Точность решения системы линейных уравнений

Исследование СЛАУ. Общие сведения

В данной статье мы расскажем о методах, видах, условиях и определениях исследований решений систем линейных уравнений, что такое метод Кронекера-Капели, а также приведем примеры.

Общие сведения (определения, условия, методы, виды)

Системы линейных алгебраических уравнений с n неизвестными могут иметь:

  • единственное решение;
  • бесконечное множество решение (неопределенные СЛАУ);
  • ни одного решения (несовместные СЛАУ).

Пример 1

Система x + y + z = 1 2 x + 2 y + 2 z = 3 не имеет решений, поэтому она несовместна.

Система x + y = 1 2 x + 7 y = — 3 имеет единственное решение x = 2 ; y = 1 .

Система x + y = 1 2 x + 2 y = 2 3 x + 3 y = 3 имеет бесконечное множество решений x = t y = 1 — t при — ∞ t ∞ .

Перед решением системы уравнений необходимо исследовать систему, т.е. ответить на следующие вопросы:

  • Совместна ли система?
  • Если система совместна, то, какое количество решений она имеет — одно или несколько?
  • Как найти все решения?

Если система малоразмерна при m = n , то ответить на поставленные вопросы можно при помощи метода Крамера:

  • если основной определитель системы, то система совместна и имеет единственное решение, которое вычисляется методом Крамера;
  • если, и один из вспомогательных определителей, то система не является совместной, т.е. не имеет решений;
  • если и все, и один из коэффициентов СЛАУ, то система не является определенной и имеет бесконечное множество решений.

Ранг матрицы и его свойства

Бывают случаи, которые выбиваются из представленных вариантов решения СЛАУ, например, линейные уравнения с большим количеством уравнений и неизвестных.

Для такого варианта решения существует ранг матрицы, который представляет собой алгоритм действий в случае решения системы матрицы, когда

В математике выделяют следующие подходы к определению ранга матрицы:

  • при помощи понятия линейной зависимости/независимости строк/столбцов матрицы. Ранг равен максимальному количеству независимых строк (столбцов) матрицы
  • при помощи понятия минора матрицы в качестве наивысшего порядка минора, который отличается от нуля. Минор матрицы порядка k — определитель k-го порядка, составленный из элементов, которые стоят на пересечении вычеркиваемых k-строк и k-столбцов матрицы;
  • при помощи метода Гаусса. По завершении прямого хода ранг матрицы равняется количеству ненулевых строк.

Обозначение ранга матрицы: r ( A ) , r g ( A ) , r A .

Свойства ранга матрицы:

  1. квадратная невырожденная матрица обладает рангом, который отличается от нуля;
  2. если транспонировать матрицу, то ранг матрицы не изменяется;
  3. если поменять местами 2 параллельные строки или 2 параллельных столбца, ранг матрицы не изменяется;
  4. при удалении нулевого столбца или строки ранг матрицы не изменяется;
  5. ранг матрицы не изменяется, если удалить строку или столбец, которые являются линейной комбинацией других строк;
  6. при умножении все элементов строки/столбца на число k н е р а в н о н у л ю ранг матрицы не изменяется;
  7. ранг матрицы не больше меньшего из ее размеров: r ( А ) ≤ m i n ( m ; n ) ;
  8. когда все элементы матрицы равны нулю, то только тогда r ( A ) = 0 .

Пример 2

А 1 = 1 1 1 2 2 2 3 3 3 , B 1 = 1 0 0 0 0 0

r ( A 1 ) = 1 , r ( B 1 ) = 1

А 2 = 1 2 3 4 0 5 6 7 0 0 0 0 ; В 2 = 1 1 3 1 2 1 4 3 1 2 5 0 5 4 13 6

Точные и приближенные методы решения систем линейных уравнений

Дата добавления: 2015-06-12 ; просмотров: 5263 ; Нарушение авторских прав

Самое простое уравнение — это линейное уравнение с од­ной переменной х вида:

Обобщением таких уравнений является линейное уравнение с несколькими переменными х1, х2, . хn вида:

Многие задачи сводятся к решению конечного множества уравнений вида (2), то есть системы линейных уравнений. В общем виде система n линейных уравнений с n переменными x1, x2. xn записывается как совокупность числовых равенств:

(3)

Коэффициенты aij системы для их упорядочения снабжаются двумя индексами, причем индекс i соответствует номеру строки, а j —номеру столбца (i = 1, 2. n; j = 1, 2. n). Тогда свободный член запишется в виде bi(i = 1, 2. n), а переменная— хj (j = 1, 2. n). Будем далее считать, что упорядоченные наборы чисел aij, xj и bi берутся из множества действительных чисел R. Решением системы (3) n уравнений с n переменными называют упорядоченную совокупность n чисел c1, c2, . cn . являющуюся решением каждого из уравнений, входящих в систему. Ясно, что эта совокупность чисел при подстановке ее в систему (3) вместо х1, х2, . хn обращает каждое уравнение системы в истинное числовое равенство. Таким образом, множество решений системы является пересечением множеств решений, входящих в систему уравнений.

В частном случае, при n = 2 и n = 3 получаем хорошо знакомые системы двух линейных уравнений с двумя переменными:

(4)

и трех линейных уравнений с тремя переменными:

(5)

Решением системы (4) является упорядоченная пара чисел (c1, c2), а решением системы (5) — упорядоченная тройка чисел (с1, c2, c3).

Известно, что исследование и нахождение решения для систем (4) и (5) не представляют особых трудностей. Но задачи практического содержания сводятся к исследованию и решению систем линейных уравнений, содержащих десятки, сотни и даже тысячи переменных. Число элементарных операций при решении линейных систем с n переменными пропорционально примерно n 3 , поэтому решение таких задач стало возможным только с появлением быстродействующих ЭВМ.

Не останавливаясь на вопросах исследования систем линейных уравнений, в дальнейшем будем предполагать, что система имеет единственное решение. Поэтому основной задачей этой главы и будет изучение универсальных вычислительных алгоритмов, используемых для нахождения единственного решения системы линейных уравнений, когда число переменных совпадает с числом уравнений.

Методы решения систем линейных уравнений можно разделить на две группы: точные и итерационные (приближенные) методы.

Точными являются такие методы, которые позволяют получить решение системы после выполнения конечного числа арифметических операций над коэффициентами системы и их свободными членами. Причем решение получится точным только тогда, когда коэффициенты и правые части системы (3) известны точно и все арифметические действия над ними выполняются без округлений. Из точных методов рассмотрим метод Гаусса и правило Крамера. Однако на практике даже этими методами не всегда удается получить точное решение, ибо в ЭВМ точные коэффициенты представляются приближенно с некоторой погрешностью, а в процессе вычислений необходимо проводить округление чисел.

Итерационными являются методы, позволяющие получать решение системы с заданной точностью путем сходящихся бесконечных процессов. Из приближенных методов рассмотрим ниже метод итераций.

