Три точки лежат на прямых заданных уравнениями

Когда 3 точки лежат на одной прямой

вкл. 22 Сентябрь 2016 .

Очень часто при решения домашней работы возникает вопрос: когда 3 точки лежат на одной прямой, ответ очень прост и он лежит в основе геометрии.

Осуществить проверку того, что три точки лежат на одной прямой можно через составления уравнения, рассматриваемой прямой, которая проходит через две наугад выбранные точки из этих трех. И проверки того, что этому уравнению удовлетворяют координаты оставшейся из этих трех точек.

Есть разные виды уравнения прямой. Воспользуемся одним из простейших способов и рассмотрим его для конкретно заданных точек.

Это сделаем лишь для того, чтобы не решать поставленную задачу в общем виде, а чтобы дать ответ на вопрос лежат ли 3 именно эти точки с этими координатами на одной прямой. Сформулируем задачу: Необходимо проверить лежат ли точки A(-2;1), Б(0;3), В (5;-7) на одной прямой.

Решим поставленную задачу

Как известно, через любые две точки можно провести прямую, причем единственную. Вот и проведем мысленно эту прямую. Допустим, прямую АБ. Значит, решение нашей задачи свелось к тому, что нужно проверить: принадлежит ли точка В прямой АБ. Если окажется, что точка В принадлежит прямой АБ, то все точки из условия будут лежать на одной прямой. Если мы выясним, что точка В не принадлежит прямой АБ, то можно будет утверждать, что точки А, Б и В на одной прямой не лежат. Составим уравнение прямой АБ как уравнение прямой проходящей через две точки:

После преобразования получим:

x-y=-3 — это уравнение прямой АБ

Проверим удовлетворяют ли координаты точки В этому уравнению, для этого достаточно выполнить подстановку координат точки В в место переменных в уравнении прямой АБ. Если получим верное числовое равенство, то точка В — это точка прямой АБ. В противном случае, неверное числовое равенство, будет свидетельствовать о не принадлежности точки В прямой АБ.

Как видим, не получили верное числовое равенство. Значит в этом случае точки А, Б, В не лежат на одной прямой.

Пример, когда 3 точки лежат на одной прямой можно легко подобрать для этой задачи. Всего лишь точка В должна иметь координаты (0;3) или (-7;-4)

Высшая математика. Шпаргалка

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.

Оглавление

  • 1. Основные понятия. Системы координат. Прямые линии и их взаимное расположение
  • 2. Условие нахождения трех точек на одной прямой. Уравнение прямой. Взаимное расположение точек и прямой. Пучок прямых.
  • 3. Полярные параметры прямой. Нормальное уравнение прямой. Преобразование координат
  • 4. Порядок алгебраических линий. Окружность. Эллипс. Гипербола. Парабола
  • 5. Аналитическая геометрия в пространстве. Плоскость
  • 6. Прямая в пространстве

Приведённый ознакомительный фрагмент книги Высшая математика. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.

2. Условие нахождения трех точек на одной прямой. Уравнение прямой. Взаимное расположение точек и прямой. Пучок прямых. Расстояние от точки до прямой

3. Пусть имеются точка М (х1, у1) и некоторая прямая L, представленная уравнением у = ах + с. Уравнение прямой, проходящей параллельно данной прямой L через данную точку М:

Если прямая L задана уравнением Ах + Ву + С = 0, то параллельная ей прямая, проходящая через точку М, описывается уравнением А(х — х1) + В(у — у1) = 0.

Уравнение прямой, проходящей перпендикулярно данной прямой L через данную точку М:

Если прямая L задана уравнением Ах + Ву + С = 0, то параллельная ей прямая, проходящая через точку М(х1, у1), описывается уравнением А (у — у1) — В(х — х1) = 0.

4. Пусть даны две точки А1 (х1, у1), А2 (х2, у2) и прямая, заданная уравнением Ах + Ву + С = 0. Взаимное расположение точек относительно этой прямой:

1) точки А1, А2 лежат по одну сторону от данной прямой, если выражения (Ах1 + Ву1 + С) и (Ах2 + Ву2 + С) имеют одинаковые знаки;

3) одна или обе точки А1, А2 лежат на данной прямой, если одно или оба выражения соответственно (Ах1 + + Ву1 + С) и (Ах2 + Ву2 + С) принимают нулевое значение.

