Треугольной называется система линейных уравнений которая

Системы линейных уравнений в математике с примерами решения и образцами выполнения

Уравнения первой степени с двумя и тремя неизвестными изучают в восьмилетней школе. Как показано в курсе геометрии, уравнение первой степени с двумя переменными Ах + Ву = С задает прямую линию. Поэтому принято называть уравнение первой степени линейным. Например, линейное уравне­ние относительно неизвестных х, у, z, . . . , и может быть сведено к виду

Числа А, В, С . . . , D называют коэффициентами при неизвестных, а Е — свободным членом уравнения.

Мы рассмотрим системы линейных уравнений со многими неизвестными. Для таких систем становится неудобным обозначать неизвестные через х, у, z, . . . , u. Значительно удобнее перенумеровать неизвестные и обозначить их Ко­эффициенты при неизвестных тоже неудобно обозначить различ­ными буквами А, В, С, . . . , D. Обычно их обозначают одной бук­вой с двумя номерами (индексами). Первый номер обозначает но­мер уравнения, а второй — номер неизвестного. Например, — это коэффициент при в третьем уравнении. Вообще — коэф­фициент при в i -м уравнении. Свободные члены мы будем обо­значать через

В восьмилетней школе мы рассматривали лишь системы уравнений, для которых число уравнений равнялось числу неизвест­ных. Сейчас мы будем изучать системы, состоящие из m линейных уравнений с n неизвестными. Такие системы записываются сле­дующим образом:

Например, для системы

имеем

Нашей задачей является найти все решения системы линейных уравнений (2) или показать, что эта система не имеет решений, что она несовместна. Мы покажем ниже, что возможны три случая: а) система (2) несовместна, б) система (2) имеет единственное решение, в) система (2) имеет бесконечное множество решений.

Теоремы о равносильности систем линейных уравнений

Пусть дана система линейных уравнений:

Умножим i-е уравнение этой системы на любое число и прибавим к j-му уравнению той же системы. Мы получим новое линей­ное уравнение:

Из следствия к теореме 4 п. 7 вытекает, что если заменить j-е уравнение системы (1) уравнением (2), то получится система уравнений, равносильная данной.

Повторно применяя это утверждение, приходим к следующей теореме.

Теорема:

Если к любому уравнению системы (1) прибавить сумму остальных уравнений, взятых с любыми коэффициентами, то получится система линейных уравнений, равносильная исходной.

Отметим еще следующие простые теоремы.

Теорема:

Если среди уравнений системы есть уравнение вида

то после отбрасывания этого уравнения получается система, равносильная исходной.

Эта теорема вытекает из того, что любой набор чисел удовлетворяет уравнению (3).

Теорема:

Если среди уравнений системы есть уравнение вида

где то система несовместна.

Эта теорема вытекает из того, что ни один набор чисел не удовлетворяет уравнению (4).

Пример решения системы линейных уравнений методом Гаусса

В восьмилетней школе системы линейных уравнений (с двумя или тремя неизвестными) решаются или методом подстановки, или ме­тодом алгебраического сложения. Сейчас мы изложим метод Гаус­са, очень близкий к методу алгебраического сложения, но отличаю­щийся от него большей систематичностью. Покажем сначала этот метод на следующем примере.

Пусть надо решить систему уравнений:

Умножим первое уравнение системы на —2 и прибавим его ко вто­рому, потом умножим первое уравнение на —5 и прибавим к тре­тьему, наконец, умножим первое уравнение на —1 и прибавим к четвертому. Система уравнений примет вид:

Мы видим, что в результате преобразований неизвестное осталось лишь в первом уравнении.

Теперь преобразуем тем же путем три последних уравнения. Умножим второе уравнение на —2 и прибавим к третьему, а по­ том умножим второе уравнение на —1 и прибавим к четвертому.

Наконец, умножим третье уравнение на — 1 и прибавим к четвертому. В результате получаем систему:

Системы такого вида называют треугольными.

Из теоремы 5 вытекает, что треугольная система (4) равносиль­на. исходной системе (1). Треугольную систему уравнений легко решить. Из последнего уравнения находим, что Подставляя это значение в третье уравнение, получаем откуда Далее, подставим во второе урав­нение. Мы найдем, что Наконец, из первого уравнения вы­текает, что Итак, заданная система имеет единственное решение

Метод Гаусса (приведение системы к обобщенно-треугольному виду).

Рассмотрим теперь решение методом Гаусса систем линейных уравнений общего вида. Пусть задана система уравнений:

Если то умножим первое уравнение на — и прибавим ко второму, потом умножим его на — и прибавим к третьему, . . . умножим на — и прибавим к m- му. Получится система вида:

Здесь для краткости введены следующие обозначения:

Таким образом, если то удается исключить из всех уравнений системы, начиная со второго. Если же то воз­можны различные случаи, в зависимости от того, какой вид имеет первое уравнение системы. Эти случаи таковы:

а) Все коэффициенты и свободный член первого уравнения равны нулю: В этом случае первое уравнение системы имеет вид:

В силу теоремы 6, п. 2, мы можем его отбросить, не меняя множества решений системы (1).

б) Все коэффициенты равны нулю, а отлично от нуля: Тогда первое уравнение нашей системы имеет вид:

и по теореме 7, п. 2, система несовместна.

в) но среди коэффициентов есть отлич­ные от нуля, скажем Тогда надо поменять номера у не­известных то есть ввести новые неизвестные та­кие, что Разумеется, при этом мы уже получим систему, неравносильную заданной (например, системы

неравносильны). Но переход от одной системы уравнений к другой сводится к перестановке неизвестных. После изменения номеров у неизвестных место коэффициента займет коэффициент отличный от нуля, и мы сможем исключить из всех урав­нений, начиная со второго, неизвестное (то есть ). Таким об­разом, если то либо система несовместна, либо первое урав­нение можно отбросить, либо, наконец, можно переставить неиз­вестные и исключить вместо другое неизвестное .

Вернемся теперь к системе уравнений (2). Если то мы можем повторить описанный процесс и исключить из третьего, четвертого, . . . , m-го уравнений. Потом мы исключим неизвестное из четвертого и дальнейших уравнений и т. д. На каждом шагу мы будем получать системы уравнений, равносильные заданной. При этом возможны следующие случаи:

а) В ходе решения мы получаем уравнение вида

где Тогда система не имеет решений, она несовместна.

б) При решении системы уравнений вида (3) не получается. Тогда через конечное число шагов (не более чем через т — 1 шаг) мы получим систему вида:

где диагональные коэффициенты , отличны от нуля (напомним, что мы отбрасывали уравнения вида и в случае необходимости меняли номера неизвест­ных).

Систему уравнений (4) мы будем называть обобщенно-треугольной системой уравнений. Таким образом, метод Гаусса позволяет либо установить, что данная система линейных уравнений несов­местна, либо заменить ее равносильной обобщенно-треугольной системой.

Назовем число r уравнений в системе (4) рангом заданной системы уравнений. На первый взгляд может показаться, что ранг заданной системы зависит не только от этой системы, но и от того, каким путем ее приводили к обобщенно-треугольной форме (в ка­ком порядке записывали уравнения, как нумеровали неизвестные и т. д.). Оказывается, это не так: при любом способе приведения за­ данной системы линейных уравнений к равносильной ей обобщен­но-треугольной системе уравнений получается система, состоящая из одного и того же числа уравнений. Доказательство этого утверж­дения довольно сложно, и мы его опускаем. Отметим, что ранг r системы не больше числа m уравнений этой системы.

Решение обобщенно-треугольной системы линейных уравне­ний

Покажем теперь, что любая обобщенно-треугольная система уравнений совместна, и выясним, когда она имеет единственное решение. Сначала разберем случай, когда ранг системы r равен числу неизвестных n, r =n. Тогда система (4), п. 4, имеет вид:

то есть является треугольной. При этом Треугольная система уравнений решается очень просто. Из последнего уравнения системы находим, что . Подставим это значение в предпоследнее уравнение. Мы получим, что

После этого последовательно определяем и т.д. вплоть до которое находим из первого уравнения. Мы видим, что тре­угольная система имеет единственное решение. Следовательно, при r = n заданная система уравнений имеет единственное решение. Пусть теперь r

Перенесем слагаемые, содержащие неизвестные в правую часть уравнений. Система примет вид:

Эта система имеет бесконечное множество решений. В самом деле, дадим неизвестным любые значения Тогда мы получим для отыскания остальных неизвест­ных треугольную систему уравнений:

Решая ее, получим искомые значения для Так как зна­чения неизвестных произвольны, то число решений бесконечно.

Например, решим систему уравнений:

Она приводится к обобщенно-треугольной системе:

Значит, ее ранг равен двум. Перенося слагаемые, содержащие в первую часть, получаем треугольную систему относительно

Из этой системы находим:

Любое решение уравнения (5) получится, если придать некоторые значения неизвестным и вычислить по формулам (6).

Подведем итоги исследования:

Всякая система линейных уравнений либо не имеет решений (несовместна), либо имеет единственное решение, либо бесконечное множество решений.

Первый случай будет, если при решении системы методом Га­усса мы придем к уравнению вида

где . Второй случай имеет место, если она совместна и ранг системы (число уравнений в обобщенно-треугольной форме) равен числу неизвестных. Третий случай имеет место, если система сов­местна и ее ранг меньше числа неизвестных.

6. Системы однородных линейных уравнений. Линейное уравнение, свободный член которого равен нулю, называется однородным. Оно имеет вид

Мы рассмотрим сейчас систему таких уравнений:

Система однородных линейных уравнений заведомо разрешима, посколь­ку ей удовлетворяет решение Это решение мы будем на­зывать нулевым. Однако чаще всего нас интересуют именно ненулевые ре­шения системы однородных линейных уравнений.

Если ранг системы однородных линейных уравнений равен числу неиз­вестных, r = n, то, как мы знаем, система имеет единственное решение. Так как одно решение, а именно нулевое, мы уже знаем, то ненулевых решений система не имеет. Если же ранг системы меньше числа неизвестных, то си­стема имеет бесконечное множество решений. Поэтому у нее, кроме нулевого будут и ненулевые решения. Мы доказали, таким образом, следующую те­орему.

Теорема:

Для того чтобы система однородных линейных уравнений имела ненулевое решение, необходимо и достаточно, чтобы ранг r этой системы был меньше числа неизвестных n.

Так как ранг системы заведомо меньше числа уравнений исходной си­стемы, то отсюда получаем

Следствие:

Для того чтобы система m однородных линейных уравнений с n неизвестными имела ненулевое решение, достаточно, чтобы число уравне­ний было меньше числа неизвестных, m

Применяя метод Гаусса, приходим к системе уравнений:

Ее можно записать так:

Отсюда находим, что При любом значении получаем решение системы (*). Отметим, что полученное решение можно представить в следующем виде:

Симметрические многочлены и их приложения к решению систем уравнений

Симметрические многочлены от двух переменных: При решении многих задач геометрии весьма полезным оказывается исполь­зование симметрии и ее свойств. В алгебре также существенную по­мощь в решении задач оказывает учет симметричности тех или иных алгебраических выражений. Разумеется, понятия симметрии в гео­метрии и в алгебре имеют различный смысл. В алгебре оно означает, что данное выражение не меняется при перестановке входящих в него букв. Например, выражение симметрично относитель­но x и у, но не симметрично относительно x и z. Если переставить х и у то получится выражение, отличающееся от заданного лишь по­рядком сомножителей, а если переставить х и г, получаем совсем иное выражение

Мы изучим сейчас симметрические многочлены от двух переменных, то есть такие многочлены f(х, у), что f(х, у) = f(у, x).

Например, многочлен симметричен. Многочлен же не является симметрическим. Если заменить в нем х на у, а у на х, то получится многочлен который не совпадает с первоначальным.

Простейшими симметрическими многочленами от двух переменных х и у являются сумма и произведение этих переменных, то есть х+у и ху. Введем для этих многочленов специальные обо­ значения:

Симметрическими являются многочлены вида Их называют степенными суммами. Принято обозначать многочлен через Таким образом,

Выражение степенных сумм через

Рассмотрим первые три степенные суммы Легко видеть, что их можно выразить через многочлены

Докажем, что это утверждение верно для любых степенных сумм.

Теорема:

Любая степенная сумма может быть представ­лена в виде многочлена от переменных

Иными словами, для любого n существует такой многочлен чтo после подстановки, в него и упрощения он превращается в

Доказательство:

Применим для доказательства метод математической индукции. При n = 1 наше утверждение справедливо, поскольку Таким образом, Предположим теперь, что утверждение доказано для степен­ных сумм Пусть для любой такой суммы най­ден многочлен обладающий тем свой­ством, что Заметим теперь, что

Это равенство можно записать так:

то получаем, что

Мы предположили, что — многочлены от Подставим выражения этих многочленов в полученное равенство, раскроем скобки, приведем подобные члены и сгруппи­руем их в порядке убывания степеней В результате мы получим выражение для в виде многочлена от

Итак, доказываемое утверждение верно при n = 1 и из его справедливости при следует справедливость для n. Зна­чит, оно верно для всех n.

Примеры:

1) Выразим через степенные суммы По формуле (1) имеем

Точно так же находим:

Основная теорема о симметрических многочленах от двух переменных

Теорема 1, п. 7, является частным случаем следующего общего утверждения.

Теорема:

Для любого симметрического многочлена F(х, у) существует такой (вообще говоря, несимметрический) многочлен что F (х, у) =f(х +у, ху).

Доказательство. Пусть F(х, у) — симметрический многочлен. Возьмем какой-нибудь из его членов Если k =l, то этот член имеет вид и может быть записан так:

Если же скажем k > l, то наряду со слагаемым в F(х, у) входит и симметрическое с ним слагаемое Но сум­му можно записать так:

Мы уже умеем выражать через Следовательно, и сумма выражается через Так как это рассуждение применимо к любому слагаемому то и весь многочлен F (х, у) можно выразить через и ст2.

Пример:

Выразить через симметрический многочлен

Применяя формулу для получаем, что

Системы симметрических алгебраических уравнений

Мы уже говорили, что иногда удается упростить решение системы алгебраических уравнений, удачно введя новые неизвестные. Этот путь решения приводит к успеху, если заданная система уравнений симметрична, то есть имеет вид:

где Р(х, у) и Q (х, у) — симметрические многочлены от х и у.