4.1 Алгоритм метода Гаусса

Пусть дана система n линейных уравнений с n переменными:

Коэффициенты аij при переменных будем рассматривать как элементы двумерного массива A (N, N), а свободные члены bi как элементы одномерного массива В (N). Решение xi(i = ) разместим в одномерном массиве В (N). Коэффициенты аij и свободные члены bi будем рассматривать как элементы расширенной матрицы

.

Предписываемые методом Гаусса преобразования будем выполнять над элементами расширенной матрицы. Опишем формально алгоритм решения линейной системы методом Гаусса без выбора главного элемента.

1. Элементы первой строки расширенной матрицы (А | В)делим на а11. Полученную после такого деления первую строку умножаем последовательно на ak1(k = ) и вычитаем ее затем из k-ой строки (k = ). После этого преобразования в первом столбце массива A (кроме ) все элементы будут равны нулю, то есть получим матрицу:

2. Элементы второй строки расширенной матрицы делим на , затем умножаем ее последовательно на и вычитаем из оставшихся строк при

3. Продолжаем этот процесс исключения переменных (получения нулей) до тех пор, пока подобная процедура не будет проделана с (n — 1)-й строкой матрицы. После этого получим матрицу:

4. Элементы n-й строки делим на и в результате получаем:

На этом закончился прямой ход метода Гаусса.

5. Выполняем обратный ход метода Гаусса: в (п—1)-ю строку последней матрицы подставляем значение хn и находим значение xn-1, затем последовательно находим xn-2, xn-3, . , x2, x1 по формулам:

Этот алгоритм является экономичным в смысле использования памяти, так как все промежуточные и окончательные значения элементов в процессе преобразования матриц последовательно хранятся в тех же ячейках памяти, что и массивы А и В. Очередные значения диагональных элементов перед началом преобразования строк будем присваивать простой переменной D, что позволит хранить их до окончания преобразования очередной строки матрицы.

Значения переменных xn, xn-1, . x1 присваиваются элементам массива свободных членов В.

Метод Гаусса с выбором главного элементазаключается в том,что при прямом ходе производится выбор наибольшего по модулю (главного) элемента и перестановка строк или столбцов. Последнее исключает деление на 0, если матрица коэффициентов содержит нулевые элементы, и повышает точность вычислений при наличии ошибок округления. Обычно для программ, ведущих вычисления с числами с плавающей точкой, достаточен выбор Aii ¹ 0.

Метод вращения является разновидностью метода Гаусса. Он обладает повышенной устойчивостью к “провалам” промежуточных вычислений. Этот метод обеспечивает приведение исходной системы к системе с верхней треугольной матрицей (см. литературу).

4.2 Правило Крамера

Правило Крамера рассмотрим на примере двух линейных уравнений с двумя переменными:

(17)

хотя оно применимо и для решения системы n линейных уравнений с n переменными, но с увеличением n требует большого объема вычислительной работы.

Умножим первое уравнение системы (17) на коэффициент а22, а второе — на — a12 и полученные уравнения сложим. Тогда имеем:

Если a11a22 — a21a12 0, то получаем значение переменной

Аналогично, умножая первое уравнение системы (17) на —a21, второе — на а11 и складывая их, получаем:

Введем обозначения: a11a22 — a21a12 = = ;

b1a22 — b2a12 =

a11b2 — a21b1 =

Следовательно, — определитель матрицы коэффициентов системы (17). Определитель получается из определителя , если коэффициенты системы (17) при x1 (первый столбец матрицы А) заменить свободными членами

B = ;

Определитель — если заменить коэффициенты системы (17) при x2 (второй столбец матрицы А) свободными членами.

Определитель называется главным определителем системы (17), а определители 1 и 2вспомогательными.

Если главный определитель , то матрица называется неособенной, в противном случае — особенной.

Таким образом, если главный определитель системы уравнений (17) , то система имеет единственное решение, определяемое формулами

(18)

Формулы (18) называются формулами Крамера.

Нахождение решения линейной системы (17) по формулам (18) называется правилом Крамера, который одним из первых пришел к понятию определителя и доказал сформулированное выше предложение.

Справедливы также следующие два предложения:

1. Если главный определитель системы (17) = 0, но хотя бы один из вспомогательных определителей 1 или 2 отличен от нуля, то система (17) не имеет решений (система несовместна).

2. Если все три определителя , 1 и 2 системы (17) равны нулю, но среди коэффициентов аij(i, j = 1,2) есть хотя бы один, отличный от нуля, то система (17) имеет бесконечное множество решений.

Легко дать геометрическое истолкование этим предложениям. Поскольку каждому уравнению системы (17) в плоскости соответствует некоторая прямая, то система (17) имеет единственное решение, если прямые имеют одну общую точку; не имеет решений, если прямые параллельны; и имеет бесконечное множество решений, если прямые сливаются.

Правило Крамера решения системы n линейных уравнений с n переменными имеет определенное теоретическое значение; практически им уже при n = 4 не пользуются. Установлено, что число операций умножения и деления, которые необходимо выполнить при решении линейной системы алгебраических уравнений порядка n по формулам Крамера, равно:

N(n)= (n 2 — 1)n! + n,

а по схеме единственного деления метода Гаусса:

N(n) = (n 2 + 3n — 1).

Для сравнения объема вычислительной работы по этим двум алгоритмам подсчитаем количество операций:

по Крамеру по Гауссу

при n = 5 2885 65

при n =10 360*10 6 430

Поэтому все современные ЭВМ имеют стандартные подпрограммы, реализующие различные модификации метода Гаусса.

4.3 Метод итераций и метод Зейделя

Метод итераций позволяет получить последовательность приближенных значений, сходящуюся к точному решению системы линейных уравнений. В отличие от метода Гаусса, метод итераций не требует контроля промежуточных вычислений, так как отдельные ошибки на каком-либо шаге итерации не искажают окончательных результатов, хотя и удлиняет процесс счета. Иначе говоря, метод итераций решения систем линейных уравнений является самоисправляющимся. Кроме того, метод итераций легко запрограммировать для ЭВМ. Пусть имеем систему

. (19)

Предположим, что определитель системы отличен от нуля и что диагональные коэффициенты

Выразим из первого уравнения x1, из второго x2, и т. д. Тогда получим эквивалентную систему:

где

Полученную систему запишем так:

(20)

и назовем ее системой нормального вида.

Будем решать ее методом последовательных приближений. За нулевое приближение возьмем, например, столбец свободных членов

Подставив в правую часть системы (20) значения (i = ), получим первое приближение: .

Затем аналогично второе: и т. д.

Таким образом, зная k-e приближение, (k + 1)-е приближение вычисляют по формуле (21)

Если последовательность приближений ( ) (j = ) имеет предел

то является точным решением системы нормального вида, а значит, и исходной системы. В самом деле, переходя к пределу при в (21), имеем:

Описанный метод последовательных приближений называется методом итераций. Рабочие формулы метода итераций имеют вид:

(22)

гарантирует теорема о достаточном признаке сходимости процесса итераций.