5. Центральный пучок — это множество прямых, проходящих через одну точку М (х1, у1), называемую центром пучка. Каждая из прямых пучка описывается уравнением пучка у — у1 = к (х — х1) (параметр пучка к для каждой прямой свой).

Все прямые пучка можно представить уравнением: l(y — y1) = m(x — x1), где l, m — не равные одновременно нулю произвольные числа.

6. Пусть даны точка М (х1, у1) и прямая, заданная уравнением Ах + Ву + С = 0. Расстояние d от этой точки М до прямой:

Через три точки можно провести плоскость

Гипермаркет знаний>>Математика>>Математика 10 класс>>Математика:Существование плоскости, проходящей через три данные точки

Существование плоскости, проходящей через три данные точки

Теорема 15.3. Через три точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну.

Доказательство. Пусть А, В, С — три данные точки, не лежащие на одной прямой (рис. 317). Проведем прямые АВ и АС; они различны, так как точки А, В, С не лежат на одной прямой. По аксиоме Сз через прямые АВ и АС можно провести плоскость . Эта плоскость содержит точки А, В, С.

Докажем, что плоскость а, проходящая через точки А, В, С, единственна. Действительно, плоскость, проходящая через точки А, В, С, по теореме 15.2 содержит прямые АВ и АС. А по аксиоме Сз такая плоскость единственна.

Задача (13). Можно ли провести плоскость через три точки, если они лежат на одной прямой? Объясните ответ.

Решение. Пусть А, В, С — три точки, лежащие на прямой . Возьмем точку D, не лежащую на прямой (аксиома I). Через точки А, В, D можно провести плоскость (теорема 15.3). Эта плоскость содержит две точки прямой — точки A и В, а значит, содержит и точку С этой прямой (теорема 15.2).

Следовательно, через три точки, лежащие на одной прямой, всегда можно провести плоскость.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь – Образовательный форум.

сколько плоскостей можно провести через

две различные точки

три различные точки

четыре точки никакие три из которых не лежат на одной прямой.

В рамках этого материала мы разберем, как найти уравнение плоскости, если мы знаем координаты трех различных ее точек, которые не лежат на одной прямой. Для этого нам понадобится вспомнить, что такое прямоугольная система координат в трехмерном пространстве. Для начала мы введем основной принцип данного уравнения и покажем, как именно использовать его при решении конкретных задач.

Как найти уравнение плоскости, которая проходит через 3 заданные точки

Для начала нам необходимо вспомнить одну аксиому, которая звучит следующим образом:

Если три точки не совпадают друг с другом и не лежат на одной прямой, то в трехмерном пространстве через них проходит только одна плоскость.

Иными словами, если у нас есть три разных точки, координаты которых не совпадают и которые нельзя соединить прямой, то мы можем определить плоскость, проходящую через нее.

Допустим, у нас имеется прямоугольная система координат. Обозначим ее O x y z . В ней лежат три точки M с координатами M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) , которые нельзя соединить прямой линией. Исходя из этих условий, мы можем записать уравнение необходимой нам плоскости. Есть два подхода к решению этой задачи.

1. Первый подход использует общее уравнение плоскости. В буквенном виде оно записывается как A ( x – x 1 ) + B ( y – y 1 ) + C ( z – z 1 ) = 0 . С его помощью можно задать в прямоугольной системе координат некую плоскость альфа, которая проходит через первую заданную точку M 1 ( x 1 , y 1 , z 1 ) . У нас получается, что нормальный вектор плоскости α будет иметь координаты A , B , C .

Зная координаты нормального вектора и координаты точки, через которую проходит плоскость, мы можем записать общее уравнение этой плоскости.

Из этого мы и будем исходить в дальнейшем.

Таким образом, согласно условиям задачи, мы имеем координаты искомой точки (даже трех), через которую проходит плоскость. Чтобы найти уравнение, нужно вычислить координаты ее нормального вектора. Обозначим его n → .

Вспомним правило: любой не равный нулю вектор данной плоскости является перпендикулярным нормальному вектору этой же плоскости. Тогда мы имеем, что n → будет перпендикулярным по отношению к векторам, составленным из исходных точек M 1 M 2 → и M 1 M 3 → . Тогда мы можем обозначить n → как векторное произведение вида M 1 M 2 → · M 1 M 3 → .