Простейшей системой такого вида является:

Будем рассматривать числа х и у как корни некоторого квадратного уравнения. Тогда по теореме Виета коэффициент при пер­вой степени неизвестного в этом уравнении равен —а, а свободный член равен b. Иными словами, квадратное уравнение с корнями х и у имеет вид:

Пусть корни этого уравнения Тогда либо либо

Рассмотрим теперь более сложную систему:

Так как левые части обоих уравнений симметрично зависят от х и у, то введем вместо х и у новые неизвестные

Выразим через эти неизвестные левые части уравнений (3). Мы получим:

Таким образом, заданная система свелась к следующей:

Сложив эти уравнения, получим квадратное уравнение относительно

Из него следует, что Так как то

Поскольку то наша система свелась к сово­купности двух систем

Решая первую систему, находим два решения:

Вторая система действительных решений не имеет. Точно так же решается система уравнений:

то данную систему можно записать в виде:

Подставляя во второе уравнение значение о 4 = 5, получаем квадратное уравнение:

Из него находим, что Тем самым заданная система свелась к системам:

Решая первую систему, получаем:

Вторая же система не имеет действительных решений.

Выгода введения неизвестных состоит в том, что при такой замене понижается степень уравнения, по­скольку имеет вторую степень относительно х и у. Напри­мер, во втором разобранном примере система пятой степени свелась к квадратному уравнению.

Применение симметрических многочленов к решению иррациональных уравнений

Решение некоторых иррациональных урав­нений можно свести к решению систем симметрических алгебра­ических уравнений. Рассмотрим иррациональное уравнение

Здесь выгодно ввести два вспомогательных неизвестных, положив

Тогда заданное уравнение примет вид: u + v = 5. Кроме того, имеем: Таким образом, мы получили следующую систему уравнений относительно u и v:

Введем новые неизвестные:

Так как , то мы получим новую систему уравнений:

Подставим во второе уравнение значение Получим квадратное уравнение относительно

Решая его, находим Таким образом, задача свелась к решению двух систем уравнений:

Первая из этих систем имеет два решения: Так как то для первоначального уравнения нахо­дим два значения корней:

Вторая система не имеет действительных корней.

Итак, заданное уравнение имеет лишь два корня: и

Дополнение к решению систем линейных уравнений

Системы линейных уравнений — решение заданий и задач по всем темам с вычислением

Метод Жордана-Гаусса

1°. Система из то линейных уравнений с п неизвестными в общем случае записывается так:

Коэффициенты , и свободные члены , — заданные действительные числа. Первый индекс i в записи обозначает номер уравнения, второй — j — номер неизвестной.

Решить систему (1) — значит найти все ее решения, т.е. все такие наборы чисел , которые при подстановке во все уравнения системы превращают их в верные равенства, или доказать, что решений нет.

Система (1) называется:

совместной, если она имеет хотя бы одно решение;

определенно совместной, если она имеет только одно решение;

неопределенно совместной, если она имеет более одного решения;

несовместной, если она не имеет ни одного решения.

2°. Две системы называются равносильными, если они имеют одинаковые решения или обе несовместны.

Переход от одной системы к равносильной осуществляется при помощи множества элементарных преобразований:

умножение обеих частей любого уравнения на отличное от нуля число;

прибавление к одному из уравнений произвольного другого, умноженного на любое число;

удаление (вычеркивание) из системы тривиального уравнения

— если в системе имеются два или более уравнений с пропорциональными коэффициентами, то сохранить нужно только одно из них.

Уравнение не имеет решений. Оно называется противоречивым. Система, содержащая такое уравнение, сама противоречива, т.е. несовместна.

3°. Один шаг метода Жордана-Гаусса состоит в приведении системы (1) к виду

в котором одна неизвестная сохранена с коэффициентом 1 только в p-м уравнении, а из остальных исключена. Систему (2) назовем разрешенной относительно неизвестной , поскольку ее легко выразить через остальные неизвестные данной системы.

Для того, чтобы получить систему (2), требуется следующее:

1) коэффициент при в уравнении с номером р должен быть отличен от нуля; в дальнейшем назовем ведущим, или разрешающим коэффициентом, а р-е уравнение — ведущим уравнением;

2) р-е уравнение надо разделить на ;

3) для получения нулевых коэффициентов при в остальных уравнениях следует из i-го уравнения вычесть ведущее уравнение, сначала разделенное на , а затем домноженное на .

Тогда все остальные коэффициенты и преобразуются по формулам

Эти формулы будем называть формулами Жордана-Гаусса. Расчет по ним удобно выполнять, пользуясь мнемоническим правилом прямоугольника, наглядно показанным на следующих диаграммах:

Смысл диаграмм следующий: новый коэффициент (или ) получается из старого вычитанием из него произведения соседних (по прямоугольнику) коэффициентов, деленного на противолежащий (разрешающий) коэффициент .

4°. На втором шаге сохраним с коэффициентом 1 другую неизвестную в другом уравнении, исключая из остальных.

Через шагов систему (1) можно привести к системе, состоящей из уравнений (остальные тривиальных уравнений, если такие были, отброшены) и содержащей разрешенных неизвестных. Эти неизвестных назовем базисными (используя векторную терминологию, которая появится позже), остальные — свободными, или независимыми. Основная часть метода Жордана-Гаусса завершена.

Если , то система разрешена относительно всех неизвестных, т. е. однозначно совместна.

Если , то, выражая базисные (зависимые) неизвестные через свободные (независимые), получаем «общее» решение системы в соответствующем базисе, которое впоследствии следует параметризовать и из которого можно получать различные частные решения, в том числе базисное (так называется решение, соответствующее нулевому набору свободных неизвестных).

Заметим, что «общее» решение определяется неоднозначно, оно зависит от того, какие неизвестные являются свободными (независимыми, произвольными), а какие — зависимыми (базисными).

5°. Метод Жордана-Гаусса удобно реализовать в виде таблицы, которую назовем таблицей Гаусса. Каждый ее блок содержит результат одного преобразования или одну итерацию. Столбец блока таблицы, состоящий из нулей и одной единицы, будем называть единичным столбцом. Цель преобразований Жордана-Гаусса — получить единичных столбцов. Неизвестные, соответствующие единичным столбцам, являются базисными, остальные — свободными. Последний блок таблицы изображает систему, разрешенную относительно г базисных неизвестных.

Примеры с решениями

Пример:

Решить линейную систему

1. Выполним первую итерацию, т.е. получим первый единичный столбец, выбирая в качестве ведущего коэффициента (в таблице он обведен кружком). Для этого над строками таблицы (над уравнениями системы) выполним следующие действия (они обозначены справа от таблицы):

Решение:

Первый блок таблицы Гаусса данной системы имеет вид («св. ч.» означает «свободные члены» уравнений системы, вертикальная черта соответствует знакам равенства):

1) первую строку сохраняем (переписываем);

2) первую строку, умноженную на 2, прибавим 0 ко второй;

3) первую строку, умноженную на -2, прибавим к третьей;

4) первую строку прибавим к четвертой.

Получаем второй блок таблицы:

2. Приведем к единичному третий столбец, в нем уже имеется один нуль. Ведущий коэффициент обведен кружком. Далее:

1) вторую строку, умноженную на 3, прибавим к первой и запишем вместо первой строки;

2) перепишем вторую строку без изменения;

3) вторую строку, умноженную на —1, прибавим к третьей;

4) четвертую строку перепишем без изменения.

Эти действия выражаются числами и стрелками, показанными справа от второго блока таблицы. Третий блок таблицы имеет вид:

3. Следующая итерация заключается в получении третьего единичного столбца. Для этого примем в качестве ведущего коэффициента и выполним следующие действия: третью строку, умноженную на -5, —1, -2, прибавим к первой, второй и четвертой строкам соответственно. Третью строку переписываем без изменений. Получаем четвертый блок:

4. Наконец, последнюю итерацию выполним, выбирая в качестве ведущего коэффициента . Четвертую строку разделим на -3. Остальные действия очевидны. Получаем:

5. После четырех итераций получили таблицу, соответствующую системе, разрешенной относительно всех неизвестных :

Запишем это также в виде: X = (-2,2,-3,1). Система определенно совместна.

Примечание:

Подставьте эти значения неизвестных в данную систему и убедитесь, что получаются верные числовые равенства.

Пример:

Решить линейную систему

Решение:

Каждый раз в качестве ведущего будем принимать простейший коэффициент, т.е. либо 1, либо — 1. Подчеркнем, что цель преобразований заключается в получении нулей в ведущем столбце. Как получить нулевые коэффициенты в единичном столбце, видно из решения примера 1. Для этого ведущую строку надо умножить на надлежащие числа (иногда на 1 или -1) и прибавить к остальным строкам, не содержащим 0 в этом ведущем столбце. Поэтому ограничимся выделением в каждом блоке ведущего коэффициента, не комментируя сами преобразования и не указывая соответствующие числа со стрелками. Результаты вычислений поместим в единую таблицу Гаусса, которая имеет следующий вид:

Последние две строки удалены как нулевые (они соответствуют тривиальным уравнениям).

Из последнего блока таблицы получаем систему

выражающую «почти» общее решение исходной системы. Смысл слова «почти» заключается в неравноправном участии неизвестных.

Положим ( — произвольные постоянные или параметры).

представляет общее решение системы в параметрическом виде. Все неизвестные выражены (равноправно) через два параметра

Решения, получаемые из общего при фиксированных значениях параметров , называются частными.

Например, при получаем:, , ,

При получаем . Базисное решение соответствует нулевому набору свободных переменных: если то

Ответ запишем так:

Пример:

Решить систему уравнений

Решение:

Вместо таблицы Гаусса будем использовать другую, более компактную интерпретацию ее блоков. Вертикальная черта в блоках соответствует знакам равенства в уравнениях системы. Знак

(читается «тильда») между двумя соседними блоками означает, что системы, соответствующие этим блокам, равносильны. Имеем:

единичный столбец второго блока получен в результате умножения первой строки на —3, —3, -1, -4 и последующего прибавления ко второй, третьей, четвертой и пятой строкам соответственно; во втором блоке произвели почленное деление четвертой и пятой строк на 3 и —3, т. е. сокращение уравнений

Вторая и третья строки четвертого блока отброшены как пропорциональные пятой. Заметим, что выделение ведущего (разрешающего) элемента однозначно определяет действия по обнулению элементов ведущего столбца, поэтому мы отказались от применения чисел и стрелок, обозначающих действия над строками блока.

Последний блок изображает систему, состоящую из трех уравнений с четырьмя неизвестными Соответствующая система приведена к трем базисным неизвестным; разрешая ее относительно этих неизвестных, получаем

Положим затем . Тогда общее р базисное решения принимают вид соответственно:

Заметим, что переменную нельзя получить среди свободных (свободная переменная может принимать любые значения, тогда как ).

Пример:

Решить систему уравнений

Решение:

В предыдущих примерах преобразования Жордана-Гаусса свелись к действиям над уравнениями системы, или строками таблицы, потому что все ведущие коэффициенты были равны 1. Если же ведущие коэффициенты отличны от 1, то действия над строками могут вызывать затруднения, и в таких случаях следует пользоваться формулами преобразования Жордана-Гаусса, т.е. правилом прямоугольника.

С целью экономии места решение этой системы приведем также в блоковой записи:

(последняя строка пропорциональна первой, поэтому она удалена). Подчеркнем, что цель наших преобразований состоит в получении единичных столбцов.

Приведем примеры применения правила прямоугольника в третьем блоке. При этом одна из вершин каждого прямоугольника должна совпасть с ведущим элементом противоположная вершина — с элементом, подлежащим пересчету:

Из последнего блока получаем общее решение системы в базисе

При получаем частное решение Базисное решение имеет вид

Примечание:

Метод Гаусса (усеченный метод Жордана-Гаусса) допускает получение в очередном блоке таблицы Гаусса столбца, отличного от единичного, т.е. неизвестную не обязательно исключать из всех уравнений, кроме одного. В этом случае говорят о приведении системы уравнений к ступенчатому виду. Это важно в смысле экономии времени, когда коэффициенты системы «неудобные», особенно, если система окажется неразрешимой.

Пример:

Решить систему уравнений

Решение:

Нули в столбцах будем получать только под диагональю соответствующей матрицы.

Последняя строка выражает противоречивое уравнение — система несовместна.

Метод Крамера

1°. Если в системе (1) число уравнений равно числу неизвестных

и система имеет единственное решение, то оно может быть найдено при помощи формул Крамера

где — основной определитель системы (3), который символически записывается так:

а получаются из , если в нем заменить соответственно первый, второй, …, n-й столбец на столбец из свободных членов. называется определителем порядка n: он состоит из п строк и п столбцов.

Сначала рассмотрим определение и вычисление определителей различных порядков n.

2°. Если , то состоит из одного элемента (числа) (в этом случае вертикальные черточки означают «определитель», а не «модуль»). По определению

Если то

3°. Для указания способа вычисления определителя третьего и более высоких порядков (см. (5)) введем необходимые понятия минора и алгебраического дополнения.

Минором элемента определителя (5) называется определитель порядка (n — 1), получаемый из (5) вычеркиванием строки с номером i и столбца с номером j.

Величина и называется алгебраическим дополнением элемента .

Например, для определителя третьего порядка

4°. Способ вычисления определителя порядка п выражается следующей теоремой о разложении определителя по строке или столбцу (под линией понимается строка или столбец).

Теорема:

Определитель порядка равен сумме произведений элементов какой-либо линии на их алгебраические дополнения.

Теорема:

Сумма произведений элементов какой-либо линии на алгебраические дополнения другой параллельной линии равна нулю.
Например, для определителя из п. 3° по первой строке. Получаем
воспользуемся разложением

5°. С теоретической точки зрения при вычислении определителя безразлично, какую строку или какой столбец взять для разложения. С практической точки зрения лучше брать ту линию, которая содержит нулевые элементы, и чем их больше, тем лучше.

Например, для вычисления определителя четвертого порядка

лучше брать сначала разложение по третьему столбцу:

Этот определитель третьего порядка разложим по первому столбцу:

6°. При вычислении определителей порядка могут оказаться полезными следующие их свойства.

1) При транспонировании (так называется действие замены строк столбцами и столбцов строками с сохранением их порядка) значение определителя не изменяется. Таким образом, строки и столбцы определителя равноправны.

2) Если определитель содержит нулевую линию (т. е. состоящую из одних нулей) или две параллельные пропорциональные линии, то его значение равно 0.

3) При умножении любой линии на произвольное число значение определителя умножается на это число. Иными словами, общий множитель элементов некоторой линии можно вывести за знак определителя.

4) При перестановке двух параллельных линий значение определителя изменяется на противоположное (определитель меняет знак).

5) Значение определителя не изменится, если к элементам произвольной линии прибавить соответственные элементы любой другой параллельной линии, умноженные на одно и то же число.