Достаточным условием сходимости итерационных методов является условие

При методе Зейделя итерационный процесс подобен описанному для метода простых итераций, однако уточненные значения Хi j+1 сразу подставляются в последующие уравнения. Формула итерационного процесса имеет вид:

|следующая лекция ==>
Алгоритмы уточнения корня|Численное интегрирование

Не нашли то, что искали? Google вам в помощь!

Численные методы решения СЛАУ

Постановка задачи

Прикладные задачи, характерные для проектирования современных объектов новой техники, часто сводятся к многомерным в общем случае нелинейным уравнениям, которые решаются методом линеаризации, т.е. сведением нелинейных уравнений к линейным. В общем случае система [math]n[/math] уравнений с [math]n[/math] неизвестными записывается в виде

где [math]f_1,f_2,\ldots,f_n[/math] — функции [math]n[/math] переменных, нелинейные или линейные ( [math]x_i[/math] в функции [math]f_i[/math] входят в первых или частично в нулевых степенях). Здесь рассматривается частный случай задачи (1.1) — линейная неоднородная задача для систем линейных алгебраических уравнений (СЛАУ), которая сокращенно записывается в виде

где [math]A=(a_\in \mathbb^[/math] — действительная матрица размера [math](n\times n),

i,\,j[/math] — переменные, соответствующие номерам строк и столбцов (целые числа); [math]b=(b_1,\ldots,b_n)^T\in \mathbb^n[/math] — вектор-столбец размера [math](n\times1),

x=(x_1,\ldots,x_n)^T\in \mathbb^n[/math] — вектор-столбец неизвестных, [math]\mathbb^n[/math] — n-мерное евклидово пространство, верхний индекс [math]T[/math] здесь и далее обозначает операцию транспонирования. Требуется найти решение [math]x_<\ast>= (x_<\ast1>,\ldots, x_<\ast n>)^T\in \mathbb^n[/math] системы (1.2), подстановка которого в (1.2) приводит к верному равенству [math]Ax_<\ast>=b[/math] .

1. Из линейной алгебры известно, что решение задачи (1.2) существует и единственно, если детерминант матрицы [math]A[/math] отличен от нуля, т.е. [math]\det A \equiv |A|\ne0[/math] ( [math]A[/math] — невырожденная матрица, называемая также неособенной).

2. Поставленная задача часто именуется первой задачей линейной алгебры. Подчеркнем, что в ней входными (исходными) данными являются матрица [math]A[/math] и вектор [math]b[/math] , а выходными — вектор [math]x[/math] .

3. Задача (1.2) имеет следующие особенности:

а) задача линейная (все переменные [math]x_[/math] , входящие в систему, имеют степени не выше первой) и неоднородная [math](b\ne0)[/math] ;

б) количество уравнений равно количеству неизвестных (система замкнута);

в) количество уравнений для некоторых практических задач велико: k\cdot10^3

г) при больших [math]n[/math] использовать формулу [math]x=A^<-1>b[/math] не рекомендуется в силу трудностей нахождения обратной матрицы.

4. Важнейшим признаком любой математической задачи, который надо в первую очередь принимать во внимание при ее анализе и выборе метода решения, является ее линейность или нелинейность. Это связано с тем, что нелинейные задачи с вычислительной точки зрения являются наиболее трудными. Так, нелинейная задача (1.1) является достаточно сложной при числе уравнений [math]n[/math] , пропорциональном [math]10^2[/math] , а линейная задача — при [math]n[/math] , пропорциональном [math]10^6[/math] .

Число обусловленности

Характер задачи и точность получаемого решения в большой степени зависят от ее обусловленности, являющейся важнейшим математическим понятием, влияющим на выбор метода ее решения. Поясним это понятие на примере двумерной задачи: [math]\begina_<11>x_1+ a_<12>x_2=b_1,\\ a_<21>x_1+ a_<22>x_2=b_2.\end[/math] . Точным решением этой задачи является вектор [math]x_<\ast>= (x_<\ast1>, x_<\ast2>)^T[/math] , компоненты которого определяются координатами точки пересечения двух прямых, соответствующих уравнениям [math]a_<11>x_1+ a_<12>x_2=b_1,[/math] [math]a_<21>x_1+ a_<22>x_2=b_2[/math] (рис. 1.1,а).

На рис. 1.1,б применительно к трем наборам входных данных, заданных с некоторыми погрешностями и соответствующих различным системам линейных уравнений, иллюстрируется характер обусловленности системы. Если [math]\det A[/math] существенно отличен от нуля, то точка пересечения пунктирных прямых, смещенных относительно сплошных прямых из-за погрешностей задания [math]A[/math] и [math]b[/math] , сдвигается несильно. Это свидетельствует о хорошей обусловленности системы. При [math]\det A\approx0[/math] небольшие погрешности в коэффициентах могут привести к большим погрешностям в решении (плохо обусловленная задача), поскольку прямые близки к параллельным. При [math]\det A=0[/math] прямые параллельны или они совпадают, и тогда решение задачи не существует или оно не единственно.

Более строго обусловленность задачи характеризуется числом обусловленности [math]\nu(A)= \|A\|\cdot \|A^<-1>\|[/math] , где [math]\|A\|[/math] — норма матрицы [math]A[/math] , а [math]\|A^<-1>\|[/math] — норма обратной матрицы. Чем больше это число, тем хуже обусловленность системы (при [math]\nu(A)\approx 10^3\div 10^4[/math] система линейных алгебраических уравнений плохо обусловлена). В качестве нормы матрицы может быть принято число, являющееся максимальным из сумм (по модулю) элементов всех строк этой матрицы. Подчеркнем, что реализация хорошей или плохой обусловленности в корректной и некорректной задачах напрямую связана с вытекающей отсюда численной устойчивостью или неустойчивостью. При этом для решения некорректных задач обычно применяются специальные методы или математические преобразования этих задач к корректным.

В численном анализе используются два класса численных методов решения систем линейных алгебраических уравнений:

1. Прямые методы , позволяющие найти решение за определенное число операций. К прямым методам относятся: метод Гаусса и его модификации (в том числе метод прогонки), метод [math]LU[/math] — разложения и др.

2. Итерационные методы , основанные на использовании повторяющегося (циклического) процесса и позволяющие получить решение в результате последовательных приближений. Операции, входящие в повторяющийся процесс, составляют итерацию. К итерационным методам относятся: метод простых итераций, метод Зейделя и др.

Численные схемы реализации метода Гаусса

Рассмотрим частный случай решения СЛАУ — задачу нахождения решения системы линейных алгебраических уравнений

b=\beginb_1\\\vdots\\b_n\end[/math] столбцы размеров [math]n\times 1[/math] . Это означает, что число уравнений совпадает с числом неизвестных, т.е. [math]m=n[/math] . Предполагается, что выполняется условие [math]\det\equiv|A|\ne0[/math] . Тогда по теореме 5.1 решение системы (10.1) существует и единственно.

Согласно изложенному ранее, метод Гаусса содержит две совокупности операций, которые условно названы прямым ходом и обратным ходом.

