Тригон уравнения сводящиеся к квадратному уравнению

Уравнения, сводящиеся к квадратным уравнениям:
трехчленные уравнения и уравнения
вида
(ax + b)(ax + b + c)(ax +
+ b
+ 2c)(ax + b + 3c) = d , левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии

Существует ряд уравнений, которые удается решить при помощи сведения их к квадратным уравнениям.

К таким уравнениям, в частности, относятся уравнения следующих типов:

Трёхчленные уравнения
Уравнения 4-ой степени, левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии
Возвратные (симметричные) уравнения 3-ей степени
Возвратные (симметричные) уравнения 4-ой степени
Обобщенные возвратные уравнения 4-ой степени

Замечание . Уравнения, носящие название «Биквадратные уравнения» , относятся к типу «Трехчленные уравнения» .

Трехчленные уравнения

Трёхчленными уравнениями называют уравнения вида

a f 2 (x)+ b f (x) + c = 0,(1)

а также уравнения вида

(2)

где a, b, c – заданные числа, а f (x) – некоторая функция.

Для того, чтобы решить трехчленное уравнения вида (1), обозначим

y = f (x),(3)

тогда уравнение (1) станет квадратным уравнением относительно переменной y :

ay 2 + by + c = 0 .(4)

Затем найдем корни уравнения (4), а после этого, подставив каждый из найденных корней в равенство (3), решим полученное уравнение относительно x .

Для того, чтобы решить трехчленное уравнение вида (2), сначала введем обозначение (3), а затем умножим полученное уравнение на знаменатель. В результате уравнение (2) примет вид (4), а схема решения уравнения (4) уже описана выше.

Покажем, как это осуществляется на примерах.

Пример 1 . Решить уравнение

(x 2 – 2x) 2 –
– 2(x 2 – 2x) – 3 = 0 .
(5)

Решение . Если обозначить

y = x 2 – 2x ,(6)

то уравнение (5) превратится в квадратное уравнение

y 2 – 2y – 3 = 0 .(7)

В первом случае из равенства (6) получаем:

Во втором случае из равенства (6) получаем:

Пример 2 . Решить уравнение

(8)

Решение . Если обозначить

,(9)

то уравнение (8) превратится в квадратное уравнение

которое эквивалентно уравнению

2y 2 – 3 y – 2 = 0 .(10)

В первом случае из равенства (9) получаем уравнение:

Во втором случае из равенства (9) получаем:

Ответ :

Пример 3 . Решить уравнение

Решение . Если обозначить

(12)

то уравнение (11) превратится в квадратное уравнение

которое эквивалентно уравнению

y 2 – 5y – 6 = 0 .(13)

В первом случае из равенства (12) получаем уравнение:

Во втором случае из равенства (12) получаем:

Ответ :

Пример 4 . Решить биквадратное уравнение

x 4 – x 2 – 12 = 0 .(14)

Решение . Если обозначить

y = x 2 ,(15)

то уравнение (14) превратится в квадратное уравнение

y 2 – y – 12 = 0 .(16)

В первом случае из равенства (15) получаем уравнение:

которое решений не имеет.

Во втором случае из равенства (15) получаем:

Пример 5 . Решить уравнение

Решение . Если обозначить

y = x 2 – 3x,(18)

уравнение (17) превращается в уравнение

которое при умножении на y принимает вид

y 2 + 2y – 8 = 0 .(19)

В первом случае из равенства (18) получаем квадратное уравнение:

которое решений не имеет.

Во втором случае из равенства (18) получаем:

Ответ :

Пример 6 . Решить уравнение

Решение . Если обозначить

,(21)

уравнение (20) превращается в уравнение

которое при умножении на y принимает вид

3y 2 – 2y – 1 = 0 .(22)

В первом случае из равенства (21) получаем уравнение

Во втором случае из равенства (21) получаем:

Уравнения 4-ой степени, левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии

(ax + b)(ax + b +
+ c
)(ax +
+ b
+ 2c)(ax +
+ b
+ 3c) = d ,
(23)

где a, b, c, d – заданные числа, и заметим, что левая часть этого уравнения представляет собой произведение четырёх последовательных членов арифметической прогрессии, первый член которой равен ax+b , а разность равна c .