7°. Теорема 3 (Крамера). 1) Если для квадратной системы (3) то она имеет единственное решение, которое определяется по формулам (4).

2) Если и хотя бы один из определителей то система несовместна.

3) Если то система (3) неопределенно совместна.

Примечание. В случае 3) решить систему можно методом Жор-дана-Гаусса. Вместе с тем ее можно решить также методом определителей. Только формулы Крамера применимы не к системе (3), а к модифицированной системе (см. пример 4 ниже).

8°. Определители третьего порядка встречаются чаще. Поэтому для них (и только) покажем два простых правила вычисления.

а) Правило параллельных линий заключается в следующем. К исходному определителю приписываем два первых столбца и составляем две группы произведений, как указано на диаграмме:

б) Правило Саррюса (треугольников) заключается в том, что множители произведений, составляющих суммы А и В, образуют фигуры, показанные на следующей диаграмме:

(показана только фигура А)

Примеры с решениями

Пример:

Решить систему уравнений

Решение:

По формулам Крамера: или

Пример:

Решение:

Следовательно, или

Пример:

Решение:

Вычисление следующих определителей основано на свойствах 2) и 5) из п. 6°. Имеем

Стрелка с числом обозначает умножение соответствующей строки на это число и прибавление результата к указанной стрелкой строке. Далее:

Пример:

Решение:

Имеем (предлагаем самостоятельно убедиться в этом):

Система неопределенно совместна. Покажем, как обойтись формулами Крамера в этом случае.

Если первое уравнение прибавим ко второму, то получаем систему

Не прибегая к методу Жордана-Гаусса, перепишем систему так (это будет модифицированная система):

Следовательно, Система имеет беско нечное множество решений.

Общее решение имеет вид или

Пример:

Решение:

Теорема Крамера непосредственно к этой системе не применима, так как система не квадратная. Тем не менее систему можно решить относительно трех каких-либо неизвестных, если соответствующий определитель отличен от нуля. Перепишем систему в виде

Основной определитель

Вторая (модифицированная) система может быть решена по формулам Крамера, если принять в качестве свободных членов выражения, стоящие в правых частях уравнений (они содержат свободные неизвестные, что и оправдывает их название). Рекомендуем проверить равенства:

(перепишите общее решение в параметрической форме);

Метод обратной матрицы

1°. Матрицей размерности называется таблица, состоящая из чисел или выражений, называемых элементами и расположенных в m строках и n столбцах:

Можно обозначать или просто .

Две матрицы называются равными, если они имеют одинаковые размерности и элементы, стоящие на одинаковых местах (i,j), равны.

Матрица называется нулевой, если все ее элементы равны нулю:

Если число строк m матрицы (6) равно числу столбцов n, то такая матрица называется квадратной.

Элементы квадратной матрицы (с одинаковыми строковыми и столбцовыми индексами) составляют главную диагональ. Другая диагональ матрицы называется побочной.

Квадратная матрица Е называется единичной, если все элементы ее главной диагонали равны 1, а все остальные — нулю:

Замена строк столбцами, а столбцов — строками (с сохранением их порядка) называется транспонированием матрицы.

2°. Для матриц определяются три действия: умножение матриц на число, сложение (вычитание) и умножение матриц.

1) Произведение матрицы А на число есть матрица , или , каждый элемент которой равен произведению соответствующего элемента матрицы A на число .

2) Суммой А + В (разностью А — В) матриц А и В одинаковой размерности называется матрица С, каждый элемент которой равен сумме (разности) соответствующих элементов Имеем А + В = В +А.

Например, (2 — 1 4) + (0 2 5) = (2 1 9);

3) Произведение АВ определяется не для произвольных матриц A и В. Оно имеет смысл только в том случае, когда число столбцов

А равно числу строк В. При этом есть матрица С, каждый элемент которой равен сумме последовательных произведений элементов i-й строки матрицы А на соответствующие элементы j-го столбца матрицы В:

А и число строк матрицы В).

сравнивая видим, что, вообще говоря, невыполнимо (число столбцов первой матрицы не равно числу строк второй);

— это «редкий случай», когда

—произведение двух ненулевых матриц может быть нулевой матрицей.

3°. Действия с матрицами обладают следующими свойствами:

2) АЕ = ЕА = А <А — квадратная матрица). Например,

если , то (указание:

3)

Например, в этом можно убедиться на следующих парах матриц:

5°. Квадратная матрица А называется невырожденной, если соответствующий определитель (называемый определителем матрицы и обозначаемый det А) отличен от нуля; если det А = 0, то А называется вырожденной матрицей.

Матрица, обозначаемая называется обратной для матрицы А, если

Теорема:

Если А — невырожденная квадратная матрица, то для нее существует обратная матрица, которая может быть определена по формуле

где алгебраическое дополнение элемента в det А .’

6°. Система из m линейных уравнений с n неизвестными может быть записана в матричной форме так (согласно определениям произведения матриц и равенства матриц):

Теорема:

Если (7) — квадратная система (т = п) и то ее решение может быть определено по формуле

7°. Обратную матрицу можно найти методом элементарных преобразований Жордана-Гаусса, а вычисления производить в таблице Гауcса. Блоки таблицы Гаусса делятся на две равные части. В левую часть блока заносятся элементы квадратной невырожденной матрицы А, для которой надо найти обратную матрицу . Правая часть блока заполняется элементами единичной матрицы той же размерности, что и А. Выполняя преобразования над строками блока с целью получения единичной матрицы в левой части таблицы, в правой ее части получаем искомую обратную матрицу.

Примеры с решениями

Пример:

Решить систему

Решение:

Получили или

Пример:

Решение:

Следовательно, А — невырожденная матрица, поэтому она обладает обратной матрицей .

Вычислим 9 алгебраических дополнений:

Согласно теореме 1

Настоятельно рекомендуем проверить равенства

Таким образом, по теореме 5, имея в виду обозначения (8), получаем

Пример:

Найти , если

Решение:

В левую часть первого блока таблицы Гаусса заносим элементы матрицы А. В правую часть блока записываем единичную матрицу третьего порядка. Переход от одного блока к следующему осуществляем при помощи формул Жордана-Гаусса. Ведущие коэффициенты обведены. Рабочая таблица имеет следующий вид:

Ранг матрицы. Исследование систем

1°. Обратимся к матрице (6) . В ней фиксируем некоторые строк и столбцов. Из элементов, стоящих на пересечениях этих строк и столбцов, можно составить минор (определитель) порядка. Он может равняться нулю или’ нет. Наибольший из порядков всевозможных отличных от нуля миноров , где = 1,2,… ,min(m, п), называется рангом матрицы А и обозначается rank А. Очевидно, что

2°. Простейший способ определения ранга матрицы состоит в приведении ее к ступенчатому виду или к единичным столбцам при помощи последовательности элементарных преобразований, к которым относятся:

— умножение строки на произвольное число, отличное от нуля;

— прибавление к некоторой строке любой другой строки, умноженной на любое число;

— вычеркивание нулевой строки.

Элементарным преобразованиям матрицы соответствуют элементарные преобразования системы уравнений.

Теорема:

Элементарные преобразования матрицы не меняют ее ранг.

Между рангом матрицы А и рангом системы уравнений есть связь, выражаемая следующей теоремой.

Теорема:

Ранг системы уравнений равен rank А.

4°. Иногда важно знать, совместна или нет система уравнений , не интересуясь самим решением этой системы.

Если к матрице А присоединим столбец В свободных членов системы, то получаем расширенную матрицу

Теорема:

Теорема Кронекера-Капелли. Для совместности системы. уравнений необходимо и достаточно, чтобы

4°. Однородной называется система уравнений

Эта система всегда имеет нулевое решение или Х° = (0,0…,0).

В связи с однородной системой возникает вопрос: при каких условиях она имеет нетривиальное (ненулевое) решение? Ответ выражается через соотношение m и n в терминах ранга матрицы А, составленной из коэффициентов системы при неизвестных.

Теорема:

Если то система (9) всегда имеет ненулевое решение.

Теорема:

Система (9) имеет ненулевое решение, если

Свойства множества ненулевых решений однородной системы выражаются теоремой.

Теорема:

1) Если — некоторое решение системы (9), то ( — произвольное действительное число) тоже является решением системы (9).

2) Если — два различных решения системы (9), то где — произвольные действительные числа, также являются решениями системы (9).

5°. Предположим, что однородную систему (9) можно разрешить относительно первых неизвестных ( — ранг системы (9)):

Неизвестные являются свободными, и они могут принимать произвольные действительные значения. Предположим, что набор принимает последовательно значения (1,0,0…..0), (0,1,0…..0), …, (0,0…..0,1). Этим наборам соответствуют частные решения .

Множество этих решений называется фундаментальной системой решений (9).

Теорема:

О структуре общего решения однородной системы. Общее решение однородной системы представляет собой линейную комбинацию решений фундаментальной системы

где — произвольные действительные постоянные.

Рассмотрим теперь неоднородную систему

Система (9) называется однородной системой, соответствующей неоднородной системе (10).

Теорема:

О структуре общего решения неоднородной системы. Общее решение неоднородной системы (10) равно сумме где — общее решение соответствующей однородной системы (9), а — некоторое частное решение системы (10)

Примеры с решениями

Пример:

Определить ее ранг.

Решение:

Миноры более высоких порядков составлять нельзя. Ответ: rank А = 3.

Пример:

Найти ранг матрицы

Решение:

После вычитания первой строки из всех остальных (из последней — с множителем 2) получаем эквивалентную матрицу

Поскольку три строки промежуточной матрицы были пропорциональны, то из них можно получить две нулевые строки, которые мы отбросили.

Ясно, что rank А = 2, ибо

Пример:

Выяснить, разрешима ли система

Решение:

Напишем расширенную матрицу и получим в ней как можно больше единичных столбцов. Каждый раз ведущий коэффициент обведем кружком:

На языке (в терминах) уравнений последней строке соответствует уравнение — это противоречивое уравнение. Однако нас интересует матричная терминология. Напомним, что А — основная матрица, она расположена левее вертикальной черты. Последняя ее строка нулевая, значит rank А не может быть больше, чем 3. А минор порядка 3, не равный нулю, существует:

В расширенной матрице последняя строка ненулевая. Найдем в ней минор , не равный нулю. Вот он:

(разложили по последней строке). Итак Система несовместна (теорема 6).

Пример:

Решение:

Решим сначала однородную систему

Вычтем из третьего уравнения сумму первых двух. Получим тривиальное уравнение, которое отбросим. Затем из второго уравнения вычтем первое. Получим равносильную систему

Свободным переменным дадим последовательно значения (1,0,0), (0,1,0), (0,0,1). Получим три частных решения Они составляют фундаментальную систему решений однородной системы. Общее решение однородной системы имеет вид

Для получения общего решения неоднородной системы нужно какое-то частное решение. Заметим, что удовлетворяет неоднородной системе (откуда взялось это решение; несущественно). Тогда

где — произвольные действительные постоянные (параметры).

Отсюда при различных значениях постоянных получаем различные частные решения исходной системы.

Системы линейных уравнений и их вычисление

Системой линейных алгебраических уравнений, содержащей m уравнений и п неизвестных, называется система вида

где числа называются коэффициентами системы, числа свободными членами. Подлежат нахождению числа .

Такую систему удобно записывать в компактной матричной форме

Здесь А — матрица коэффициентов системы, называемая основной матрицей:

Произведение матриц определено, так как в матрице А столбцов столько же, сколько строк в матрице X (п штук).

Расширенной матрицей системы называется матрица системы, дополненная столбцом свободных членов

Решением системы называется п значений неизвестных при подстановке которых все уравнения системы обращаются в верные равенства. Всякое решение системы можно записать в виде матрицы-столбца

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.

Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.

Решить систему — это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.

Две системы называются эквивалентными (равносильными), если они имеют одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой, и наоборот.

Эквивалентные системы получаются, в частности, при элементарных преобразованиях системы при условии, что преобразования выполняются лишь над строками матрицы.

Система линейных уравнений называется однородной, если все свободные члены равны нулю:

Однородная система всегда совместна, так как является решением системы. Это решение называется нулевым или тривиальным.

Решение систем линейных уравнений. Теорема Кронекера-Капелли

Пусть дана произвольная система m линейных уравнений с п неизвестными

Исчерпывающий ответ на вопрос о совместности этой системы дает теорема Кронекера-Капелли.

Теорема:

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы.

Примем ее без доказательства. Правила практического разыскания всех решений совместной системы линейных уравнений вытекают из следующих теорем.

Теорема:

Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема:

Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.

Правило решения произвольной системы линейных уравнений

  1. Найти ранги основной и расширенной матриц системы. Если то система несовместна.
  2. Если , система совместна. Найти какой-либо базисный минор порядка r (напоминание: минор, порядок которого определяет ранг матрицы, называется базисным). Взять r уравнений, из коэффициентов которых составлен базисный минор (остальные уравнения отбросить). Неизвестные, коэффициенты которых входят в базисный минор, называют главными и оставляют слева, а остальные пr неизвестных называют свободными и переносят в правые части уравнений.
  3. Найти выражения главных неизвестных через свободные. Получено общее решение системы.
  4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образом можно найти частные решения исходной системы уравнений.

Пример:

Исследовать на совместность систему

Решение:

Таким образом, следовательно, система несовместна.

Пример:

Решение:

Берем два первых уравнения:

Следовательно, — общее решение. Положив, например, получаем одно из частных решений:

Решение невырожденных линейных систем. Формулы Крамера

Пусть дана система п линейных уравнений с п неизвестными

или в матричной форме

Основная матрица А такой системы квадратная. Определитель этой матрицы

называется определителем системы. Если определитель системы отличен от нуля, то система называется невырожденной.

Найдем решение данной системы уравнений в случае Умножив обе части уравнения слева на матрицу , получим . Поскольку , то

Отыскание решения системы по формуле (4.1) называют матричным способом решения системы.

Матричное равенство (4.1) запишем в виде

Отсюда следует, что

Но есть разложение определителя

по элементам первого столбца. Определитель получается из определителя путем замены первого столбца коэффициентов столбцом из свободных членов. Итак,

Аналогично: где получен из путем замены второго столбца коэффициентов столбцом из свободных членов;

называются формулами Крамера.

Итак, невырожденная система n линейных уравнений с n неизвестными имеет единственное решение, которое может быть найдено матричным способом (4.1) либо по формулам Крамера (4.2).