Прямой ход состоит в исключении элементов, расположенных ниже элементов, соответствующих главной диагонали матрицы [math]A[/math] . При этом матрица [math]A[/math] с помощью элементарных преобразований преобразуется к верхней треугольной, а расширенная матрица [math](A\mid b)[/math] — к трапециевидной:

Заметим, что в отличие от общего подхода здесь не требуется приводить расширенную матрицу к упрощенному виду. Считается, что для реализации эффективных численных процедур достаточно свести проблему к решению системы с треугольной матрицей коэффициентов.

Обратный ход состоит в решении системы [math]\widetildex= \widetilde[/math] .

Алгоритм численного метода Гаусса

а) Положить номер шага [math]k=1[/math] . Переобозначить все элементы расширенной матрицы [math](A\mid b)[/math] через [math]a_^<(0)>,[/math] [math]i=1,\ldots,n;[/math] [math]j=1,\ldots,n+1[/math] ;

б) Выбрать ведущий элемент одним из двух способов.

Первый способ (схема единственного деления). Выбрать в качестве ведущего элемента [math]a_^<(k-1)>\ne0[/math] .

Второй способ (схема с выбором ведущего элемента). На k-м шаге сначала переставить [math](n-k+1)[/math] оставшихся уравнений так, чтобы наибольший по модулю коэффициент при переменной [math]x_k[/math] попал на главную диагональ, а затем выбрать в качестве ведущего элемента [math]a_^<(k-1)>[/math] .

в) каждый элемент строки, в которой находится ведущий элемент, поделить на него:

г) элементы строк, находящихся ниже строки с ведущим элементом, подсчитать по правилу прямоугольника, схематически показанного на рис. 10.1 (исключить элементы, стоящие ниже ведущего элемента).

Поясним алгоритм исключения на рис. 10.1. Пусть рассчитывается значение [math]a_^<(k)>[/math] на k-м шаге. Следует соединить элемент [math]a_^<(k-1)>[/math] с ведущим элементом [math]a_^<(k-1)>[/math] . Получена одна из диагоналей прямоугольника. Вторую диагональ образует соединение элементов [math]a_^<(k-1)>[/math] и [math]a_^<(k-1)>[/math] . Для нахождения значения [math]a_^<(k)>[/math] из его текущего значения [math]a_^<(k-1)>[/math] вычитается произведение элементов [math]a_^<(k-1)>[/math] и [math]a_^<(k-1)>[/math] , деленное на ведущий элемент;

д) если [math]k\ne n[/math] , то перейти к пункту «б», где вместо [math]k[/math] положить [math]k+1[/math] .

Если [math]k=n[/math] , завершить прямой ход. Получена расширенная трапециевидная матрица из элементов [math]a_^<(n)>[/math] , соответствующая [math]\bigl(\widetilde\mid \widetilde\bigr)[/math] .

1. Схема единственного деления имеет ограничение, связанное с тем, что ведущие элементы должны быть отличны от нуля. Одновременно желательно, чтобы они не были малыми по модулю, поскольку тогда погрешности при соответствующем делении будут большими. С этой точки зрения схема с выбором ведущего элемента является более предпочтительной.

2. По окончании прямого хода может быть вычислен определитель матрицы [math]A[/math] путем перемножения ведущих элементов.

3. В расчетных формулах все элементы расширенной матрицы обозначаются одним символом [math]a[/math] , так как они преобразуются по единым правилам.

4. Понятие нормы квадратной невырожденной матрицы позволяет исследовать влияние малых изменений правой части и элементов матрицы на решение систем линейных уравнений. Положительное число [math]A=\|A\|\cdot\|A^<-1>\|[/math] называется числом обусловленности матрицы . Существует и более общее определение числа обусловленности, применимое к вырожденным матрицам: [math]\operatornameA= \sup_\frac<\|Ax\|><\|x\|>: \inf_\frac<\|Ay\|><\|y\|>[/math] . Чем больше число обусловленности, тем сильнее ошибка в исходных данных сказывается на решении линейной системы. Если число [math]\operatornameA[/math] велико, система считается плохо обусловленной, т.е. решение системы может существенно изменяться даже при малых изменениях элементов матрицы [math]A[/math] и столбца свободных членов [math]b[/math] .

Пример 10.3. Найти число обусловленности матрицы системы [math]\beginx_1+10x_2=b_1,\\ 100x_1+1001x_2=1101. \end[/math] Решить систему при [math]b_1=11[/math] и [math]b_1=11,\!01[/math] , сравнить близость полученных решений.

По формуле (4.2) для матрицы [math]A=\begin 1&10\\ 100&1001 \end[/math] получаем [math]A^<-1>=\begin 1001&-10\\ -1000&1 \end[/math] . Тогда

В результате [math]\operatornameA= \|A\|\cdot\|A^<-1>\|=1101\cdot1011= 1’113’111[/math] . Очевидно, число обусловленности матрицы системы достаточно велико, поэтому система является плохо обусловленной.

При [math]b_1=11[/math] система имеет единственное решение [math]x_1=1,

x_2=1[/math] , а при [math]b_1=11,\!01[/math] , единственное решение [math]x_1=11,\!01,

x_2=0[/math] . Несмотря на малое различие в исходных данных: [math]\Delta b_1=|11-11,\!01|=0,\!01[/math] , полученные решения отличаются существенно: [math]\Delta x=\left\| \begin1\\1 \end— \begin 11,\!01\\0 \end \right\|_1=10,\!01[/math] , т.е. погрешность [math]\Delta x[/math] решения в 1001 раз больше погрешности [math]\Delta b_1[/math] правой части системы.

Таким образом, решение плохо обусловленной системы может существенно изменяться даже при малых изменениях исходных данных.

Пример 10.4. Решить систему линейных алгебраических уравнений методом Гаусса (схема единственного деления)

1. Прямой ход. Запишем расширенную матрицу и реализуем прямой ход с помощью описанных преобразований:

Согласно пункту 2 замечаний 10.2 определитель матрицы системы равен произведению ведущих элементов: [math]\det=2\cdot\frac<1><2>\cdot26=26[/math] .

Решая эту систему, начиная с последнего уравнения, находим: [math]x_3=3,

Пример 10.5. Методом Гаусса с выбором ведущего элемента по столбцам решить систему:

1. Прямой ход. Реализуем поиск ведущего элемента по правилу: на k-м шаге переставляются [math](n-k+1)[/math] оставшихся уравнений так, чтобы наибольший по модулю коэффициент при [math]x_k[/math] попал на главную диагональ:

Согласно пункту 2 замечаний 10.2 определитель матрицы системы равен произведению ведущих элементов:

Решая ее, последовательно получаем: [math]x_3=1,

Пример 10.6. Решить систему уравнений методом Гаусса единственного деления

В результате получено решение: [math]x_<\ast>= \begin 1&-1&0&1\end^T[/math] .

Метод прогонки для решения СЛАУ

Метод применяется в случае, когда матрица [math]A[/math] — трехдиагональная. Сформулируем общую постановку задачи.