Схема решения уравнений вида (23) заключается в следующем.

y = ax + b.(24)

Тогда уравнение (23) примет вид:

y (y + c)(y +
+ 2c)(y + 3c) = d .
(25)

Перегруппируем сомножители в левой части уравнения (25) следующим образом:

[y (y + 3c)][(y +
+ c
)(y + 2c)] = d .
(26)

Если раскрыть круглые скобки внутри каждой квадратной скобки из левой части уравнения (26), то получим:

[y 2 + 3cy][y 2 +
+ 3cy + 2c 2 ] = d .
(27)

Если теперь в уравнении (27) обозначить

z = y 2 + 3cy ,(28)

то уравнение (27) станеи квадратным уравнением

z 2 + 2c 2 zd = 0 .(29)

Для того, чтобы найти корни уравнения (23), остаётся решить уравнение (29), затем для каждого корня уравнения (29) решить уравнение (28) относительно y , а затем в каждом из полученных случаев решить уравнение (24) относительно x .

Пример 7 . Решить уравнение

(2x + 3)(2x + 5)(2x +
+
7)(2x + 9) = 384 .
(30)

Решение .Если обозначить

y = 2x + 3,(31)

уравнение (30) превращается в уравнение

y (y + 2)(y +
+
4)(y + 6) = 384 .
(32)

Перегруппируем сомножители в левой части уравнения (32):

[y (y + 6)][(y +
+ 2)(y + 4)] = 384 .
(33)

Если раскрыть круглые скобки внутри каждой квадратной скобки из левой части уравнения (33), то уравнение (33) примет вид:

[y 2 + 6y][y 2 +
+ 6y + 8] = 384 .
(34)

Если теперь обозначить

z = y 2 + 6y ,(35)

то уравнение (34) станет квадратным уравнением

z 2 + 8 z – 384 = 0 .(36)

В первом случае из равенства (35) получаем уравнение:

которое корней не имеет.

Во втором случае из равенства (35) получаем:

В первом из этих случаев, из равенства (31) получаем:

Во втором случае из равенства (31) получаем:

Ответ :

«Решение тригонометрических уравнений, сводящихся к квадратным». 11-й класс

Класс: 11

Презентация к уроку

Цели и задачи урока.

  • Образовательные:
    • повторить: определение и способы решения простейших тригонометрических уравнений; определение квадратного уравнения, формулы дискриминанта и корней квадратного уравнения
    • сформировать знания об отличительных признаках и способах решения тригонометрических уравнений, сводящихся к квадратным.
    • уметь: выделять среди тригонометрических уравнений тригонометрические уравнения, сводящиеся к квадратным и решать их.
  • Развивающие:
    • развивать логическое мышление учащихся, память, внимание, речь; умения рассуждать и выделять главное; умение самостоятельно приобретать знания и применять их на практике, развивать навыки самоконтроля и взаимоконтроля.
  • Воспитательные:
    • воспитывать уважительное отношение к одноклассникам, самостоятельность, ответственность, эстетический вкус, аккуратность, интерес к математике.

Оборудование: мультимедийный проектор, экран, лист самооценки.

Организационные формы общения: фронтальная, групповая, индивидуальная.

Тип урока: усвоения новых знаний.

Образовательные технологии: ИКТ, проектная.

План урока.

  1. Организационный момент, формирование мотивации работы учащихся.
  2. Формулирование темы, цели урока.
  3. Актуализация знаний и подготовка учащихся к активному и сознательному усвоению нового материала.
  4. Этап усвоения новых знаний и способов действий.
  5. Этап активной релаксации и активизации.
  6. Этап первичной проверки понимания изученного.
  7. Этап рефлексии и оценивания. Подведение итогов урока.
  8. Этап информирования учащихся о домашнем задании, инструктаж по его выполнению.

Подготовительная работа

Учащихся класса необходимо заранее поделить на группы. Принцип деления учащихся на группы учитель вправе выбрать самостоятельно.
Один из вариантов – группы, в которые вошли бы учащиеся с разным уровнем математической подготовки: от «базового» до «продвинутого».
Каждая группа предварительно получает задание изучить алгоритм решения одного из типов тригонометрических уравнений (используются предложенные учителем источники информации и самостоятельно найденные). Результаты своей работы члены каждой группы представляют на одном из уроков по теме «Тригонометрические уравнения». В зависимости от объёма предлагаемого материала и его сложности одном уроке могут успеть выступить 1-2 группы, представив результаты своей работы.
Предлагаем вашему вниманию урок, на котором рассматривается решение тригонометрических уравнений, сводящихся к квадратным.