Поскольку M 1 M 2 → = ( x 2 – x 1 , y 2 – y 1 , z 2 – z 1 ) а M 1 M 3 → = x 3 – x 1 , y 3 – y 1 , z 3 – z 1 (доказательства этих равенств приведены в статье, посвященной вычислению координат вектора по координатам точек), тогда получается, что:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1

Если мы вычислим определитель, то получим необходимые нам координаты нормального вектора n → . Теперь мы можем записать нужное нам уравнение плоскости, проходящей через три заданные точки.

2. Второй подход нахождения уравнения, проходящей через M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) , основан на таком понятии, как компланарность векторов.

Если у нас есть множество точек M ( x , y , z ) , то в прямоугольной системе координат они определяют плоскость для заданных точек M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) только в том случае, когда векторы M 1 M → = ( x – x 1 , y – y 1 , z – z 1 ) , M 1 M 2 → = ( x 2 – x 1 , y 2 – y 1 , z 2 – z 1 ) и M 1 M 3 → = ( x 3 – x 1 , y 3 – y 1 , z 3 – z 1 ) будут компланарными.

На схеме это будет выглядеть так:

Это будет означать, что смешанное произведение векторов M 1 M → , M 1 M 2 → , M 1 M 3 → будет равно нулю: M 1 M → · M 1 M 2 → · M 1 M 3 → = 0 , поскольку это является основным условием компланарности: M 1 M → = ( x – x 1 , y – y 1 , z – z 1 ) , M 1 M 2 → = ( x 2 – x 1 , y 2 – y 1 , z 2 – z 1 ) и M 1 M 3 → = ( x 3 – x 1 , y 3 – y 1 , z 3 – z 1 ) .

Запишем полученное уравнение в координатной форме:

x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = 0

После того, как мы вычислим определитель, мы сможем получить нужное нам уравнение плоскости для трех не лежащих на одной прямой точек M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) .

От полученного в результате уравнения можно перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости, если этого требуют условия задачи.

В следующем пункте мы приведем примеры того, как указанные нами подходы реализуются на практике.

Примеры задач на составление уравнения плоскости, проходящих через 3 точки

Ранее мы выделили два подхода, с помощью которых можно найти искомое уравнение. Давайте посмотрим, как они применяются в решениях задач и когда следует выбирать каждый из них.

Есть три точки, не лежащие на одной прямой, с координатами M 1 ( – 3 , 2 , – 1 ) , M 2 ( – 1 , 2 , 4 ) , M 3 ( 3 , 3 , – 1 ) . Составьте уравнение плоскости, проходящей через них.

Решение

Используем поочередно оба способа.

1. Найдем координаты двух нужных нам векторов M 1 M 2 → , M 1 M 3 → :

M 1 M 2 → = – 1 – – 3 , 2 – 2 , 4 – – 1 ⇔ M 1 M 2 → = ( 2 , 0 , 5 ) M 1 M 3 → = 3 – – 3 , 3 – 2 , – 1 – – 1 ⇔ M 1 M 3 → = 6 , 1 , 0

Теперь вычислим их векторное произведение. Вычисления определителя расписывать при этом не будем:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → 2 0 5 6 1 0 = – 5 · i → + 30 · j → + 2 · k →

У нас получился нормальный вектор плоскости, которая проходит через три искомые точки: n → = ( – 5 , 30 , 2 ) . Далее нам нужно взять одну из точек, например, M 1 ( – 3 , 2 , – 1 ) , и записать уравнение для плоскости с вектором n → = ( – 5 , 30 , 2 ) . Мы получим, что: – 5 · ( x – ( – 3 ) ) + 30 · ( y – 2 ) + 2 · ( z – ( – 1 ) ) = 0 ⇔ – 5 x + 30 y + 2 z – 73 = 0

Это и есть нужное нам уравнение плоскости, которая проходит через три точки.