Дана система линейных алгебраических уравнений с трехдиагональной матрицей [math]A[/math] . Развернутая запись этой системы имеет вид

которому соответствует расширенная матрица

Здесь первое и последнее уравнения, содержащие по два слагаемых, знак минус (–) при коэффициенте [math]\beta_i[/math] взят для более удобного представления расчетных формул метода.

Если к (10.2) применить алгоритм прямого хода метода Гаусса, то вместо исходной расширенной матрицы получится трапециевидная:

Учитывая, что последний столбец в этой матрице соответствует правой части, и переходя к системе, включающей неизвестные, получаем рекуррентную формулу:

Соотношение (10.3) есть формула для обратного хода, а формулы для коэффициентов [math]P_i,\,Q_i[/math] которые называются прогоночными , определяются из (10.2), (10.3). Запишем (10.3) для индекса [math]i-1\colon[/math] [math]x_=P_x_i+Q_[/math] и подставим в (10.2). Получим

Приводя эту формулу к виду (10.3) и сравнивая, получаем рекуррентные соотношения для [math]P_i,\,Q_i\colon[/math]

Определение прогоночных коэффициентов по формулам (10.4) соответствует прямому ходу метода прогонки.

Обратный ход метода прогонки начинается с вычисления [math]x_n[/math] . Для этого используется последнее уравнение, коэффициенты которого определены в прямом ходе, и последнее уравнение исходной системы:

Тогда определяется [math]x_n:[/math]

Остальные значения неизвестных находятся по рекуррентной формуле (10.3).

Алгоритм решения систем уравнений методом прогонки

Q_1=-\frac<\delta_1><\beta_1>[/math] (в (10.4) подставить [math]\alpha_1=0[/math] ).

2. Вычислить прогоночные коэффициенты: [math]P_2,Q_2;\,P_3,Q_3;\,\ldots;\,P_Q_[/math] по формулам (10.4).

2. Значения [math]x_,x_,\ldots,x_1[/math] определить по формуле (10.3):

1. Аналогичный подход используется для решения систем линейных алгебраических уравнений с пятидиагональными матрицами.

2. Алгоритм метода прогонки называется корректным, если для всех [math]i=1,\ldots,n,

\beta_i-\alpha_iP_\ne0[/math] , и устойчивым, если [math]|P_i| .

3. Достаточным условием корректности и устойчивости прогонки является условие преобладания диагональных элементов в матрице [math]A[/math] , в которой [math]\alpha_i\ne0[/math] и [math]\gamma_i\ne0[/math] [math](i=2,3,\ldots,n-1)\colon[/math]

и в (10.6) имеет место строгое неравенство хотя бы при одном [math]i[/math] .

4. Алгоритм метода прогонки является экономичным и требует для своей реализации количество операций, пропорциональное [math]n[/math] .

Пример 10.7. Дана система линейных алгебраических уравнений с трехдиагональной матрицей [math]A

\gamma_4=0)[/math] . Решить эту систему методом прогонки.

Данная система удовлетворяет условию преобладания диагональных элементов (10.3): в первом уравнении 3″>[math]5>3[/math] , во втором уравнении 3+1″>[math]6>3+1[/math] ; в третьем уравнении 1+2″>[math]4>1+2[/math] , в четвертом уравнении 1″>[math]3>1[/math] . Далее выполняем прямой и обратный ход, учитывая, что расширенная матрица имеет вид

1. Прямой ход. Вычислим прогоночные коэффициенты:

Подчеркнем, что [math]\beta_1=-5;

\beta_4=3[/math] , так как в (10.2) во втором слагаемом взят знак «минус»:

Подстановкой решения [math]x_<\ast>=\begin 1&1&1&1 \end^T[/math] в исходную систему убеждаемся, что задача решена верно. Для данного примера [math]\beta_i-\alpha_iP_\ne0,

i=1,2,3,4;[/math] [math]|P_i| , т.е. метод прогонки оказался корректным и устойчивым (см. пункт 3 замечаний 10.3).

Для наглядности представления информации исходные данные и результаты расчетов поместим в табл. 10.1, где в первых четырех колонках содержатся исходные данные, а в последних трех — полученные результаты.

Пример 10.8. Дана система линейных алгебраических уравнений с трехдиагональной матрицей [math]A[/math] , решить систему методом прогонки:

Результаты расчетов в прямом и обратном ходе занесены в табл. 10.2.

В результате получено решение: [math]x_<\ast>=\begin 1&2&3&4 \end^T[/math] . Заметим, что условие преобладания диагональных элементов в данном примере не выполнено, но алгоритм метода прогонки позволил получить точное решение. При этом обратим внимание на небольшой порядок системы и отсутствие погрешностей вычислений.

Пример 10.9. Решить методом прогонки систему уравнений

Расширенная матрица системы имеет вид [math]\begin2&1&0&0\!\!&\vline\!\!&4\\ 2&3&-1&-1\!\!&\vline\!\!&9\\ 0&1&-1&3\!\!&\vline\!\!&12\\ 0&0&1&-1\!\!&\vline\!\!&-4 \end[/math] .

1. Прямой ход. Вычислим прогоночные коэффициенты:

Получено решение системы: [math]x_<\ast>=\begin 1&2&-1&3 \end^T[/math] . Результаты расчетов приведены в табл. 10.3

Метод LU-разложения для решения СЛАУ

Рассмотрим ещё один метод решения задачи (10.1). Метод опирается на возможность представления квадратной матрицы [math]A[/math] системы в виде произведения двух треугольных матриц:

где [math]L[/math] — нижняя, a [math]U[/math] — верхняя треугольные матрицы,

С учётом (10.7) система [math]Ax=b[/math] представляется в форме

Решение системы (10.8) сводится к последовательному решению двух простых систем с треугольными матрицами. В итоге процедура решения состоит из двух этапов.

Прямой ход. Произведение [math]Ux[/math] обозначим через [math]y[/math] . В результате решения системы [math]Ly=b[/math] находится вектор [math]y[/math] .

Обратный ход. В результате решения системы [math]Ux=y[/math] находится решение задачи — столбец [math]x[/math] .

В силу треугольности матриц [math]L[/math] и [math]U[/math] решения обеих систем находятся рекуррентно (как в обратном ходе метода Гаусса).

Из общего вида элемента произведения [math]A=LU[/math] , а также структуры матриц [math]L[/math] и [math]U[/math] следуют формулы для определения элементов этих матриц:

Результат представления матрицы [math]A[/math] в виде произведения двух треугольных матриц (операции факторизации) удобно хранить в одной матрице следующей структуры:

Вычисления на k-м шаге метода LU-разложения удобно производить, пользуясь двумя схемами, изображенными на рис. 10.2.

1. Всякую квадратную матрицу [math]A[/math] , имеющую отличные от нуля угловые миноры

можно представить в виде LU-разложения, причем это разложение будет единственным. Это условие выполняется для матриц с преобладанием диагональных элементов, у которых

2. В результате прямого хода может быть вычислен определитель матрицы [math]A[/math] по свойствам определителя произведения матриц (теорема 2.2) и определителя треугольных матриц:

Алгоритм метода LU-разложение

1. Выполнить операцию факторизации исходной матрицы [math]A[/math] , применяя схемы (рис. 10.2) или формулы (10.9), и получить матрицы [math]L[/math] и [math]U[/math] .