Из дома реальности легко забрести в лес математики, но лишь немногие способны вернуться обратно.

Чем больше человек будет становиться человеком, тем меньше он согласится на что-либо иное, кроме бесконечного и неистребимого движения к новому.

1. Организационный момент, формирование мотивации работы учащихся (3 мин.)

Приветствие. Фиксация отсутствующих, проверка готовности учащихся к уроку. Далее каждому ученику выдаётся оценочный лист. Учитель кратко комментирует правила заполнения оценочного листа и предлагает заполнить 1-3 строки. Приложение 1.
Организация внимания учащихся: учитель цитирует учащимся Пьера Шардена, предлагает пояснить, как они поняли смысл слов (можно выслушать 2-3 человека), предлагает сделать слова девизом урока и интересуется, знают ли они, кто является их автором. Краткая историческая справка (Слайд 3).

*Инструкция по использованию ПрезентацииПриложение 2.

2. Формулирование темы, цели урока (2-3 мин.).

Учитель просит сформулировать тему предыдущего урока (Решение простейших тригонометрических уравнений). Интересуется у учащихся, как они думают, существуют ли другие типы тригонометрических уравнений? (Да. Если есть «простейшие», то значит, есть более сложные, иначе нет необходимости вводить термин «простейшие», если это единственный тип тригонометрических уравнений). Исходя из выше сказанного, предлагает сформулировать тему сегодняшнего урока (Решение сложных/других/различных типов тригонометрических уравнений).
После корректировки темы, предлагает учащимся записать в их тетрадях: дату проведения урока, фразу «Классная работа» и тему урока «Решение различных типов тригонометрических уравнений: уравнения, сводящиеся к квадратным».
На столе у каждого из учащихся находятся шаблоны яблок и фломастеры. Предлагается написать на «яблоках» свои ожидания от предстоящего урока, тему которого уже сформулировали. После этого все шаблоны яблок прикрепляются, например, с помощью скотча на заранее приготовленный плакат с изображением дерева. Получается «Дерево ожиданий».

По мере достижения того или иного ожидания соответствующее яблоко можно считать созревшим и собирать в корзину. Использование этого активного метода обучения – наглядный способ отслеживания продвижения учащихся на уроке. [1]

Возможен другой вариант: учитель ставит песочные часы перед учениками класса и предлагает ответить на вопрос о том, чему они хотят научиться на уроке, тема которого уже сформулирована (достаточно 1-2 варианта).

3. Актуализация знаний и подготовка учащихся к активному и сознательному усвоению нового материала (10 мин.).

Учитель. Герберт Спенсер говорил, что если знания человека в беспорядочном состоянии, то чем больше их у него, тем сильнее расстраивается его мышление. Последуем совету этого известного британского философа (информация для общего развития личности – краткая историческая справка. (Слайд 5) Прежде чем перейти к изучению нового материала, давайте вспомним, что мы знаем из раздела «Тригонометрия».

Фронтальная работа (устно)


– Дайте определение тригонометрического уравнения.
– Сколько корней может иметь тригонометрическое уравнение?
– Что такое простейшие тригонометрические уравнения?
– Что значит решить простейшее тригонометрическое уравнение?
– Какие способы решения тригонометрических уравнений вы знаете? (2 варианта: формулы; единичная окружность).

а) Заполните таблицу:

б) Поставьте в соответствие уравнениям их решения, представленные на единичных окружностях (с комментарием)

С последующей взаимопроверкой/самопроверкой (правильность ответов проверяется с помощью презентации) на умение решать простейшие тригонометрические уравнения. Демонстрируется (Слайд 12). При необходимости решения некоторых уравнений коротко комментируются.

4. Этап усвоения новых знаний и способов действий (15 мин.).

Учащиеся класса предварительно были поделены на группы, каждая из которых самостоятельно рассмотрела, используя материал рекомендуемый учителем и найденный самостоятельно, один из типов тригонометрических уравнений.
Результаты работы оформляются в виде некой рекомендации/алгоритма/схемы решения в формате презентации Power Point. Учитель в случае необходимости консультирует учащихся групп и предварительно проверяет итоговый продукт их работы.
Для презентации результатов того или иного способа решения на уроке выбирается один из представителей группы, остальные на уроке помогают отвечать на возникающие вопросы по решению данного типа тригонометрического уравнения. Учащиеся заранее знакомятся с критериями оценивания своей работы в группе.