2. Используем другой подход. Запишем уравнение для плоскости с тремя точками M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) в следующем виде:

x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = 0

Сюда можно подставить данные из условия задачи. Поскольку x 1 = – 3 , y 1 = 2 , z 1 = – 1 , x 2 = – 1 , y 2 = 2 , z 2 = 4 , x 3 = 3 , y 3 = 3 , z 3 = – 1 , в итоге мы получим:

x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = x – ( – 3 ) y – 2 z – ( – 1 ) – 1 – ( – 3 ) 2 – 2 4 – ( – 1 ) 3 – ( – 3 ) 3 – 2 – 1 – ( – 1 ) = = x + 3 y – 2 z + 1 2 0 5 6 1 0 = – 5 x + 30 y + 2 z – 73

Мы получили нужное нам уравнение.

Ответ: – 5 x + 30 y + 2 z – 73 .

А как быть, если заданные точки все же лежат на одной прямой и нам нужно составить уравнение плоскости для них? Здесь сразу надо сказать, что это условие будет не совсем корректным. Через такие точки может проходить бесконечно много плоскостей, поэтому вычислить один-единственный ответ невозможно. Рассмотрим такую задачу, чтобы доказать некорректность подобной постановки вопроса.

У нас есть прямоугольная система координат в трехмерном пространстве, в которой размещены три точки с координатами M 1 ( 5 , – 8 , – 2 ) , M 2 ( 1 , – 2 , 0 ) , M 3 ( – 1 , 1 , 1 ) . Необходимо составить уравнение плоскости, проходящей через нее.

Решение

Используем первый способ и начнем с вычисления координат двух векторов M 1 M 2 → и M 1 M 3 → . Подсчитаем их координаты: M 1 M 2 → = ( – 4 , 6 , 2 ) , M 1 M 3 → = – 6 , 9 , 3 .

Векторное произведение будет равно:

M 1 M 2 → × M 1 M 3 → = i → j → k → – 4 6 2 – 6 9 3 = 0 · i ⇀ + 0 · j → + 0 · k → = 0 →

Поскольку M 1 M 2 → × M 1 M 3 → = 0 → , то наши векторы будут коллинеарными (перечитайте статью о них, если забыли определение этого понятия). Таким образом, исходные точки M 1 ( 5 , – 8 , – 2 ) , M 2 ( 1 , – 2 , 0 ) , M 3 ( – 1 , 1 , 1 ) находятся на одной прямой, и наша задача имеет бесконечно много вариантов ответа.

Если мы используем второй способ, у нас получится:

x – x 1 y – y 1 z – z 1 x 2 – x 1 y 2 – y 1 z 2 – z 1 x 3 – x 1 y 3 – y 1 z 3 – z 1 = 0 ⇔ x – 5 y – ( – 8 ) z – ( – 2 ) 1 – 5 – 2 – ( – 8 ) 0 – ( – 2 ) – 1 – 5 1 – ( – 8 ) 1 – ( – 2 ) = 0 ⇔ ⇔ x – 5 y + 8 z + 2 – 4 6 2 – 6 9 3 = 0 ⇔ 0 ≡ 0

Из получившегося равенства также следует, что заданные точки M 1 ( 5 , – 8 , – 2 ) , M 2 ( 1 , – 2 , 0 ) , M 3 ( – 1 , 1 , 1 ) находятся на одной прямой.

Если вы хотите найти хоть один ответ этой задачи из бесконечного множества ее вариантов, то нужно выполнить следующие шаги:

1. Записать уравнение прямой М 1 М 2 , М 1 М 3 или М 2 М 3 (при необходимости посмотрите материал об этом действии).

2. Взять точку M 4 ( x 4 , y 4 , z 4 ) , которая не лежит на прямой М 1 М 2 .

3. Записать уравнение плоскости, которая проходит через три различных точки М 1 , М 2 и M 4 , не лежащих на одной прямой.


источники:

http://kartaslov.ru/%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%90%D1%83%D1%80%D0%B8%D0%BA%D0%B0_%D0%9B%D1%83%D0%BA%D0%BE%D0%B2%D0%BA%D0%B8%D0%BD%D0%B0_%D0%92%D1%8B%D1%81%D1%88%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0_%D0%A8%D0%BF%D0%B0%D1%80%D0%B3%D0%B0%D0%BB%D0%BA%D0%B0/2

http://4apple.org/cherez-tri-tochki-mozhno-provesti-ploskost/