2. Решить систему [math]L\cdot y=b[/math] .

3. Решить систему [math]U\cdot x=b[/math] .

Пример 10.10. Решить систему линейных алгебраических уравнений методом LU-разложения

1. Выполним операцию факторизации:

В результате получены две треугольные матрицы:

Согласно пункту 2 замечаний 10.4, определитель матрицы [math]A[/math] находится в результате перемножения диагональных элементов матрицы [math]L\colon\,\det=2\cdot0,\!5\cdot26=26[/math] .

2. Решим систему [math]L\cdot y=b[/math] :

\begin2y_1=16,\\ 3y_1+0,\!5y_2=10,\\ y_1+2,\!5y_2+26y_3=16. \end[/math] . Отсюда [math]\beginy_1=8,\\ y_2=(10-3\cdot8)\cdot2=-28,\\[4pt] y_3=\dfrac<16-8+70><26>=3.\end[/math]

3. Решим систему [math]U\cdot x=y:[/math]

\beginx_1+0,\!5x_2+2x_3=8,\\ x_2-10x_3=-28,\\ x_3=3.\end[/math] . Отсюда [math]\begin x_3=3,\\ x_2=-28+10\cdot3=2,\\ x_1=8-2\cdot3-0,\!5\cdot2=1. \end[/math]

Пример 10.11. Решить систему линейных алгебраических уравнений методом LU-разложения.

1. Выполним операцию факторизации:

2. Решим систему линейных уравнений [math]L\cdot y=b[/math] :

\begin3y_1=5,\\ -2y_1+y_2/3=0,\\ 2y_1-y_2/3+5y_3=15. \end[/math] . Отсюда [math]\beginy_1=5/3,\\ y_2=10,\\ y_3=3.\end[/math]

3. Решим систему [math]U\cdot x=y[/math] :

\begin x_1-x_2/3=5/3,\\ x_2+3x_3=10,\\ x_3=3;\end \Rightarrow

Пример 10.12. Решить систему линейных алгебраических уравнений методом LU-разложения

1. Выполним процедуру факторизации:

В результате получаем матрицы LU-разложения:

2. Решим систему уравнений [math]L\cdot y=b:[/math]

\begin2y_1=4,\\ 2y_1+2y_2=9,\\ y_2-y_3/3=12,\\ y_3+5y_4=-4,\end\!\!\! \Rightarrow

3. Решим систему уравнений [math]U\cdot x=y:[/math]

Отсюда записываем решение исходной системы уравнений: [math]x_<\ast>= \begin1&2&-1&3\end^T[/math] .

Метод квадратных корней для решения СЛАУ

При решении систем линейных алгебраических уравнений с симметрическими матрицами можно сократить объем вычислений почти вдвое.

Пусть [math]A[/math] — симметрическая квадратная матрица системы [math]Ax=b[/math] порядка [math]n[/math] . Решим задачу ее представления в виде

Находя произведение [math]U^T\cdot U[/math] , составим систему уравнении относительно неизвестных элементов матрицы [math]U:[/math]

Система имеет следующий вид:

Из первой строки системы находим

Из второй строки определяем

Из последней строки имеем [math]\textstyle=\sqrt-\sum\limits_^u_^2>>[/math] .

Таким образом, элементы матрицы [math]U[/math] находятся из соотношений

При осуществлении [math]U^TU[/math] -разложения симметрической матрицы могут возникать ситуации, когда [math]u_=0[/math] при некотором [math]i[/math] или подкоренное выражение отрицательно. Для симметрических положительно определенных матриц разложение выполнимо.

Если матрица [math]A[/math] представима в форме [math]U^TU[/math] , то система [math]Ax=b[/math] имеет вид [math]U^TUx=b[/math] . Решение этой системы сводится к последовательному решению двух систем с треугольными матрицами. В итоге процедура решения состоит их двух этапов.

1. Прямой ход. Произведение [math]Ux[/math] обозначается через [math]y[/math] . В результате решения системы [math]U^Ty=b[/math] находится столбец [math]y[/math] .

2. Обратный ход. В результате решения системы [math]Ux=y[/math] находится решение задачи — столбец [math]x[/math] .

Алгоритм метода квадратных корней

1. Представить матрицу [math]A[/math] в форме [math]A=U^T\cdot U[/math] , используя (10.10).

2. Составить систему уравнений [math]U^T\cdot y=b[/math] и найти [math]y[/math] .

3. Составить систему уравнений [math]U\cdot x=y[/math] и найти [math]x[/math] .

Найти решение системы уравнений методом квадратных корней

Решение. 1. Представим матрицу [math]A[/math] в форме [math]A=U^T\cdot U[/math] , используя (10.10):

при [math]i=1[/math] получаем [math]u_<11>= \sqrt>= \sqrt<2>\,,

при [math]i=2[/math] имеем

Таким образом, получили

2. Решим систему [math]U^T\cdot y=b[/math] :

3. Решим систему [math]U\cdot x=y[/math] :

В результате получили решение исходной системы [math]x_1=1,

Метод простых итераций для решения СЛАУ

Альтернативой прямым методам решения СЛАУ являются итерационные методы, основанные на многократном уточнении [math]x^<(0)>[/math] , заданного приближенного решения системы [math]A\cdot x=b[/math] . Верхним индексом в скобках здесь и далее по тексту обозначается номер итерации (совокупности повторяющихся действий).

Реализация простейшего итерационного метода — метода простых итераций — состоит в выполнении следующих процедур.

1. Исходная задача [math]A\cdot x=b[/math] преобразуется к равносильному виду:

где [math]\alpha[/math] — квадратная матрица порядка [math]n[/math] ; [math]\beta[/math] — столбец. Это преобразование может быть выполнено различными путями, но для обеспечения сходимости итераций (см. процедуру 2) нужно добиться выполнения условия [math]\|\alpha\| .

2. Столбец [math]\beta[/math] принимается в качестве начального приближения [math]x^<(0)>= \beta[/math] и далее многократно выполняются действия по уточнению решения, согласно рекуррентному соотношению

или в развернутом виде

3. Итерации прерываются при выполнении условия (где 0″>[math]\varepsilon>0[/math] — заданная точность, которую необходимо достигнуть при решении задачи)

1. Процесс (10.12) называется параллельным итерированием , так как для вычисления (k+1)-го приближения всех неизвестных учитываются вычисленные ранее их k-е приближения.

2. Начальное приближение [math]x^<(0)>[/math] может выбираться произвольно или из некоторых соображений. При этом может использоваться априорная информация о решении или просто «грубая» прикидка. При выполнении итераций (любых) возникают следующие вопросы:

а) сходится ли процесс (10.12), т.е. имеет ли место [math]x^<(k)>\to x_<\ast>[/math] , при [math]k\to\infty[/math] , где [math]x_<\ast>[/math] — точное решение?