Пример:

Решение:

Значит,

Решение систем линейных уравнений методом Гаусса

Одним из наиболее универсальных и эффективных методов решений линейных алгебраических систем является метод Гаусса, состоящий в последовательном исключении неизвестных. Пусть дана система уравнений

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.

Приведенная ниже система имеет ступенчатый вид

где Коэффициенты называются главными элементами системы.

На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.

Опишем метод Гаусса подробнее. Прямой ход.

Будем считать, что элемент (если , то первым в системе запишем уравнение, в котором коэффициент при отличен от нуля).

Преобразуем систему (4.3), исключив неизвестное во всех уравнениях, кроме первого (используя элементарные преобразования системы). Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения на и сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалентную систему

Здесь — новые значения коэффициентов и правых частей, которые получаются после первого шага.

Аналогичным образом, считая главным элементом , исключим неизвестное из всех уравнений системы, кроме первого и второго, и так далее. Продолжаем этот процесс, пока это возможно.

Если в процессе приведения системы (4.3) к ступенчатому виду появятся нулевые уравнения, т. е. равенства вида 0 = 0, их отбрасывают. Если же появится уравнение вида то это свидетельствует о несовместности системы.

Второй этап (обратный ход) заключается в решении ступенчатой системы. Ступенчатая система уравнений, вообще говоря, имеет бесчисленное множество решений. В последнем уравнении этой системы выражаем первое неизвестное через остальные неизвестные . Затем подставляем значение в предпоследнее уравнение системы и выражаем через затем находим Придавая свободным неизвестным произвольные значения, получим бесчисленное множество решений системы.

Замечанья: 1. Если ступенчатая система оказывается треугольной, т. е. , то исходная система имеет единственное решение. Из последнего уравнения находим , из предпоследнего уравнения далее поднимаясь по системе вверх, найдем все остальные неизвестные

На практике удобнее работать не с системой (4.3), а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на ).

Пример:

Решить систему методом Гаусса:

Решение:

В результате элементарных преобразований над расширенной матрицей системы

исходная система свелась к ступенчатой:

Поэтому общее решение системы: Если положить, например, то найдем одно из частных решений этой системы

Пример:

Решить систему методом Гаусса:

Решение:

Произведем элементарные преобразования над строчками расширенной матрицы системы:

Полученная матрица соответствует системе

Осуществляя обратный ход, находим

Системы линейных однородных уравнений

Пусть дана система линейных однородных уравнений

Очевидно, что однородная система всегда совместна она имеет нулевое (тривиальное) решение

При каких условиях однородная система имеет и ненулевые решения?

Теорема:

Для того, чтобы система однородных уравнений имела ненулевые решения, необходимо и достаточно, чтобы ранг г ее основной матрицы был меньше числа п неизвестных, т. е. r

Теорема:

Для того, чтобы однородная система п линейных уравнений с п неизвестными имела ненулевые решения, необходимо и достаточно, чтобы ее определитель был равен нулю, т. е.

Если система имеет ненулевые решения, то Ибо при система имеет только единственное, нулевое решение. Если же , то ранг r основной матрицы системы меньше числа неизвестных, т. е. r

Решение:

Так как r

Положив получаем одно частное решение:

Положив получаем второе частное решение: и т. д.

Теория к системам линейных алгебраических уравнений

Пусть дано n неизвестных Система m линейных уравнений с n неизвестными имеет вид

здесь коэффициенты при неизвестных, причем i — номер уравнения, а j — номер неизвестного. Величины — свободные члены. В компактном виде систему можно записать так

или в матричной форме где

Матрица А называется основной (базовой) матрицей системы, X — Матрица-столбец неизвестных, В — матрица-столбец свободных членов. Если к основной матрице системы приписать столбец свободных членов, то получится расширенная матрица системы уравнений

Если все свободные члены равны нулю, то система называется однородной, в противном случае система неоднородна. Линейные системы, полученные одна из другой путем элементарных преобразований (перестановкой двух уравнений, умножением одного из них на число, не равное нулю, почленным сложением двух уравнения), называются эквивалентными (или равносильными). Все эквивалентные системы имеют одинаковые решения. Число линейно независимых уравнений в системе (2.34) называется рангом этой системы.

Система (2.34) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у нее не существует ни одного решения. Линейная система (2.34) является совместной, если ранг расширенной матрицы системы был равен рангу ее основной матрицы, т. е.

Пример:

Определить совместимость системы:

Составим расширенную матрицу системы и проведем с ней ряд элементарных преобразований, не меняющих ранг матрицы

Первую строку оставим без изменения, а во второй и третьей строках с помощью элементарных преобразований (от второй строки отнимем первую, а к третьей прибавим первую строку) в первом столбце получим нули, т. е:

Вычитая из третьей строки вторую, получим

Следовательно, система несовместна. Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если у нее существует по крайней мере два различных решения.

Для совместной системы линейных уравнений возможны следующие случаи.

1.Если то исходная система заведомо имеет линейно зависимых уравнений и их можно исключить из системы. Те уравнения, коэффициенты которых образуют минор порядка r, не равный нулю, являются линейно независимыми и называются базисными. После исключения лишних уравнений систему исследуют снова (см. пункт 2 и 3).

2.Если то система имеет единственное решение.

3.Если то система имеет бесчисленное множество решений.

Пример. Исследовать систему уравнений

Здесь Составим расширенную матрицу и упростим ее путем проведения элементарных преобразований (добавим ко второй строчке первую и вычтем из третьей первую и т. д.)

Система совместна, базисные уравнения -первое и второе. Третье уравнение является их линейной комбинацией и может быть отброшено. Эквивалентная система имеет вид

Решение этой системы:

Пример:

Построим расширенную матрицу

Система совместна, но т.к. то она имеет бесконечное число решений. Действительно, переписав исходную систему в виде

и положив получим решение системы

где k — произвольное число. Выбрав, например, получим такое решение если то и т. д.

Если число уравнений n равно числу неизвестных n, то система имеет вид

Если матрица А невырожденная то существует обратная матрица . Умножим равенство (2.40) на слева и выполним операции с матрицами. Получим,

Решение квадратной системы алгебраических уравнений в матричной форме сводится к построению обратной к А матрицы и последующему умножению ее справа на матрицу свободных членов:

Пример:

Решить систему алгебраических уравнений

Решение:

Вычислим определитель матрицы системы

Найдем алгебраические дополнения элементов матрицы А

Присоединенная матрица и обратная матрица соответственно равны

По формуле (2.37) получим решение системы

Всякая однородная система

совместна, так как всегда имеет хотя бы нулевое решение: Такое решение называется три-виальным. Однородная система имеет ненулевые решения, если ранг этой системы меньше числа неизвестных Любая однородная система, у которой число уравнений меньше числа неизвестных, имеет нетривиальное решение. Квадратная однородная система имеет ненулевое решение, если ее определитель равен нулю.

Пример:

Исследовать и найти решение системы

Решение:

В данном примере Возьмем, на-3 2 пример, минор Одна переменная — «лиш-няя». Так как в минор вошли коэффициенты при то вы-

бираем тогда Так как то за базисные переменные можно выбрать также и положив но нельзя выбрать так как

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Системы линейных уравнений

Обозначим через $ \mathbb A_<> $ любое из множеств $ \mathbb Q_<>, \mathbb R_<> $ или $ \mathbb C_<> $.

Примеры систем уравнений над $ \mathbb R $.

Относительно числа $ m_<> $ уравнений не делается ни какого предположения: оно может быть меньше, больше или равно числу переменных $ n_<> $. Если $ m_<>>n $ то система называется переопределенной. Решением системы уравнений называется любой набор значений переменных $ x_1=\alpha_<1>,\dots, x_n = \alpha_n $, обращающий каждое из уравнений в истинное равенство. Система называется совместной если она имеет хотя бы одно решение и несовместной в противном случае.

Можно доказать (см. результаты ☟ НИЖЕ ), что все возможности для произвольной системы ограничиваются следующими вариантами:

1. система совместна и имеет единственное решение;

2. cистема совместна и имеет бесконечное множество решений;

3. cистема несовместна.

При этом все решения будут находиться в том же множестве $ \mathbb A_<> $, что и коэффициенты системы.

Матричная форма записи

Для системы линейных уравнений относительно переменных $ x_1,x_2,\dots,x_n $ $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=b_1,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=b_2,\\ \dots & & & & \dots \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=b_m. \end \right. $$ матрицей системы называется матрица $$ A=\left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>\\ a_ <21>& a_ <22>& \dots & a_ <2n>\\ \dots &&& \dots \\ a_ & a_ & \dots & a_ \end \right)_ \ ; $$ cтолбец $$ <\mathcal B>= \left( \begin b_ <1>\\ b_ <2>\\ \vdots \\ b_ \end \right) $$ называется столбцом правых частей системы, а столбец $$ X= \left( \begin x_ <1>\\ x_ <2>\\ \vdots \\ x_ \end \right) $$ — столбцом неизвестных. Используя правило умножения матриц, систему можно записать в матричном виде: $$ AX= <\mathcal B>\ . $$ Любое решение $ x_1=\alpha_1,\dots,x_n=\alpha_n $ системы можно также записать в виде столбца: $$ X=\left( \begin \alpha_1 \\ \vdots \\ \alpha_n \end \right) \in \mathbb A^n \ . $$ Матрица, составленная из всех коэффициентов системы уравнений: $$ [A \mid \mathcal B ]= \left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \dots & a_ <2n>& b_2 \\ \dots &&& & \dots \\ a_ & a_ & \dots & a_ & b_m \end \right)_ \ , $$ т.е. конкатенацией матрицы $ A_<> $ и столбца правых частей $ <\mathcal B>_<> $ называется расширенной матрицей системы л.у.

Исключение переменных (метод Гаусса)

метода достаточно проста.

Пример. Решить систему уравнений $$ \left\< \begin 2x_1&-3x_2&-x_3&=3 \\ 4x_1&-3x_2&-5x_3&=6 \\ 3x_1&+5x_2&+9x_3&=-8 \end \right. $$

Решение. Выразим из первого уравнения $ x_ <1>$ $$ x_1=\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3> <2>$$ и подставим в оставшиеся уравнения $$ 4 \left(\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>\right) -3\,x_2-5\,x_3=6 \ <\color\iff > \ 3x_2-3x_3 = 0 $$ $$ \ <\color\iff > \ x_2-x_3=0 \ ; $$ $$ 3 \left(\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>\right) +5x_2+9x_3=-8 \ <\color\iff > \ \frac<19> <2>x_2 +\frac<21><2>x_3=-\frac<25> <2>$$ $$ <\color\iff > 19x_2 +21x_3=-25 \ . $$ Два получившихся уравнения не зависят от неизвестной $ x_ <1>$ — она оказалась исключенной из этих уравнений. Иными словами, мы получили новую подсистему уравнений $$ \left\< \begin x_2&-x_3&=0 \\ 19x_2&+21x_3&=-25, \end \right. $$ которой должны удовлетворять неизвестные $ x_ <2>$ и $ x_ <3>$. Продолжаем действовать по аналогии: выразим из первого уравнения $ x_ <2>$ через $ x_ <3>$: $$x_2=x_3 $$ и подставим во второе: $$ 40 x_3 =-25 \ \iff \ x_3=-\frac<5> <8>\ . $$ Итак, значение одной компоненты решения получено. Для нахождения оставшихся подставим значение $ x_ <3>$ в полученные по ходу решения соотношения: $$ x_2=x_3=-\frac<5> <8>\ \Rightarrow \ x_1=\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>=\frac<1> <4>\ . $$

Ответ. $ x_<1>=1/4, x_2=-5/8, x_3=-5/8 $.

Теперь осталось формализовать изложенную идею метода (сформулировав допустимые правила действия над уравнениями — те, что в принципе, очевидны из здравого смысла ), а также исследовать возможные последствия его применения к системам общего вида.

Исключение переменных

Элементарными преобразованиями системы л.у. называются преобразования следующих трех типов:

1. перестановка двух уравнений;

2. умножение обеих частей уравнения на любое отличное от нуля число;

3. прибавление к одному уравнению любого другого, умноженного на произвольное число: пара уравнений $$ \begin a_x_1 +a_x_2+ \ldots+a_x_n &=&b_j,\\ a_x_1 +a_x_2+ \ldots+a_x_n &=&b_k \end $$ заменяется парой $$ \begin (a_+ <\color\lambda > a_) x_1 &+ (a_+ <\color\lambda > a_) x_2 &+ \ldots &+ (a_+ <\color\lambda > a_) x_n &=&b_j + <\color\lambda > b_k\, , \\ a_x_1 &+a_x_2&+ \ldots &+a_x_n &=&b_k \, . \end $$

Теорема. Любое элементарное преобразование системы л.у. переводит эту систему в ей эквивалентную, т.е. имеющую то же множество решений, что и исходная.

Задача. С помощью элементарных преобразований привести систему л.у. к наиболее простому виду: такому, из которого легко было бы установить множество решений.

Предположим, что первое уравнение системы содержит явно неизвестную $ x_ <1>$, т.е. $ a_<11>^<> \ne 0 $. Исключим эту неизвестную из всех оставшихся уравнений. С этой целью вычтем из второго уравнения первое, домноженное на $ a_<21>/a_<11>^<> $. Получим $$\left(a_<22>— \frac>> a_ <12>\right)x_2 + \dots + \left(a_<2n>— \frac>> a_ <1n>\right)x_n = b_2 — \frac>> b_1 \ , $$ Аналогичное преобразование — вычитание из третьего уравнения системы первого, умноженного на $ a_<31>/a_<11>^<> $, позволяет исключить $ x_ <1>$ из этого уравнения, т.е. заменить его на $$\left(a_<32>— \frac>> a_ <12>\right)x_2 + \dots + \left(a_<3n>— \frac>> a_ <1n>\right)x_n = b_3 — \frac>> b_1 \ . $$ Продолжаем процесс далее. В конечном итоге исключаем $ x_ <1>$ из всех уравнений кроме первого: $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=b_1,\\ &a_<22>^<[1]>x_2&+ \ldots&+a_<2n>^<[1]>x_n &=b_2^<[1]>,\\ &\dots & & & \dots \\ &a_^<[1]>x_2&+ \ldots&+a_^<[1]>x_n &=b_m^<[1]>. \end \right. \ \ npu \ \ \begin a_^ <[1]>&= & \displaystyle a_ — \fraca_<1k>>> ,\\ b_j^ <[1]>&= & \displaystyle b_j — \fracb_1>> . \end $$ Полученная система эквивалентна исходной системе, однако она имеет более простой вид: в ней выделилась подсиcтема $$ \left\< \begin a_<22>^<[1]>x_2&+ \ldots&+a_<2n>^<[1]>x_n &=b_2^<[1]>,\\ \dots & & & \dots \\ a_^<[1]>x_2&+ \ldots&+a_^<[1]>x_n &=b_m^<[1]>, \end \right. $$ которая не зависит от переменной $ x_ <1>$. К этой новой подсистеме можно применить те же рассуждения, что и к исходной системе, поставив теперь целью исключение переменной $ x_ <2>$.