Мне приходится делить время
между политикой и уравнениями.
Однако уравнения, по-моему, гораздо важней.
Политика существует только для данного момента,
а уравнения будут существовать вечно.

Возможные варианты выполнения задания группой. (Слайды 14-18)

1 группа. Решение тригонометрических уравнений, сводящихся к квадратным.

Отличительные признаки уравнений, сводящихся к квадратным:

1. В уравнении присутствуют тригонометрические функции от одного аргумента или они легко сводятся к одному аргументу.
2. В уравнении присутствует только одна тригонометрическая функция или все функции можно свести к одной.

Алгоритм решения:

– Используются ниже приведённые тождества; с их помощью необходимо выразить одну тригонометрическую функцию через другую:

– Выполняется подстановка.
– Выполняется преобразование выражения.
– Вводится обозначение (например, sinx = y).
– Решается квадратное уравнение.
– Подставляется значение обозначенной величины, и решается тригонометрическое уравнение.

Пример 1

6cos 2 x + 5 sin x – 7 = 0.

Пример 2

Пример 3

5. Этап активной релаксации и активизации (2 мин.).

Авторы метода: С. Казаков, Ю. Долинова. Приложение 4 (текст), слайды 20-25.

6. Этап первичной проверки понимания изученного (8 мин.)

Самостоятельная работа (Приложение 5)

Работа дифференцированная, каждый уровень сложности заданий представлен в двух вариантах.
I уровень – «3», II уровень – «4», III уровень – «5» в случае полного правильного решения. Работа будет проверена учителем к следующему уроку, отметки будут выставлены за урок.

7. Этап рефлексии и оценивания. Подведение итогов урока (2 мин.).

8. Этап информирования учащихся о домашнем задании, инструктаж по его выполнению (2 мин.).

Дифференцированное (раздаётся каждому ученику на отдельных листах) – Приложение 6

Список литературы:

  1. Корнилов С.В., Корнилова Л.Э. Методический ларец. – Петрозаводск: ПетроПресс, 2002. – 12 с.

Как решать тригонометрические уравнения, сводящиеся к квадратным — примеры

Основные понятия по теме

Тригонометрическими уравнениями называют уравнения с неизвестной, которая расположена строго под знаком тригонометрической функции.

Квадратные тригонометрические уравнения являются такими уравнениями, которые имеют вид:

a sin 2 x + b sin x + c = 0

Здесь a отлично от нуля.

Тригонометрические уравнения, сводящиеся к квадратным, обладают следующими признаками:

  1. Наличие в уравнении тригонометрических функций от одного аргумента, либо таких, которые можно просто свести к одному аргументу.
  2. Присутствие в уравнении единственной тригонометрической функции, либо все функции можно свести к одной.

Правила решения тригонометрических уравнений сводящихся к квадратным

Рассмотрим случай, когда преобразованное уравнение записано таким образом:

a f 2 ( x ) + b f ( x ) + c = 0

При этом а отлично от нуля, f ( x ) является одной из функций sin x , cos x , tg x , ctg x .

Тогда данное уравнение путем замены f ( x ) = t сводится к квадратному уравнению.

Существует ряд правил, позволяющих решать тригонометрические уравнения, сводящиеся к квадратным. Данная информация будет полезна при выполнении самостоятельных работ и практических заданий в десятом классе.

sin 2 α + cos 2 α = 1 tg α · ctg α = 1 tg α = sin α cos α ctg α = cos α sin α 1 + tg 2 α = 1 cos 2 α 1 + ctg 2 α = 1 sin 2 α ▸

Формулы двойного угла:

sin 2 α = 2 sin α cos α cos 2 α = cos 2 α — sin 2 α sin α cos α = 1 2 sin 2 α cos 2 α = 2 cos 2 α — 1 cos 2 α = 1 — 2 sin 2 α tg 2 α = 2 tg α 1 — tg 2 α ctg 2 α = ctg 2 α — 1 2 ctg α ▸

Последовательность действий при решении тригонометрических уравнений, сводящихся к квадратным:

  • выражение одной тригонометрической функции с помощью другой путем применения основных тождеств;
  • выполнение подстановки;
  • преобразование уравнения;
  • введение обозначения, к примеру, sin x = y;
  • решение квадратного уравнения;
  • обратная замена;
  • решение тригонометрического уравнения.