б) если сходимость есть, то какова ее скорость?

в) какова погрешность найденного решения [math]x^<(k+1)>[/math] , т.е. чему равна норма разности [math]\bigl\|x^<(k)>-x_<\ast>\bigr\|[/math] ?

Ответ на вопросы о сходимости дают следующие две теоремы.

Теорема (10.1) о достаточном условии сходимости метода простых итераций. Метод простых итераций, реализующийся в процессе последовательных приближений (10.12), сходится к единственному решению исходной системы [math]Ax=b[/math] при любом начальном приближении [math]x^<(0)>[/math] со скоростью не медленнее геометрической прогрессии, если какая-либо норма матрицы [math]\alpha[/math] меньше единицы, т.е. [math]\|\alpha\|_s .

1. Условие теоремы 10.1, как достаточное, предъявляет завышенные требования к матрице [math]\alpha[/math] , и потому иногда сходимость будет, если даже [math]\|\alpha\|\geqslant1[/math] .

2. Сходящийся процесс обладает свойством «самоисправляемости», т.е. отдельная ошибка в вычислениях не отразится на окончательном результате, так как ошибочное приближение можно рассматривать, как новое начальное.

3. Условия сходимости выполняются, если в матрице [math]A[/math] диагональные элементы преобладают, т.е.

и хотя бы для одного [math]i[/math] неравенство строгое. Другими словами, модули диагональных коэффициентов в каждом уравнении системы больше суммы модулей недиагональных коэффициентов (свободные члены не рассматриваются).

4. Чем меньше величина нормы [math]\|\alpha\|[/math] , тем быстрее сходимость метода.

Теорема (10.2) о необходимом и достаточном условии сходимости метода простых итераций. Для сходимости метода простых итераций (10.12) при любых [math]x^<(0)>[/math] и [math]\beta[/math] необходимо и достаточно, чтобы собственные значения матрицы [math]\alpha[/math] были по модулю меньше единицы, т.е. [math]\bigl|\lambda_i(\alpha)\bigr| .

Замечание 10.7. Хотя теорема 10.2 дает более общие условия сходимости метода простых итераций, чем теорема 10.1, однако ею воспользоваться сложнее, так как нужно предварительно вычислить границы собственных значений матрицы [math]\alpha[/math] или сами собственные значения.

Преобразование системы [math]Ax=b[/math] к виду [math]x=\alpha x+\beta[/math] с матрицей [math]\alpha[/math] , удовлетворяющей условиям сходимости, может быть выполнено несколькими способами. Приведем способы, используемые наиболее часто.

1. Уравнения, входящие в систему [math]Ax=b[/math] , переставляются так, чтобы выполнялось условие (10.14) преобладания диагональных элементов (для той же цели можно использовать другие элементарные преобразования). Затем первое уравнение разрешается относительно [math]x_1[/math] , второе — относительно [math]x_2[/math] и т.д. При этом получается матрица [math]\alpha[/math] с нулевыми диагональными элементами.

Например, система [math]\begin-2,\!8x_1+x_2+4x_3=60,\\ 10x_1-x_2+8x_3=10,\\ -x_1+2x_2-0,\!6x_3=20\end[/math] с помощью перестановки уравнений приводится к виду [math]\begin10x_1-x_2+8x_3=10,\\ -x_1+2x_2-0,\!6x_3=20,\\-2,\!8x_1+x_2+4x_3=60, \end[/math] где

|4|>|-2,\!8|+|1|[/math] , т.е. диагональные элементы преобладают.

Выражая [math]x_1[/math] из первого уравнения, [math]x_2[/math] — из второго, а [math]x_3[/math] — из третьего, получаем систему вида [math]x=\alpha x+\beta:[/math]

Заметим, что [math]\|\alpha\|_1=\max\<0,\!9;\,0,\!8;\,0,\!95 \>=0,\!95 , т.е. условие теоремы 10.1 выполнено.

Проиллюстрируем применение других элементарных преобразований. Так, система [math]\begin4x_1+x_2+9x_3=-7,\\ 3x_1+8x_2-7x_3=-6,\\ x_1+x_2-8x_3=7\end[/math] путем сложения первого и третьего уравнений и вычитания из второго уравнения третьего уравнения преобразуется к виду с преобладанием диагональных элементов: [math]\begin 5x_1+2x_1+x_3=0,\\ 2x_1+7x_2+x_3=-13,\\ x_1+x_2-8x_3=7. \end[/math]

2. Уравнения преобразуются так, чтобы выполнялось условие преобладания диагональных элементов, но при этом коэффициенты [math]\alpha_[/math] не обязательно равнялись нулю.

Например, систему [math]\begin1,\!02x_1-0,\!15x_2=2,\!7,\\ 0,\!8x_1+1,\!05x_2=4 \end[/math] можно записать в форме [math]\beginx_1=-0,\!02x_1+0,\!15x_2+2,\!7,\\ x_2=-0,\!8x_1-0,\!05x_2+4,\end[/math] для которой [math]\|\alpha\|_1= \max\<0,\!17;\,0,\!85\>= 0,\!85 .

i,j=1,\ldots,n[/math] достаточно малы, условие сходимости выполняется.

Алгоритм метода простых итераций

1. Преобразовать систему [math]Ax=b[/math] к виду [math]x=\alpha x+\beta[/math] одним из описанных способов.

2. Задать начальное приближение решения [math]x^<(0)>[/math] произвольно или положить [math]x^<(0)>=\beta[/math] , а также малое положительное число [math]\varepsilon[/math] (точность). Положить [math]k=0[/math] .

3. Вычислить следующее приближение [math]x^<(k+1)>[/math] по формуле [math]x^<(k+1)>= \alpha x^<(k)>+\beta[/math] .

4. Если выполнено условие [math]\bigl\|x^<(k+1)>-x^<(k)>\bigr\| , процесс завершить и в качестве приближенного решения задачи принять [math]x_<\ast>\cong x^<(k+1)>[/math] . Иначе положить [math]k=k+1[/math] и перейти к пункту 3 алгоритма.

Методом простых итераций с точностью [math]\varepsilon=0,\!01[/math] решить систему линейных алгебраических уравнений:

Решение. 1. Так как [math]|2| , то условие (5.41) не выполняется. Переставим уравнения так, чтобы выполнялось условие преобладания диагональных элементов:

|10|>|2|+|2|[/math] . Выразим из первого уравнения [math]x_1[/math] , из второго [math]x_2[/math] , из третьего [math]x_3:[/math]

Заметим, что [math]\|\alpha\|_1= \ma\<0,\!2;\,0,\!3;\,0,\!4 \>=0,\!4 , следовательно, условие сходимости (теорема 10.1) выполнено.

2. Зададим [math]x^<(0>=\beta= \begin 1,\!2\\1,\!3\\1,\!4 \end[/math] . В поставленной задаче [math]\varepsilon= 0,\!01[/math] .