Понятно, что процесс исключения может быть продолжен и далее. Теперь посмотрим, где он может прерваться. Может так случиться, что очередная, $ \ell_<> $-я подсистема имеет коэффициент $ a_<\ell \ell>^ <[\ell-1]>$ равным нулю, что не позволит алгоритму идти дальше — т.е. исключить переменную $ x_<\ell>^<> $ из оставшихся уравнений (в принципе, такое могло случиться уже на первом шаге, если бы коэффициент $ a_<11>^<> $ был бы равен нулю). Возможные варианты дальнейших действий:

1. если хотя бы один коэффициент при $ x_<\ell>^<> $ в одном из оставшихся уравнений отличен от нуля: $ a_^<[\ell-1]>\ne 0^<> $, то это уравнение переставляется с $ \ell_<> $-м;

2. если при всех $ j\ge \ell^<> $ коэффициенты $ a_^ <[\ell-1]>$ равны нулю, то переменная $ x_<\ell>^<> $ не входит ни в одно оставшееся уравнение, и можно перейти к исключению переменной $ x_<\ell+1>^<> $.

Поскольку число переменных конечно, то алгоритм исключения должен завершиться за конечное число шагов. Чем он может завершиться? Окончательная система должна иметь вид: $$ \left\< \begin a_<11>x_1 +&a_<12>x_2&+ \ldots& +a_<1 <\mathfrak r>>x_<\mathfrak r>& +a_ <1 ,<\mathfrak r>+1>x_<<\mathfrak r>+1>&+ \ldots + & a_<1n>x_n &=b_1,\\ &a_<22>^<[1]>x_2&+ \ldots& +a_<2 <\mathfrak r>>^ <[1]>x_<\mathfrak r>& +a_<2 ,<\mathfrak r>+1>^ <[1]>x_<<\mathfrak r>+1>&+ \ldots + & a_<2n>^ <[1]>x_n &=b_2^<[1]>,\\ & & \ddots & & & & & \dots \\ & & & a_ <<\mathfrak r><\mathfrak r>>^<[<\mathfrak r>-1]>x_ <\mathfrak r>& + a_ <<\mathfrak r>, <\mathfrak r>+1>^<[<\mathfrak r>-1]>x_<<\mathfrak r>+1>& + \ldots + & a_ <<\mathfrak r>,n>^<[<\mathfrak r>-1]>x_n &=b_<\mathfrak r>^<[<\mathfrak r>-1]>, \\ & & & & & & 0 &=b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>, \\ & & & & & & \dots & \\ & & & & & & 0 &=b_^<[<\mathfrak r>-1]>, \\ \end \right. $$ при $ <\mathfrak r>\le n_<> $. Заметим, что все коэффициенты этой системы будут принадлежать тому же множеству, что и коэффициенты исходной системы.

Предположение . Мы будем считать, что каждое из первых $ <\mathfrak r>_<> $ уравнений системы содержит в своей левой части хотя бы одну переменную с ненулевым коэффициентом.

Процесс получения системы такого вида из исходной системы уравнений называется прямым ходом метода Гаусса.

Исторический комментарий о Гауссе ☞ ЗДЕСЬ.

Установление множества решений

Теорема. Если хотя бы одно из чисел $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>,\dots , b_^<[<\mathfrak r>-1]> $ отлично от нуля, то исходная система линейных уравнений будет несовместной.

Для простоты мы будем иллюстрировать наши рассуждения на системах л.у. над $ \mathbb R_<> $, в этом же множестве искать решения. Каждое из преобразований метода Гаусса будем обозначать $ \to_<> $.

Пример. Решить систему л.у.

$$ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ 2\,x_1&+x_2&-2\, x_3 =& 1 \\ x_1&+x_2&+ x_3 =& 3 \\ x_1&+2\,x_2&-3\, x_3 =& 1. \end \right. $$

Решение. $$ \ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &x_2&=& 2 \end \right. \ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &&4\, x_3=& 5 \end \right. \ \to \ $$ $$ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &&0=& 1 \end \right. $$ Последнее равенство абсолютно противоречиво.

Ответ. Система несовместна.

Пусть теперь $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>=0,<>\dots, b_^<[<\mathfrak r>-1]>=0 $. Возможны два случая: $ <\mathfrak r>=n_<> $ и $ <\mathfrak r>предположения , имеем $ a_^ <[n-1]>\ne 0 $. Но тогда, поскольку система является конечной стадией прямого хода метода Гаусса, то и все коэффициенты $ a_^<[n-2]>, \dots, a_<22>^<[1]>, a_ <11>$ должны быть отличны от нуля — в противном случае метод Гаусса не остановился бы на системе такого вида; он называется треугольным: Из последнего уравнения системы можно однозначно установить значение $ x_ $: $$x_n=b_n^ <[n-1]>\big/ a_^ <[n-1]>\ .$$ Далее, подставляя это значение в $ (n-1) $-е уравнение системы, выражаем $ x_ $: $$ x_= \frac^ <[n-2]>— a_^<[n-2]>x_>< a_^<[n-2]>>= \frac< b_^ <[n-2]>— a_^ <[n-2]>b_n^ <[n-1]>\Big/ a_^<[n-1]>>< a_^<[n-2]>> . $$ Подставляем полученные значения для $ x_ $ и $ x_ $ в $ (n-2)_<> $-е уравнение системы, выражаем $ x_ $, и т.д., в конце концов приходим к первому уравнению, из которого выражаем $ x_ <1>$ если ранее уже получены выражения для $ x_2,\dots,x_ $.

Теорема. Если прямой ход метода Гаусса заканчивается треугольной системой, т.е. $ \mathfrak r = n_<> $ и $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>=0,<>\dots, b_^<[<\mathfrak r>-1]>=0 $, то исходная система линейных уравнений имеет единственное решение.

Пример. Решить систему л.у.

$$ \left\< \begin x_1&+3\,x_2&+ x_3 =&5 \\ 2\,x_1&+x_2&+ x_3 =& 2 \\ x_1&+x_2&+ 5\,x_3 =& -7 \\ 2\,x_1&+3\,x_2&-3\, x_3 =& 14. \end \right. $$

Ответ. $ x_1=1,\, x_<2>=2,\, x_3=-2 $ .

Исследуем теперь случай $ <\mathfrak r>1) : На основании предположения , в $ <\mathfrak r>$-м уравнении этой системы имеется хотя бы один ненулевой коэффициент в левой части, пусть $ a_ <<\mathfrak r><\mathfrak s>>^<[<\mathfrak r>-1]>\ne 0 $ — первый из них. Если $ <\mathfrak s>=n $, то из этого уравнения однозначно определится $ x_ $ $$ x_n=\alpha_n = b_<\mathfrak r>^<[<\mathfrak r>-1]> \big/ a_ <<\mathfrak r>n>^<[<\mathfrak r>-1]> \ . $$ Если же $ <\mathfrak s>предположения , в этом уравнении имеется хотя бы один ненулевой коэффициент в левой части; пусть $ a_<<\mathfrak r>-1, <\mathfrak k>>^<[<\mathfrak r>-2]>\ne 0_<> $ — первый из них. Поскольку мы преположили, что система является конечной стадией прямого хода метода Гаусса, то $ <\mathfrak k>по крайней мере две переменные, значения которых еще не были зафиксированы на предыдущих шагах. Это следует из предположения, что число уравнений $ <\mathfrak r>_<> $ меньше числа неизвестных $ n_<> $. Такое уравнение допускает бесконечное число решений, любое из которых в ходе дальнейших шагов может быть «доделано» до решения системы.

Теорема. Если прямой ход метода Гаусса заканчивается трапециевидной системой, т.е. $ \mathfrak r 2) матрицы $ A_<> $ (третьего порядка). Понятие определителя распространяется и на квадратные матрицы бóльших порядков; образно говоря, определитель — это функция элементов матрицы, отвечающая за единственность решения системы уравнений.

Дальнейший матричный анализ метода Гаусса ☞ ЗДЕСЬ.

Формулы Крамера

Рассмотрим систему линейных уравнений с квадратной матрицей $ A_<> $, т.е. такую, у которой число уравнений совпадает с числом неизвестных.

Теорема. Cистема

$$ \left\<\begin a_<11>x_1 +a_<12>x_2+\ldots+a_<1n>x_n &=&b_1\\ a_<21>x_1 +a_<22>x_2+\ldots+a_<2n>x_n &=&b_2\\ \ldots& & \ldots \\ a_x_1 +a_x_2+\ldots+a_x_n &=&b_n \end\right. $$ имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля: $$ \left| \begin a_ <11>& a_ <12>& \dots & a_ <1n>\\ a_ <21>& a_ <22>& \dots & a_ <2n>\\ \dots &&& \dots \\ a_ & a_ & \dots & a_ \end \right| \ne 0 \ . $$ В этом случае решение можно вычислить по формулами Крамера 3) : $$ x_k =\frac<\det \left[ A_<[1]>|\dots|A_<[k-1]>|<\mathcal B>|A_<[k+1]>|\dots|A_ <[n]>\right]> <\det A>\quad npu \quad k\in \ < 1,\dots,n \>\ . $$ Для получения значения $ x_ $ в числитель ставится определитель, получающийся из $ \det A_<> $ заменой его $ k_<> $-го столбца на столбец правых частей ( здесь $ <> | $ означает конкатенацию).

Доказательство ☞ ЗДЕСЬ

Пример. Решить систему уравнений

$$ \left\<\begin 2x_1& +3x_2&+11x_3&+5x_4 &=& \color2,\\ x_1& +x_2&+5x_3&+2x_4 &=& \color1 ,\\ 2x_1& +x_2&+3x_3&+2x_4 &=&\color<-3>,\\ x_1& +x_2&+3x_3&+4x_4 &=&\color<-3>. \end\right. $$

Решение. $$ x_1=\frac<\left|\begin \color2 & 3&11&5 \\ \color1 & 1&5&2 \\ \color<-3>& 1&3&2 \\ \color <-3>& 1&3&4 \end\right|> <\left|\begin 2& 3&11&5 \\ 1& 1&5&2 \\ 2& 1&3&2 \\ 1& 1&3&4 \end\right|>=\frac<-28><14>=-2, x_2=\frac<\left|\begin 2& \color2&11&5 \\ 1& \color1&5&2 \\ 2& \color<-3>&3&2 \\ 1& \color<-3>&3&4 \end\right|> <\left|\begin 2& 3&11&5 \\ 1& 1&5&2 \\ 2& 1&3&2 \\ 1& 1&3&4 \end\right|>=\frac<0><14>=0, \dots $$ Найдите оставшиеся компоненты решения. ♦

Решение системы линейных уравнений с квадратной матрицей $ A_<> $ является непрерывной функцией коэффициентов этой системы при условии, что $ \det A_<> \ne 0 $.

Кроме того, формулы Крамера начинают конкурировать по вычислительной эффективности с методом Гаусса в случае систем, зависящих от параметра. Подробнее ☞ ЗДЕСЬ.

Еще один способ решения системы основан на построении обратной матрицы: $$ AX= <\mathcal B>\quad \Rightarrow \quad X=A^<-1> <\mathcal B>\ . $$ Этот способ малоэффективен при фиксированных числовых $ A_<> $ и $ <\mathcal B>_<> $.

Найти достаточное условие существования общего решения систем уравнений:

$$ A_1 X = <\mathcal B>_1 \quad u \quad A_2 Y = <\mathcal B>_2 \ , $$ при квадратных матрицах $ A_1 $ и $ A_2 $ одинакового порядка.

Теорема Кронекера-Капелли

Матрица, получающаяся конкатенацией матрицы $ A_<> $ и столбца правых частей $ <\mathcal B>_<> $ $$ [ A| <\mathcal B>] = \left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \dots & a_ <2n>& b_2 \\ \dots &&& & \dots \\ a_ & a_ & \dots & a_ & b_m \end \right)_ $$ называется расширенной матрицей системы линейных уравнений $ AX= <\mathcal B>$.

Теорема [Кронекер, Капелли]. Система $ AX= <\mathcal B>$ совместна тогда и только тогда, когда ранг матрицы этой системы совпадает с рангом ее расширенной матрицы:

$$ \operatorname\, A = \operatorname\, [ A| <\mathcal B>] \ . $$ При выполнении этого условия, система имеет единственное решение, если число неизвестных $ n_<> $ совпадает с общим значением ранга $ \mathfrak r_<> $, и бесконечное множество решений, если $ n_<> $ больше этого значения.

Доказательство необходимости. Пусть существует решение $ x_1=\alpha_1,\dots,x_n=\alpha_n $ системы, тогда $$\alpha_1 A_<[1]>+\dots+\alpha_n A_<[n]>= <\mathcal B>\ ,$$ т.е. столбец $ <\mathcal B>$ линейно выражается через столбцы $ A_<[1]>,\dots,A_ <[n]>$. Но тогда $$ \operatorname \,\dots,A_<[n]>\>=\operatorname \,\dots,A_<[n]>,<\mathcal B>\> .$$ Следовательно $ \operatorname\, A = \operatorname\, [ A| <\mathcal B>] $.