Рассмотрим решение тригонометрического уравнения:

6 cos 2 x — 13 sin x — 13 = 0

cos 2 α = 1 — sin 2 α

В результате уравнение преобразуется таким образом:

6 sin 2 x + 13 sin x + 7 = 0

Заменим sin x на t. Зная, что ОДЗ синуса sin x ∈ [ — 1 ; 1 ] , запишем, t ∈ [ — 1 ; 1 ] . Тогда:

6 t 2 + 13 t + 7 = 0

Заметим, что t 1 не соответствует условиям. Выполним обратную замену и получим решение уравнения:

sin x = — 1 ⇒ x = — π 2 + 2 π n , n ∈ ℤ .

Разберем другой пример:

5 sin 2 x = cos 4 x — 3

Воспользуемся уравнением двойного угла для косинуса:

cos 2 α = 1 — 2 sin 2 α

cos 4 x = 1 — 2 sin 2 2 x

Подставим значения и преобразуем уравнение:

2 sin 2 2 x + 5 sin 2 x + 2 = 0

Заменим sin 2 x на t. Зная, что ОДЗ для синуса sin 2 x ∈ [ — 1 ; 1 ] , можно записать:

2 t 2 + 5 t + 2 = 0

Заметим, что t 1 является посторонним, так как не соответствует условию. Путем обратной замены получим:

sin 2 x = — 1 2 ⇒ x 1 = — π 12 + π n , x 2 = — 5 π 12 + π n , n ∈ ℤ .

Примеры решения задач с пояснениями

Найти корни уравнения:

tg x + 3 ctg x + 4 = 0

При tg x · ctg x = 1 имеем, что:

Заменим tg x на t. Зная, что ОДЗ тангенса tg x ∈ ℝ , запишем:

t + 3 t + 4 = 0 ⇒ t 2 + 4 t + 3 t = 0

Вспомним, что дробь может обладать нулевым значением при нулевом числителе и знаменателе, отличном от нуля. В результате:

Путем обратной замены получим:

Ответ: x = — arctg 3 + π n , x = — π 4 + π n , n ∈ ℤ .

Решить тригонометрическое уравнение на интервале ( — π ; π ) :

2 sin 2 x + 2 sin x — 2 = 0

Заменим sin x на t. В результате уравнение преобразуется:

2 t 2 + 2 t — 2 = 0

Определим дискриминант уравнения:

Таким образом, корни равны:

Исходя из того, что t = sin x ∈ [ — 1 ; 1 ] , можно сделать вывод о лишнем корне t 2 . В результате:

sin x = 2 2 ⇔ x = π 4 + 2 π n

x = 3 π 4 + 2 π m , n , m ∈ ℤ .

Выполним проверку корней на соответствие условиям задания:

— π π 4 + 2 π n π ⇔ — 5 8 n 3 8 ⇒ n = 0 ⇒ x = π 4 .

— π 3 π 4 + 2 π m π ⇔ — 7 8 m 1 8 ⇒ m = 0 ⇒ x = 3 π 4 .

Ответ: корни уравнения π 4 + 2 π n ; 3 π 4 + 2 π m ; n , m ∈ ℤ , из них соответствуют интервалу π 4 ; 3 π 4 .

Дано тригонометрическое уравнение, которое нужно решить на отрезке ( 0 ; π ) :

2 sin 2 x + 2 = 5 sin x

Заметим, что область допустимых значений определяет х как произвольное число. Перенесем члены в левую часть:

2 sin 2 x + 2 — 5 sin x = 0

Данное уравнение является квадратным по отношению к sin x . Заменим sin x на t. Тогда уравнение будет преобразовано таким образом:

2 t 2 — 5 t + 2 = 0

Исходя из того, что sin x ≤ 1 , sin x = 2 является лишним корнем. Таким образом:

Решениями sin x = a являются:

x = arcsin a + 2 π k

x = π — arcsin a + 2 π k

Здесь k ∈ ℤ . В результате, корнями уравнения sin x = 0 , 5 являются:

x = 5 π 6 + 2 π k

Определим, какие корни соответствуют интервалу:

