + 4 x + 4 ) = 1 16 ( x + 1 ) 2 ( x — 3 ) 3 ( 7 x — 5 )

Данная производная обратится в ноль при x 1 = — 1 , x 2 = 5 7 , x 3 = 3 . То есть точки могут быть точками возможного экстремума. Необходимо применить третье достаточное условие экстремума. Нахождение второй производной позволяет в точности определить наличие максимума и минимума функции. Вычисление второй производной производится в точках ее возможного экстремума. Получаем, что

y » = 1 16 x + 1 2 ( x — 3 ) 3 ( 7 x — 5 ) ‘ = 1 8 ( x + 1 ) ( x — 3 ) 2 ( 21 x 2 — 30 x — 3 ) y » ( — 1 ) = 0 y » 5 7 = — 36864 2401 0 y » ( 3 ) = 0

Значит, что x 2 = 5 7 является точкой максимума. Применив 3 достаточный признак, получаем, что при n = 1 и f ( n + 1 ) 5 7 0 .

Необходимо определить характер точек x 1 = — 1 , x 3 = 3 . Для этого необходимо найти третью производную, вычислить значения в этих точках. Получаем, что

y ‘ ‘ ‘ = 1 8 ( x + 1 ) ( x — 3 ) 2 ( 21 x 2 — 30 x — 3 ) ‘ = = 1 8 ( x — 3 ) ( 105 x 3 — 225 x 2 — 45 x + 93 ) y ‘ ‘ ‘ ( — 1 ) = 96 ≠ 0 y ‘ ‘ ‘ ( 3 ) = 0

Значит, x 1 = — 1 является точкой перегиба функции, так как при n = 2 и f ( n + 1 ) ( — 1 ) ≠ 0 . Необходимо исследовать точку x 3 = 3 . Для этого находим 4 производную и производим вычисления в этой точке:

y ( 4 ) = 1 8 ( x — 3 ) ( 105 x 3 — 225 x 2 — 45 x + 93 ) ‘ = = 1 2 ( 105 x 3 — 405 x 2 + 315 x + 57 ) y ( 4 ) ( 3 ) = 96 > 0

Из выше решенного делаем вывод, что x 3 = 3 является точкой минимума функции.

Ответ: x 2 = 5 7 является точкой максимума, x 3 = 3 — точкой минимума заданной функции.


источники:

http://cos-cos.ru/math/327/

http://zaochnik.com/spravochnik/matematika/funktsii/vozrastanie-i-ubyvanie-funktsii-na-intervale-ekstr/