Доказательство достаточности проводится в следующем пункте. ♦

Пример. Исследовать совместность системы уравнений

Решение. В этом примере число уравнений совпадает с числом неизвестных. Это обстоятельство несколько облегчает рассуждения. Обратимся к замечанию из предыдущего пункта: система л.у. с числом уравнений, совпадающем с числом неизвестных, как правило, совместна. Тогда попробуем установить условия, обеспечивающие противоположное свойство — несовместность. Оно, фактически, единственно: за все отвечает определитель системы $ \det A_<> $. Если он отличен от нуля — система совместна. $$\det A = \left| \begin<\color<\lambda>> &1&1&1 \\ 1&<\color<\lambda>>&1&1 \\ 1&1&<\color<\lambda>>&1 \\ 1&1&1&<\color<\lambda>> \end \right|= \left| \begin (<\color<\lambda>>-1) &(1-<\color<\lambda>>)&0&0 \\ 0&(<\color<\lambda>>-1)&(1-<\color<\lambda>>)&0 \\ 0&0&(<\color<\lambda>>-1)&(1-<\color<\lambda>>) \\ 1&1&1&<\color<\lambda>> \end \right| =(<\color<\lambda>>-1)^3 \left| \begin 1 &-1&0&0 \\ 0&1&-1&0 \\ 0&0&1&-1 \\ 1&1&1&<\color<\lambda>> \end \right|= $$ $ =(<\color<\lambda>>-1)^3(<\color<\lambda>>+3) $. По теореме Крамера при $ <\color<\lambda>>\ne 1 $ и при $ <\color<\lambda>>\ne -3 $ решение системы единственно: $$x_1=x_2=x_3=x_4=1/(<\color<\lambda>>+3) \ .$$

Осталось исследовать критические случаи: $ <\color<\lambda>>=1_<> $ и $ <\color<\lambda>>= -3 $: определитель системы обращается в нуль, но система может оказаться совместной. Придется вычислять ранги, но, к счастью, уже числовых матриц (а не зависящих от параметра, как исходная!). При $ <\color<\lambda>>= 1_<> $ имеем $$ \operatorname \left( \begin 1 &1&1&1 \\ 1&1&1&1 \\ 1&1&1&1 \\ 1&1&1&1 \end \right)= \operatorname \left( \begin 1&1&1&1&1 \\ 1&1&1&1&1 \\ 1&1&1&1&1 \\ 1&1&1&1&1 \end \right)=1 \ , $$ и система совместна. Она эквивалентна единственному уравнению $$x_1+x_2+x_3+x_4=1 \ ,$$ которое имеет бесконечно много решений.

При $ <\color<\lambda>>= -3 $: $$ \operatorname \left( \begin -3 &1&1&1 \\ 1&-3&1&1 \\ 1&1&-3&1 \\ 1&1&1&-3 \end \right)=3,\quad \operatorname \left( \begin -3 &1&1&1&1 \\ 1&-3&1&1&1 \\ 1&1&-3&1&1 \\ 1&1&1&-3&1 \end \right)=4 $$ и система несовместна.

Ответ. Система несовместна при $ <\color<\lambda>> = -3 $; она имеет бесконечное множество решений при $ <\color<\lambda>> = 1_<> $ и единственное решение при $ <\color<\lambda>> \not\in \ <-3,1\>$.

Система однородных уравнений

$$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=0,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=0,\\ \dots & & & \dots & \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=0 \end \right. $$ всегда совместна: она имеет тривиальное решение $ x_1=0,\dots,x_n=0 $. Для того, чтобы у нее существовало еще и нетривиальное решение необходимо и достаточно, чтобы определитель ее матрицы был равен нулю.

Пример. Найти условие, при котором три точки плоскости с координатами $ (x_1,y_1), (x_2,y_2) $ и $ (x_3,y_<3>) $ лежат на одной прямой.

Решение. Будем искать уравнение прямой в виде $ ax+by+c=0 $ при неопределенных коэффициентах $ a,b,c_<> $. Если точки лежат на прямой, то получаем для определения этих коэффициентов систему линейных уравнений: $$ \left\< \begin ax_1+by_1+c & =0\\ ax_2+by_2+c & =0\\ ax_3+by_3+c & =0 \end \right. $$ Получившаяся система является однородной, условие существования у нее нетривиального решения (т.е. набора $ (a,b,c)_<> $ при хотя бы одном из чисел отличном от нуля): $$ \left|\begin x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end \right|=0 . $$ ♦

Доказать, что для совместности системы

$$ \left\< \begin a_<11>x_1+a_<12>x_2+a_<13>x_3 &=& b_1 \\ a_<21>x_1+a_<22>x_2+a_<23>x_3 &=& b_2 \\ a_<31>x_1+a_<32>x_2+a_<33>x_3 &=& b_3 \\ a_<41>x_1+a_<42>x_2+a_<43>x_3 &=& b_4 \end \right. $$ необходимо, чтобы было выполнено условие $$ \left| \begin a_<11>&a_<12>& a_ <13>& b_1 \\ a_<21>&a_<22>& a_ <23>& b_2 \\ a_<31>&a_<32>& a_ <33>& b_3 \\ a_<41>&a_<42>& a_ <43>& b_4 \end \right|=0 \quad . $$ Является ли это условие достаточным для совместности?

An elementary treatise on determinants

в следующей формулировке.

Теорема. Для того чтобы система $ n_<> $ неоднородных уравнений была совместна, необходимо и достаточно, чтобы порядок наибольшего отличного от нуля минора был одинаков в расширенной и нерасширенной матрице системы.

Додсон — один из самых знаменитых математиков мира. Назовите его псевдоним.

Ответ ☞ ЗДЕСЬ

Общее решение

Пусть выполнено условие теоремы Кронекера-Капелли: $ \operatorname (A)=\operatorname[A\mid \mathcal B ] =\mathfrak $. По определению ранга матрицы, в матрице $ A $ существует минор порядка $ \mathfrak $, отличный от нуля; этот же минор останется и минором расширенной матрицы $ [ A\mid \mathcal B ] $. Пусть, для определенности, ненулевой минор находится в левом верхнем углу матрицы 4) : $$ \Delta = A\left( \begin 1 & 2 & \dots & \mathfrak \\ 1 & 2 & \dots & \mathfrak \end \right) = \left| \begin a_ <11>& a_ <12>& \dots & a_<1\mathfrak> \\ a_ <21>& a_ <22>& \dots & a_<2\mathfrak> \\ \dots &&& \dots \\ a_<\mathfrak1> & a_<\mathfrak2> & \dots & a_ <\mathfrak\mathfrak> \end \right| \ne 0 \ . $$ Тогда первые $ \mathfrak $ строк матрицы $ A $ линейно независимы, а остальные будут линейно выражаться через них. Это же утверждение будет справедливо и для строк матрицы $ [A\mid \mathcal B] $. Умножая первые $ \mathfrak $ уравнений системы на соответствующие числа и складывая их, получим любое оставшееся уравнение. Таким образом, система уравнений может быть заменена эквивалентной ей системой из первых $ \mathfrak $ уравнений: $$ \left\< \begin a_<11>x_1+\dots+a_<1\mathfrak>x_<\mathfrak>&+a_<1,\mathfrak+1>x_<\mathfrak+1>+ \dots +a_<1n>x_n&=&b_1, \\ \dots & & & \dots \\ a_<\mathfrak1>x_1+\dots+a_<\mathfrak\mathfrak>x_<\mathfrak>& +a_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<\mathfrakn>x_n&=&b_\mathfrak \end \right. \quad \iff \quad A^ <\prime>X=<\mathcal B>^ <\prime>$$ Если $ \mathfrak=n $, то матрица $ A^ <\prime>$ квадратная. По предположению $ \det A^ <\prime>\ne 0 $. По теореме Крамера решение такой системы единственно.

Пусть теперь $ \mathfrak произвольных фиксированных значениях $ x_<\mathfrak+1>,\dots,x_n $: $$ x_j=\frac< \left| \begin a_ <11>& \dots &a_ <1,j-1>&\left[ b_1-(a_<1,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<1n>x_n) \right] &a_<1,j+1>& \dots &a_<1\mathfrak> \\ \dots &&&\dots&&& \dots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & \left[ b_<\mathfrak>- (a_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<\mathfrakn>x_n) \right] &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right| > <\Delta>$$ $$ \mbox <при>\ j\in \<1,\dots, \mathfrak\> . $$ Таким образом, в этом случае система имеет бесконечное множество решений. Используя свойство линейности определителя по столбцу (см. свойство 5 ☞ ЗДЕСЬ ), формулы можно переписать в виде $$ x_j=\beta_j + \gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \ <1,\dots, \mathfrak\> \ . $$ Здесь $$ \beta_j =\frac<1> <\Delta>\left| \begin a_ <11>& \dots &a_ <1,j-1>& b_1 &a_<1,j+1>& \dots &a_<1\mathfrak> \\ \vdots &&&\vdots&&& \vdots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & b_<\mathfrak> &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right|\, , $$ $$ \gamma_ = -\frac<1> <\Delta>\left| \begin a_ <11>& \dots &a_ <1,j-1>& a_ <1k>&a_<1,j+1>& \dots &a_<1\mathfrak> \\ \vdots &&&\vdots&&& \vdots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & a_<\mathfrakk> &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right| \ . $$ Эти формулы называются общим решением системы $ A X=\mathcal B $. Участвующие в них переменные $ x_<\mathfrak+1>,\dots,x_n $ называются основными (или свободными), а $ x_1,\dots,x_<\mathfrak> $ — зависимыми. Решение, получающееся из общего решения фиксированием значений основных переменных, называется частным решением системы уравнений.

Пример. Исследовать совместность и найти общее решение системы уравнений:

Решение проведем двумя способами, соответствующими двум способам вычисления ранга матрицы. Вычисляем сначала ранг матрицы $ A $ по методу окаймляющих миноров: $$ |2| \ne 0,\quad \left| \begin 2 & 1 \\ 6 & 2 \end \right| \ne 0, \quad \left| \begin 2 & 1 & 2 \\ 6 & 2 & 4 \\ 4 & 1 & 1 \end \right|=2 \ne 0 \ , $$ а все миноры, окаймляющие последний, равны нулю. Итак, $ \operatorname (A) =3 $. Для нахождения ранга расширенной матрицы $ [A\mid \mathcal B] $ достаточно проверить окаймление найденного ненулевого минора третьего порядка с помощью элементов взятых из столбца правых частей. Имеется всего один такой минор, и он равен нулю. Следовательно $ \operatorname[ A\mid \mathcal B ] =3 $, система совместна, и имеет бесконечное множество решений.

Ненулевой минор третьего порядка (базисный минор) находится в первой, второй и четвертых строках, что означает линейную независимость соответствующих уравнений. Третье уравнение линейно зависит от остальных, и может быть отброшено. Далее, указанный базисный минор образован коэффициентами при $ x_1,x_3 $ и $ x_4 $. Следовательно оставшиеся уравнения могут быть разрешены относительно этих переменных, т.е. они — зависимые, а $ x_2 $ и $ x_5 $ — основные. Использование формулы дает общее решение $$ \begin x_1&=&\frac<\left| \begin 2 & 1 & 2 \\ 3 & 2 & 4 \\ 1 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin -1 & 1 & 2 \\ -3 & 2 & 4 \\ -2 & 1 & 1 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 3 & 1 & 2 \\ 5 & 2 & 4 \\ 2 & 1 & 1 \end \right|> <\displaystyle 2>=-\frac<1><2>+\frac<1><2>x_2+\frac<1><2>x_5, \\ & & \\ x_3&=&\frac<\left| \begin 2 & 2 & 2 \\ 6 & 3 & 4 \\ 4 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin 2 & -1 & 2 \\ 6 & -3 & 4 \\ 4 & -2 & 1 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 2 & 3 & 2 \\ 6 & 5 & 4 \\ 4 & 2 & 1 \end \right|><\displaystyle 2>=3-4x_5, \\ & & \\ x_4 &=&\frac<\left| \begin 2 & 1 & 2 \\ 6 & 2 & 3 \\ 4 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin 2 & 1 & -1 \\ 6 & 2 & -3 \\ 4 & 1 & -2 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 2 & 1 & 3 \\ 6 & 2 & 5 \\ 4 & 1 & 2 \end \right|> <\displaystyle 2>= 0. \end $$ Решим теперь ту же задачу, воспользовавшись методом Гаусса исключения переменных в системе линейных уравнений: $$ \left\< \begin 2x_1&-x_2&+x_3&+2x_4&+3x_5&=&2, \\ &&x_3&+2x_4&+4x_5&=&3, \\ &&&x_4&&=&0 \end \right. $$ Используя обратный ход метода Гаусса, снова приходим к полученным формулам.

Ответ. Общее решение системы: $ x_1=1/2 (x_2+x_5-1),\ x_3=3-4\,x_5,\ x_4=0 $.

Проанализируем теперь полученные общие формулы для общего решения. В этих формулах $ \beta_j $ представляет решение системы, получаемое при $ x_<\mathfrak+1>=0,\dots,x_n=0 $. Величины же коэффициентов $ \gamma_ $ вовсе не зависят от правых частей системы и будут одинаковыми при любых значениях $ b_1,\dots,b_m $. В частности, если $ b_1=0,\dots,b_m=0 $, то в формулах величины $ \beta_j $ обращаются в нуль и эти формулы превращаются в $$ x_j=\gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \<1,\dots, \mathfrak\> \ . $$

Вывод. Формула общего решения системы $ A X=\mathcal B $: $$ x_j=\beta_j + \gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \ <1,\dots, \mathfrak\> $$ состоит из двух частей: слагаемые, не содержащие свободных переменных, определяют частное решение неоднородной системы: $$ x_1= \beta_1,\dots, x_<\mathfrak>= \beta_<\mathfrak>,x_<\mathfrak+1>=0,\dots,x_n=0 \ ; $$ оставшиеся после их отбрасывания формулы задают общее решение системы $ AX=\mathbb O $. Этот результат обобщается в следующей теореме.

Теорема. Общее решение системы уравнений $ A X=\mathcal B $ представимо в виде суммы какого-то частного решения этой системы и общего решения соответствующей однородной системы $ A X=\mathbb O $.

Доказательство тривиально если система $ A X=\mathcal B $ имеет единственное решение. Если же решений бесконечно много, то выбрав какое-то одно частное $ X=X_1 $ мы получаем, что любое другое частное решение $ X=X_2 $ должно быть связано с первым соотношением $$ A(X_2-X_1)=\mathbb O , $$ т.е. разность частных решений неоднородной системы обязательно является решением однородной системы уравнений $ AX=\mathbb O $. ♦

Теперь посмотрим как можно описать общее решение однородной системы.

Система однородных уравнений

Система линейных уравнений называется однородной, если все коэффициенты правых частей равны нулю: $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=0,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=0,\\ \dots & & & \dots & \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=0. \end \right. $$ или, в матричном виде: $$ A_X=<\mathbb O>_ $$

Задача ставится о поиске нетривиального решения. Оно не всегда существует. Так, к примеру, если матрица $ A_<> $ системы — квадратная и имеет ненулевой определитель, то, согласно теореме Крамера, нетривиальных решений у однородной системы нет. Теорема Кронекера-Капелли утверждает, что условие $ \det (A_<>) = 0 $ является и достаточным для существования нетривиального решения.

Теорема 1. Для того, чтобы система однородных уравнений с квадратной матрицей $ A_<> $ имела нетривиальное решение необходимо и достаточно, чтобы $ \det (A_<>) = 0 $.

Для произвольной (не обязательно квадратной) матрицы $ A_<> $ имеет место следующий общий результат.