3. Выполним расчеты по формуле (10.12):

до выполнения условия окончания и результаты занесем в табл. 10.4.

4. Расчет закончен, поскольку выполнено условие окончания [math]\bigl\|x^<(k+1)>-x^ <(k)>\bigr\|=0,\!0027 .

Приближенное решение задачи: [math]x_<\ast>\cong \begin0,\!9996& 0,\!9995& 0,\!9993 \end^T[/math] . Очевидно, точное решение: [math]x_<\ast>=\begin 1&1&1 \end^T[/math] .

Приведем результаты расчетов для другого начального приближения [math]x^<(0)>=\begin 1,\!2&0&0 \end^T[/math] и [math]\varepsilon=0,\!001[/math] (табл. 10.5).

Приближенное решение задачи: [math]x_<\ast>\cong \begin 1,\!0001& 1,\!0001& 1,\!0001 \end^T[/math] .

Метод Зейделя для решения СЛАУ

Этот метод является модификацией метода простых итераций и в некоторых случаях приводит к более быстрой сходимости.

Итерации по методу Зейделя отличаются от простых итераций (10.12) тем, что при нахождении i-й компоненты (k+1)-го приближения сразу используются уже найденные компоненты (к +1) -го приближения с меньшими номерами [math]1,2,\ldots,i-1[/math] . При рассмотрении развернутой формы системы итерационный процесс записывается в виде

В каждое последующее уравнение подставляются значения неизвестных, полученных из предыдущих уравнений.

Теорема (10.3) о достаточном условии сходимости метода Зейделя. Если для системы [math]x=\alpha x+\beta[/math] какая-либо норма матрицы [math]\alpha[/math] меньше единицы, т.е. [math]\|\alpha\|_s , то процесс последовательных приближений (10.15) сходится к единственному решению исходной системы [math]Ax=b[/math] при любом начальном приближении [math]x^<(0)>[/math] .

Записывая (10.15) в матричной форме, получаем

где [math]L,\,U[/math] являются разложениями матрицы [math]\alpha:[/math]

Преобразуя (10.16) к виду [math]x=\alpha x+\beta[/math] , получаем матричную форму итерационного процесса метода Зейделя:

Тогда достаточное, а также необходимое и достаточное условия сходимости будут соответственно такими (см. теоремы 10.1 и 10.2):

1. Для обеспечения сходимости метода Зейделя требуется преобразовать систему [math]Ax=b[/math] к виду [math]x=\alpha x+\beta[/math] с преобладанием диагональных элементов в матрице а (см. метод простых итераций).

2. Процесс (10.15) называется последовательным итерированием , так как на каждой итерации полученные из предыдущих уравнений значения подставляются в последующие. Как правило, метод Зейделя обеспечивает лучшую сходимость, чем метод простых итераций (за счет накопления информации, полученной при решении предыдущих уравнений). Метод Зейделя может сходиться, если расходится метод простых итераций, и наоборот.

3. При расчетах на ЭВМ удобнее пользоваться формулой (10.16).

4. Преимуществом метода Зейделя, как и метода простых итераций, является его «самоисправляемость».

5. Метод Зейделя имеет преимущества перед методом простых итераций, так как он всегда сходится для нормальных систем линейных алгебраических уравнений, т.е. таких систем, в которых матрица [math]A[/math] является симметрической и положительно определенной. Систему линейных алгебраических уравнений с невырожденной матрицей [math]A[/math] всегда можно преобразовать к нормальной, если ее умножить слева на матрицу [math]A^T[/math] (матрица [math]A^TA[/math] — симметрическая). Система [math]A^TAx= A^Tb[/math] является нормальной.

Алгоритм метода Зейделя

1. Преобразовать систему [math]Ax=b[/math] к виду [math]x=\alpha x+\beta[/math] одним из описанных способов.

2. Задать начальное приближение решения [math]x^<(0)>[/math] произвольно или положить [math]x^<(0)>=\beta[/math] , а также малое положительное число [math]\varepsilon[/math] (точность). Положить [math]k=0[/math] .

3. Произвести расчеты по формуле (10.15) или (10.16) и найти [math]x^<(k+1)>[/math] .

4. Если выполнено условие окончания [math]\bigl\|x^<(k+1)>-x^<(k)>\bigr\| , процесс завершить и в качестве приближенного решения задачи принять [math]x_<\ast>\cong x^<(k+1)>[/math] . Иначе положить [math]k=k+1[/math] и перейти к пункту 3.

Пример 10.15. Методом Зейделя с точностью [math]\varepsilon=0,\!001[/math] решить систему линейных алгебраических уравнений:

1. Приведем систему [math]Ax=b[/math] к виду [math]x=\alpha x+\beta[/math] (см. пример 10.14):

Так как [math]\|\alpha\|_1=\max\<0,\!2;\,0,\!3;\,0,\!4 \>=0,\!4 , условие сходимости выполняется.

2. Зададим [math]x^<(0)>= \begin 1,\!2&0&0 \end^T[/math] . В поставленной задаче [math]\varepsilon=0,\!001[/math] .

Выполним расчеты по формуле (10.15): [math]\begin x_1^<(k+1)>=-0,\!1\cdot x_2^<(k)>-0,\!1\cdot x_3^<(k)>+1,\!2\,,\\[4pt] x_2^<(k+1)>=-0,\!2\cdot x_1^<(k+1)>-0,\!1\cdot x_3^<(k)>+1,\!3\,,\\[4pt] x_3^<(k+1)>=-0,\!2\cdot x_1^<(k+1)>-0,\!2\cdot x_2^<(k+1)>+1,\!4\,,\end\!\!\!\!\! (k=0,1,\ldots)[/math] и результаты занесем в табл. 10.6.

Очевидно, найденное решение [math]x_<\ast>= \begin 1&1&1 \end^T[/math] является точным.

4. Расчет завершен, поскольку выполнено условие окончания [math]\bigl\|x^<(k+1)>-x^<(k)>\bigr\|= 0,\!0004 .

Пример 10.16. Методом Зейделя с точностью [math]\varepsilon=0,\!005[/math] решить систему линейных алгебраических уравнений:

|5|>|-1|+|-2|[/math] , в данной системе диагональные элементы преобладают. Выразим из первого уравнения [math]x_1[/math] , из второго [math]x_2[/math] , из третьего [math]x_3:[/math]

2. Зададим [math]x^<(0)>= \begin 0&0&0 \end^T[/math] . В поставленной задаче [math]\varepsilon= 0,\!005[/math] .

k=0,1,\ldots[/math] и результаты занесем в табл. 10.7.

Очевидно, найденное решение [math]x_<\ast>= \begin 1&1&1 \end^T[/math] является точным.

4. Расчет завершен, поскольку выполнено условие окончания [math]\bigl\|x^<(k+1)>-x^<(k)>\bigr\|= 0,\!001 .


источники:

http://life-prog.ru/2_18581_tochnie-i-priblizhennie-metodi-resheniya-sistem-lineynih-uravneniy.html

http://mathhelpplanet.com/static.php?p=chislennyye-metody-resheniya-slau