Теорема 2. Если $ \operatorname (A)=\mathfrak r 5) $ A_^<> $.

Теорема 3. Множество решений системы однородных уравнений образует линейное подпространство пространства $ \mathbb A^ $. Размерность этого подпространства равна $ n-\mathfrak r $, а фундаментальная система решений образует его базис.

Пусть матрица системы $ AX=\mathbb O $ квадратная и

$$ \operatorname (A) =n_<>-1 \, .$$ Доказать, что если ненулевой минор матрицы порядка $ n_<>-1 $ соответствует какому-нибудь элементу $ j_<> $-й строки, то система алгебраических дополнений к элементам $ a_,\dots,a_^<> $ этой строки составляет ФСР для $ AX=\mathbb O_<> $. Например, для системы $$ \left\< \begin a_<11>x_1 +a_<12>x_2+a_<13>x_3&=0,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3&=0 \end \right. $$ ФСР состоит из решения $$ x_1=\left| \begin a_ <12>& a_ <13>\\ a_ <22>& a_ <23>\end \right| , \ x_2=-\left| \begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right| , \ x_3=\left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \ , $$ если только хотя бы один из миноров отличен от нуля.

Теперь обсудим способы нахождения ФСР.

1. Первый из них получается из общего метода решения системы линейных уравнений, рассмотренного в предыдущем пункте. Так же, как и в том пункте, сделаем упрощающее обозначения предположение, что зависимыми переменными являются первые $ x_<1>,\dots,x_ <\mathfrak r>$, т.е. общее решение задается формулами $$ x_j=\gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \<1,\dots, \mathfrak\> \ . $$ Иными словами, вектор столбец $$ X=\left(\begin \gamma_<1,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<1n>x_n \\ \gamma_<2,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<2n>x_n \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<\mathfrakn>x_n \\ x_<\mathfrak+1> \\ x_<\mathfrak+2> \\ \vdots \\ x_ \end\right) $$ будет решением однородной системы при любых наборах значений основных переменных $ x_<\mathfrak+1>,\dots,x_ $. Представим этот вектор в виде суммы векторов: $$ =x_<\mathfrak+1> \underbrace< \left(\begin \gamma_<1,\mathfrak+1> \\ \gamma_<2,\mathfrak+1> \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+1> \\ 1 \\ 0 \\ \vdots \\ 0 \end\right)>_ + x_<\mathfrak+2> \underbrace<\left(\begin \gamma_<1,\mathfrak+2> \\ \gamma_<2,\mathfrak+2> \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+2> \\ 0 \\ 1 \\ \vdots \\ 0 \end\right)>_+\dots+ x_ \underbrace<\left(\begin \gamma_ <1n>\\ \gamma_ <2n>\\ \vdots \\ \gamma_<\mathfrakn> \\ 0 \\ 0 \\ \vdots \\ 1 \end\right)>_> \ . $$ Таким образом, любое решение однородной системы представимо в виде линейной комбинации $ n_<>— \mathfrak r $ фиксированных решений. Именно эти решения и можно взять в качестве ФСР — их линейная независимость очевидна (единицы в нижних частях каждого вектора $ X_ $ расположены на разных местах, и ни какая линейная комбинация столбцов $ \ < X_1,\dots,X_\> $ не сможет обратить их одновременно в нуль).

Оформим этот способ построения ФСР в теорему:

Теорема 4. Если система уравнений $ AX=\mathbb O $ имеет структуру матрицы $ A_<> $ вида:

$$ A = \left[ E_ <\mathfrak r>\mid P_ <\mathfrak r \times (n-\mathfrak r)>\right] \ , $$ то ее ФСР состоит из столбцов матрицы $$ \left[ \begin — P^ <\top>\\ \hline E_ \end \right] \ . $$

Пример. Найти ФСР для системы уравнений

Решение. Приводим систему к трапециевидному виду: $$ \left\< \begin x_1-&x_2+&x_3-&x_4=&0, \\ &&x_3+&4x_4=&0 \end \right. $$ В качестве зависимых переменных можно взять, например, $ x_ <1>$ и $ x_ <3>$. $$ \begin x_1 & x_3 & x_2 & x_4 \\ \hline 1 & 0 & 1 & 0 \\ 5 & -4 & 0 & 1 \end $$

2. Этот способ напоминает вычисление обратной матрицы методом приписывания единичной матрицы. Транспонируем матрицу $ A_<> $ системы и припишем к ней справа единичную матрицу порядка $ n_<> $: $$ \left[ A^ <\top>| E_n \right] = \left(\begin a_ <11>& a_ <21>& \dots & a_ & 1 & 0 & 0 & \dots & 0 \\ a_ <12>& a_ <22>& \dots & a_ & 0 & 1 & 0 & \dots & 0 \\ a_ <13>& a_ <23>& \dots & a_ & 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \vdots & \vdots & & & \ddots & \vdots \\ a_ <1n>& a_ <2n>& \dots & a_ & 0 & 0 & 0 & \dots & 1 \end \right) \ ; $$ здесь $ <> |_<> <> $ означает конкатенацию. Получившуюся матрицу элементарными преобразованиями строк приводим к форме: $$ \left( \begin \hat A & K \\ \mathbb O & L \end \right) = \left(\begin \color <\star>& * & * & \dots & * & * & * & * & * & * & * & \dots & * \\ 0 & \color <\star>& * & \dots & * & * & * & * & * & * & * & \dots & * \\ 0 & 0 & \color <\star>& \dots & * & * & * & * & * & * & * & \dots & * \\ \vdots & & & \ddots & & \vdots & & & \vdots & & & & \vdots \\ 0 & 0 & \dots & & 0 & \color <\star>& * & * & * & * & * & \dots & * \\ \hline 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & \Box & \Box & \Box & \dots & \Box \\ \vdots & & & & & \vdots & & & \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & \Box & \Box & \Box & \dots & \Box \end \right) \begin \left.\begin \\ \\ \\ \\ \\ \end\right\> \mathfrak r \\ \left. \begin \\ \\ \\ \end\right\> n — \mathfrak r \end \ . $$ Элементы трапециевидной матрицы $ \hat A $, обозначенные $ \color <\star>$, могут быть равны нулю, но $ \operatorname(\hat A)= \mathfrak r_<> $. В этом случае строки матрицы $ L_<> $, образовавшейся в правом нижнем углу (ее элементы обозначены $ \Box $), составляют ФСР для системы $ AX=\mathbb O $.

Пример. Найти ФСР для системы уравнений

$$ \left\< \begin x_1 &+2\,x_2&+ x_3&+3\,x_4&-x_5&+2\,x_6=&0,\\ -3x_1 &-x_2&+ 2\,x_3&-4\,x_4&+x_5&-x_6=&0,\\ x_1 &+x_2&+ 3\,x_3&+2\,x_4&+x_5&+3\,x_6=&0,\\ -8\,x_1 &-7\,x_2&+ 4\,x_3&-15\,x_4&+6\,x_5&-5\,x_6=&0,\\ 6x_1 &+5\,x_2& +5\,x_3&+11\,x_4 &&+9\,x_6=&0. \end \right. $$ Решение. Преобразуем матрицу $ \left[ A^ <\top>| E_6 \right] $

$$ \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 2 & -1 & 1 & -7 & 5 & & 1 \\ 1 & 2 & 3 & 4 & 5 & & & 1 \\ 3 & -4 & 2 & -15 & 11 &&&& 1 \\ -1 & 1 & 1 & 6 & 0 &&&&& 1 \\ 2 & -1 & 3 & -5 & 9 &&&&&& 1 \end \right)_ <6\times 11>$$ к трапециевидной форме с помощью элементарных преобразований строк: $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 5 & 2 & 12 & -1 &-1 &0 & 1 \\ 0 & 5 & -1 & 9 & -7 &-3&0&0& 1 \\ 0 & -2 & 2 & -2 & 6 &1&0&0&0& 1 \\ 0 & 5 & 1 & 11 & -3 &-2&0&0&0&0& 1 \end \right)\rightarrow $$ $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 0 & 3 & 3 & 6 &1 &-1 & 1 \\ 0 & 0 & 0 & 0 & 0 &-1&-1&0& 1 \\ 0 & 0 & 8/5 & 8/5 & 16/5 &1/5&2/5&0&0& 1 \\ 0 & 0 & 2 & 2 & 4 &0&-1&0&0&0& 1 \end \right)\rightarrow $$ $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 0 & 3 & 3 & 6 &1 &-1 & 1 \\ 0 & 0 & 0 & 0 & 0 &-1&-1&0& 1 \\ 0 & 0 & 0 & 0 & 0 &-1/3&14/15&-8/15&0& 1 \\ 0 & 0 & 0 & 0 & 0 &-2/3&-1/3&-2/3&0& 0 & 1 \end \right) $$

3. Еще один способ построения ФСР основан на теореме Гамильтона-Кэли.

Теорема. Пусть матрица системы $ AX=\mathbb O $ квадратная и $ \operatorname (A) = <\mathfrak r>$. Тогда характеристический полином матрицы $ A_<> $ имеет вид:

Пример. Найти ФСР для системы уравнений

Решение. Здесь $$ A= \left( \begin 1 & 1 & -1 & -1 \\ 2 & 3 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end \right), \quad \det (A-\lambda E) = \lambda^2(\lambda^2-4\lambda+1), $$ $$ A^2-4A+E= \left( \begin 0 & 0 & 4 & 1 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end \right) $$

Блок-схемы зависимости множества решений системы уравнений $ AX= \mathcal B $ от комбинации чисел $ n, \mathfrak r $ ☞ ЗДЕСЬ.

Геометрическая интерпретация

Геометрический смысл введенных определений поясним на примере $ \mathbb R^ <3>$. Уравнение $$ a_1x_1+a_2x_2+a_3x_3=b $$ — при фиксированных вещественных коэффициентах $ a_1,a_2,a_3 $ (хотя бы один из них считаем отличным от нуля) и $ b_<> $ — задает плоскость. Если, к примеру, $ a_1\ne 0 $, то из уравнения получаем выражение для $ x_ <1>$ как функции $ x_2,x_3 $: $$ x_1=\frac-\fracx_2-\fracx_3 \ . $$ В этом представлении переменные $ x_ <2>$ и $ x_ <3>$ могут принимать любые вещественные значения независимо друг от друга, а вот переменная $ x_ <1>$ полностью определяется заданием $ x_ <2>$ и $ x_ <3>$. С одной стороны, последняя формула определяет общее решения системы линейных уравнений (которая в нашем частном случае состоит из одного-единственного уравнения); переменные $ x_ <2>$ и $ x_ <3>$ выбраны основными, а $ x_ <1>$ оказывается зависимой. Строго говоря, координаты любой точки плоскости можно представить формулами $$x_1=\frac-\fract-\fracu,\ x_2=t,\ x_3=u \quad npu \quad \\subset \mathbb R \ , $$ которые называются параметрическим представлением плоскости. Таким образом, получили геометрическую интерпретацию общего решения системы уравнений. Идем далее: представим последние формулы в векторной форме: $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)= \left( \begin b/a_1- t\, a_2/a_1- u\, a_3/a_1 \\ t \\ u \end \right)= \left( \begin b/a_1\\ 0 \\ 0 \end \right)+ t \left( \begin -a_2/a_1\\ 1 \\ 0 \end \right) + u \left( \begin -a_3/a_1\\ 0 \\ 1 \end \right) \ . $$ Какой геометрический смысл имеет каждое из слагаемых? Первое слагаемое $$ X_0=\left( \begin b/a_1\\ 0 \\ 0 \end \right) $$ получается при задании $ t=0,u=0_<> $ в общем решении. Это — частное решение нашего уравнения и определяет точку, через которую проходит плоскость. Два оставшихся столбца $$ X_1=\left( \begin -a_2/a_1\\ 1 \\ 0 \end \right) \quad u \quad X_2=\left( \begin -a_3/a_1\\ 0 \\ 1 \end \right) $$ не задают решения нашего уравнения — если только $ b\ne 0_<> $. Но оба удовлетворяют однородному уравнению $$ a_1x_1+a_2x_2+a_3x_3=0 , $$ Последнее также определяет плоскость — параллельную исходной и проходящую через начало координат. Первая плоскость получается из второй сдвигом (параллельным переносом) на вектор $ \vec $: и этот факт составляет геометрическую интерпретацию теоремы, сформулированной в конце ☞ ПУНКТА:

Теорема. Общее решение системы уравнений $ A X=\mathcal B $ представимо в виде суммы какого-то частного решения этой системы и общего решения соответствующей однородной системы $ A X=\mathbb O $.

Координаты произвольной точки плоскости $ a_1x_1+a_2x_2+a_3x_3=0 $ задаются соотношениями $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)=tX_1+uX_2 \ . $$ Векторы пространства $ \vec $ и $ \vec $ являются базисными векторами плоскости — любой вектор $ \vec $, лежащий в плоскости, через них выражается и они линейно независимы. Но $ X_ <1>$ и $ X_ <2>$ определяют фундаментальную систему решений однородного уравнения. Таким образом, мы получили геометрическую интерпретацию для ФСР: она задает базисные векторы плоскости, проходящей через начало координат.

Теперь рассмотрим систему из двух уравнений: $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&b_1,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&b_2. \end\right. $$ Ее можно интерпретировать как пересечение двух плоскостей в $ \mathbb R^ <3>$. Здесь уже возможны варианты: пересечение может оказаться как пустым так и непустым. От чего это зависит? — В соответствии с теоремой Кронекера-Капелли, надо сравнить два числа $$ \operatorname \left( \begin a_ <11>& a_ <12>& a_ <13>\\ a_ <21>& a_ <22>& a_ <23>\end \right) \quad u \quad \operatorname \left( \begin a_ <11>& a_ <12>& a_ <13>& b_1 \\ a_ <21>& a_ <22>& a_ <23>& b_2 \end \right) \ . $$ Очевидно, ни одно из них не может быть большим $ 2_<> $. Если оба равны $ 2_<> $ и этот факт обеспечен, например, условием $$ \left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \ne 0, $$ то решения системы определяют прямую в пространстве. Действительно, при таком условии систему можно разрешить относительно неизвестных $ x_ <1>$ и $ x_ <2>$ и представить общее решение в виде: $$ x_1= \frac<\left|\begin b_1 & a_ <12>\\ b_2 & a_ <22>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>+ \frac<\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>x_3 \ , \quad x_2= \frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>- \frac<\left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>x_3 \ . $$ В этих формулах переменная $ x_ <3>$ принимает любое значение, а значения переменных $ x_ <1>$ и $ x_ <2>$ линейно выражаются через $ x_ <3>$. Общее решение фактически задает прямую в параметрическом виде: координаты произвольной ее точки определяются формулами $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)=X_0+tX_1 \ , $$ где вектор $$ \quad X_0 = \left(\frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|> , \ \frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>,\ 0\right)^ <\top>$$ задает координаты точки, лежащей на прямой (т.е. принадлежащей пересечению плоскостей), а вектор $$ X_1= \left(\frac<\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>,\ — \frac<\left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>, \ 1 \right)^ <\top>$$ является направляющим для прямой. С тем же успехом мы могли бы взять в качестве направляющего вектор, получающийся растяжением $ X_ <1>$: $$ \tilde X_1 = \left(\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|,\ — \left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|, \ \left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \right)^ <\top>\ . $$ Очевидно, что любой из векторов $ X_ <1>$ или $ \tilde X_1 $ задает фундаментальную систему решений однородной системы уравнений 10) $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&0,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&0. \end\right. $$ Последняя определяет прямую в $ \mathbb R^3 $, проходящую через начало координат. Мы снова получаем интерпретацию теоремы: общее решение неоднородной системы получается сдвигом (параллельным переносом) общего решения однородной системы на вектор $ \vec $.

Мы рассмотрели пока только случай пересекающихся плоскостей в пространстве. Его можно считать общим, т.е. случаем «как правило»: две случайным образом выбранные плоскости в $ \mathbb R^ <3>$ пересекаться будут. Исследуем теперь исключительный случай — параллельности плоскостей. Исключительность этого случая может быть проверена и аналитикой. Для несовместности системы из двух уравнений необходимо, чтобы ранг ее матрицы $$ \left( \begin a_ <11>& a_ <12>& a_ <13>\\ a_ <21>& a_ <22>& a_ <23>\end \right) $$ оказался меньшим $ 2_<> $. Это равносильно тому, что все миноры второго порядка этой матрицы обращаются в нуль: $$ \left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|=0,\ \left| \begin a_ <12>& a_ <13>\\ a_ <22>& a_ <23>\end \right| =0,\ \left| \begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|=0 \ . $$ Эти условия можно переписать в виде $$ \frac>>=\frac>>=\frac>> \ ; $$ и, если обозначить общую величину последний отношений через $ \tau_<> $, то получаем: $$ (a_<11>,a_<12>,a_<13>)=\tau (a_<21>,a_<22>,a_<23>) . $$ Если вспомнить, что каждый из этих наборов коэффициентов задает вектор $ \vec> $ в $ \mathbb R^ <3>$, перпендикулярный соответствующей плоскости, то, в самом деле, плоскости, определяемые уравнениями, оказываются параллельными. Пересекаться они, как правило, не будут: для пересечения необходимо, чтобы расширенная матрица системы $$ \left( \begin a_ <11>& a_ <12>& a_ <13>& b_1 \\ a_ <21>& a_ <22>& a_ <23>& b_2 \end \right) $$ имела ранг меньший $ 2_<> $. Это возможно только при условии когда коэффициенты правых частей удовлетворяют соотношению $$ b_1 = \tau b_2 $$ при величине $ \tau_<> $ определенной выше. При выполнении этого условия второе уравнение получается из первого домножением на $ \tau_<> $ и соответствующие плоскости попросту совпадают.

Перейдем теперь к системе из трех уравнений: $$ \left\< \begin a_<11>x_1 +&a_<12>x_2+&a_<13>x_3=&b_1, \\ a_<21>x_1 +&a_<22>x_2+&a_<23>x_3=&b_2, \\ a_<31>x_1 +&a_<32>x_2+&a_<33>x_3=&b_3. \end \right. $$ Вариантов взаимного расположения трех плоскостей в $ \mathbb R^ <3>$ уже значительно больше. Какой из них будет самым распространенным, то есть случаем «как правило»? Геометрически ответ очевиден: если пересечение двух плоскостей определяет, как правило, прямую, то эта прямая пересекается с третьей плоскостью, как правило, в одной-единственной точке. И алгебра подтверждает геометрию: в комментарии к теореме Крамера говорится, что система, число уравнений которой совпадает с числом неизвестных, как правило, имеет единственное решение. Условие для этого случая «как правило» дается той же теоремой Крамера: $$ \left| \begin a_ <11>& a_ <12>& a_<13>\\ a_ <21>& a_ <22>& a_ <23>\\ a_ <31>& a_ <32>& a_ <33>\end \right| \ne 0 . $$

Теорема Кронекера-Капелли в этом случае не нужна — нет, она остается справедливой! — но проверка условия на ранги матриц тривиальна: они оба равны $ 3_<> $. Если же указанный определитель обращается в нуль, то этот факт эквивалентен тому, что три строки определителя линейно зависимы. Например, возможно, что строка $ (a_<31>,a_<32>, a_<33>) $ может быть представлена в виде линейной комбинации первых двух строк. Вспомним геометрический смысл этих строк: они задают координаты векторов, перпендикулярных соответствующим плоскостям. Если система уравнений $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&b_1,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&b_2 \end\right. $$ определяет прямую в $ \mathbb R^ <3>$, то оба вектора $ \vec> $ и $ \vec> $ при $ A^<[1]>= (a_<11>,a_<12>, a_<13>) $ и $ A^<[2]>= (a_<21>,a_<22>, a_<23>) $ перпендикулярны этой прямой; любая их комбинация также перпендикулярна этой прямой, а, следовательно, плоскость $$ a_<31>x_1 +a_<32>x_2+a_<33>x_3 =b_3 $$ будет ей параллельна.

Статья не закончена!

Ортогональность

Геометрические соображения из предыдущего пункта могут быть обобщены на случай когда размерности рассматриваемых пространств увеличиваются, и мы говорим о точках и векторах многомерных пространств. В последующих пунктах нам потребуются понятия линейной оболочки, линейного пространства, размерности, базиса и координат применительно к векторам-столбцам или векторам-строкам. Их можно найти ☞ ЗДЕСЬ.

Задача решения системы линейных уравнений $$ \left\< \begin 3x_1&+4x_2&-x_3&=2, \\ x_1&-2x_2&+3x_3&=1 \end \right. $$ может быть рассмотрена с двух точек зрения. С одной стороны, переписав систему в виде $$ x_1\left(\begin 3 \\ 1 \end \right)+ x_2\left(\begin 4 \\ -2 \end \right)+ x_3\left(\begin -1 \\ 3 \end \right)= \left(\begin 2 \\ 1 \end \right) \ , $$ можно говорить о поиске линейной комбинации столбцов $$ \left(\begin 3 \\ 1 \end \right),\ \left(\begin 4 \\ -2 \end \right),\ \left(\begin -1 \\ 3 \end \right) $$ равной заданному столбцу $$ \left(\begin 2 \\ 1 \end \right) \ . $$ В случае произвольной системы, записанной в матричном виде $$ A_X=\mathcal B_ \ $$ совместность системы интерпретировать в смысле принадлежности столбца $ \mathcal B $ линейной оболочке столбцов $ A_<[1]>,\dots,A_ <[n]>$: $$ \mathcal B=x_1 A_<[1]>+\dots+x_nA_ <[n]>\quad \iff \quad \mathcal B \in \mathcal L (A_<[1]>,\dots,A_<[n]>) \ . $$ В случае положительного ответа числа $ x_<1>,\dots,x_n $ интерпретируются как координаты столбца $ \mathcal B $ в системе столбцов 11) $ \,\dots,A_<[n]>\> $.

С другой стороны, к той же задаче решения системы уравнений, в предыдущем ПУНКТЕ мы подошли с другой стороны. Первое из уравнений системы $$ 3\,x_1+4\,x_2-x_3=2 $$ можно интерпретировать так: скалярное произведение векторов $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OX>> $ равно фиксированному числу $ 2_<> $. Здесь вектора рассматриваются в пространстве строк $ \mathbb R_<>^ <3>$; считается, что каждый вектор имеет начало в начале координат $ \mathbf O=[0,0,0] $, а конец — в точке с координатами $ [3,4,-1] $ или, соответственно, $ [x_1,x_2,x_3] $. Если скалярное произведение векторов обозначать скобками $ \langle <> \mbox < >\rangle $, то систему уравнений можно переписать в виде $$ \langle \vec<<\mathbf OA>^<[1]>> ,\ \vec<<\mathbf OX>> \rangle=2,\ \langle \vec<<\mathbf OA>^<[2]>> ,\ \vec<<\mathbf OX>> \rangle=1 \quad npu \quad A^ <[1]>= [3,4,-1], A^<[2]>=[1,-2,3] $$ — строках матрицы $ A_<> $. И задачу решения такой системы понимать в смысле: найти координаты всех векторов-строк $ [x_1,x_2,x_3] $ которые обеспечат нам заданные значения скалярных произведений с двумя фиксированными векторами.

Геометрическая интерпретация еще более упрощается если рассмотреть случай однородной системы уравнений. Так, решить систему уравнений $$ \left\< \begin 3x_1&+4x_2&-x_3&=0, \\ x_1&-2x_2&+3x_3&=0 \end \right. $$ означает подобрать вектор $ \vec<<\mathbf OX>> $ перпендикулярный (ортогональный) одновременно обоим векторам $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OA>^<[2]>> $. Очевидно, что таких векторов в $ \mathbb R^ <3>$ бесконечно много — найдя хотя бы один такой вектор $ \vec<<\mathbf OX>> $, другие получим его растяжением: $ \alpha \cdot \vec<<\mathbf OX>> $ остается перпендикулярным векторам $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OA>^<[2]>> $ при $ \forall \alpha \in \mathbb R $.

Все эти геометрические соображения обобщаются в произвольное пространство $ \mathbb R_<>^ $ строк или столбцов, состоящих из $ n_<> $ вещественных чисел (компонент). Для этого приходится обобщать понятие скалярного произведения. В общем случае оно вводится аксиоматически (и, более того, в одном и том же множестве может быть определено разными способами, см. ☞ ЕВКЛИДОВО ПРОСТРАНСТВО ). Мы сейчас не будем залезать так глубоко в эту аксиоматику, а просто определим скалярное произведение двух строк $ X=[x_1,x_2,\dots,x_n] $ и $ Y=[y_1,y_2,\dots,y_n] $ формулой $$ \langle X,Y \rangle=x_1y_1+x_2y_2+\dots+x_ny_n \ $$ и продекларируем без обоснований, что все привычные нам по случаям $ \mathbb R^ <2>$ и $ \mathbb R^ <3>$ свойства скалярного произведения будут выполнены.

В терминах скалярного произведения, задачу решения системы линейных уравнений можно переформулировать как поиск строки $ X=[x_1,x_2,\dots,x_n] $, ортогональной всем строкам матрицы $ A_<> $: $$ \langle A^<[1]>,X \rangle=0, \langle A^<[2]>,X \rangle=0,\dots, \langle A^<[m]>,X \rangle=0 \ . $$ Множество таких строк образует линейное подпространство пространства $ \mathbb R_<>^ $, это подпространство является ортогональным дополнением линейной оболочки $ \mathcal L ( A^<[1]>, A^<[2]>,\dots, A^ <[m]>) $ в пространстве $ \mathbb R_<>^ $. Это подпространство называется нуль-пространством матрицы или ядром матрицы $ A_<> $ и обозначается 12) $ <\mathcal K>er (A) $. Фундаментальная система решений системы $ AX=\mathbb O $ составляет базис этого подпространства. Для произвольного линейного пространства количество векторов его базиса называется размерностью пространства и обозначается $ \operatorname $. Во введенных обозначениях теорема из ☞ ПУНКТА переформулируется так:

Теорема. $ \operatorname \left( <\mathcal K>er (A) \right)=n- \mathfrak r $, где $ n_<> $ — количество столбцов матрицы $ A_<> $, а $ \mathfrak r=\operatorname (A) $ — ее ранг.

Матрицы: метод Гаусса. Вычисление матрицы методом Гаусса: примеры

Линейная алгебра, которая преподается в вузах на разных специальностях, объединяет немало сложных тем. Одни из них связаны с матрицами, а также с решением систем линейных уравнений методами Гаусса и Гаусса – Жордана. Не всем студентам удается понять эти темы, алгоритмы решения разных задач. Давайте вместе разберемся в матрицах и методах Гаусса и Гаусса – Жордана.

Основные понятия

Под матрицей в линейной алгебре понимается прямоугольный массив элементов (таблица). Ниже представлены наборы элементов, заключенные в круглые скобки. Это и есть матрицы. Из приведенного примера видно, что элементами в прямоугольных массивах являются не только числа. Матрица может состоять из математических функций, алгебраических символов.

Вам будет интересно: Закон Максвелла. Распределение Максвелла по скоростям

Для того чтобы разобраться с некоторыми понятиями, составим матрицу A из элементов aij. Индексы являются не просто буквами: i – это номер строки в таблице, а j – это номер столбца, в области пересечения которых располагается элемент aij. Итак, мы видим, что у нас получилась матрица из таких элементов, как a11, a21, a12, a22 и т. д. Буквой n мы обозначили число столбцов, а буквой m – число строк. Символ m × n обозначает размерность матрицы. Это то понятие, которое определяет число строк и столбцов в прямоугольном массиве элементов.

Необязательно в матрице должно быть несколько столбцов и строк. При размерности 1 × n массив элементов является однострочным, а при размерности m × 1 – одностолбцовым. При равенстве числа строчек и числа столбцов матрицу именуют квадратной. У каждой квадратной матрицы есть определитель (det A). Под этим термином понимается число, которое ставится в соответствие матрице A.

Еще несколько важных понятий, которые нужно запомнить для успешного решения матриц, – это главная и побочная диагонали. Под главной диагональю матрицы понимается та диагональ, которая идет вниз в правый угол таблицы из левого угла сверху. Побочная диагональ идет в правый угол вверх из левого угла снизу.

Ступенчатый вид матрицы

Взгляните на картинку, которая представлена ниже. На ней вы увидите матрицу и схему. Разберемся сначала с матрицей. В линейной алгебре матрица подобного вида называется ступенчатой. Ей присуще одно свойство: если aij является в i-й строке первым ненулевым элементом, то все другие элементы из матрицы, стоящие ниже и левее aij, являются нулевыми (т. е. все те элементы, которым можно дать буквенное обозначение akl, где k>i, а l Понравилась статья? Поделись с друзьями:


источники:

http://vmath.ru/vf5/algebra2/linearsystems

http://1ku.ru/obrazovanie/56526-matricy-metod-gaussa-vychislenie-matricy-metodom-gaussa-primery/