0 π 6 + 2 π k π ⇔ — π 6 2 π k 5 π 6 ⇔ — 1 12 k 5 12

Заметим, что k ∈ ℤ . В таком случае из этих корней подходящими являются лишь те, что соответствуют условию k = 0:

Рассмотрим другие решения:

0 5 π 6 + 2 π k π ⇔ — 5 π 6 2 π k π 6 ⇔ — 5 12 k 1 12

Заметим, что k ∈ ℤ . В таком случае выберем решение при k = 0:

Ответ: корни уравнения π 6 + 2 π k , 5 π 6 + 2 π k , при k ∈ ℤ ; решения, соответствующие интервалу π 6 , 5 π 6 .

Решить уравнение на промежутке [ π ; 3 π ) :

ctg 2 x + 1 cos x — 11 π 2 — 1 = 0

Вспомним формулу приведения:

cos x — 11 π 2 = — sin x

Также пригодится формула:

ctg 2 x + 1 = 1 sin 2 x

1 sin 2 x — 1 — 1 sin x — 1 = 0 ⇔ 1 sin 2 x — 1 sin x — 2 = 0

Заменим 1 sin x на t. В результате:

Путем обратной замены получим:

sin x = — 1 ⇔ x = — π 2 + 2 π n , n ∈ ℤ sin x = 1 2 ⇔ x = π 6 + 2 π k ; x = 5 π 6 + 2 π m , k , m ∈ ℤ .

Определим подходящие решения:

Ответ: корни уравнения — π 2 + 2 π n ; π 6 + 2 π k ; 5 π 6 + 2 π m ; n , k , m ∈ ℤ , из них соответствуют интервалу 3 π 2 ; 13 π 6 ; 17 π 6 .

Определить корни уравнения на отрезке ( π ; 2 π ) :

cos ( 2 x ) + 3 2 sin x = 3

Область допустимых значений предусматривает произвольные значения для х. На первом этапе следует преобразовать уравнение с помощью формулы косинуса двойного угла и перенести члены уравнения в левую сторону:

1 — 2 sin 2 x + 3 2 sin x — 3 = 0 ⇔ 2 sin 2 x — 3 2 sin x + 2 = 0

Заметим, что в результате получено уравнение, которое является квадратным по отношению к sin x . Заменим sin x на t. В результате:

2 t 2 — 3 2 t + 2 = 0

t 1 , 2 = 3 2 ± 2 4

Исходя из того, что sin x ≤ 1 , делаем вывод о лишнем корне sin x = 2 . В результате:

Решения для уравнения sin x = a следующие:

x = arcsin a + 2 π k

x = π — arcsin a + 2 π k

Здесь k ∈ ℤ . В результате получим следующие решения для sin x = 2 2 :

x = 3 π 4 + 2 π k

Определим подходящие корни:

π π 4 + 2 π k 2 π ⇔ 3 π 4 2 π k 7 π 4 ⇔ 3 8 k 7 8

Заметим, что k ∈ ℤ . Тогда указанные корни не соответствуют интервалу ( π ; 2 π ) .

Определим корни, которые подходят к задаче:

π 3 π 4 + 2 π k 2 π ⇔ π 4 2 π k 5 π 4 ⇔ 1 8 k 5 8

Зная, что k ∈ ℤ , можно сделать вывод об отсутствии корней, которые соответствуют интервалу ( π ; 2 π ) .

Ответ: корни уравнения π 4 + 2 π k , 3 π 4 + 2 π k , где k ∈ ℤ , решения, соответствующие интервалу, отсутствуют.

Требуется найти решения тригонометрического уравнения:

3 tg 4 2 x — 10 tg 2 2 x + 3 = 0

Корни нужно записать в соответствии с интервалом — π 4 ; π 4

Область допустимых значений в данном случае:

Заменим tg 2 2 x на t, при t ⩾ 0 . Уравнение будет преобразовано таким образом:

3 t 2 — 10 t + 3 = 0

Путем обратной замены получим:

Можно сделать вывод о выполнении условия относительно области допустимых значений при найденных значениях х . Тогда остается отобрать нужные корни:

— π 4 π 6 + π 2 n 1 π 4 ⇒ — 5 6 n 1 1 6 ⇒ n 1 = 0 ⇒ x = π 6

Вычислим еще три решения, которые включены в заданный интервал:

x = — π 12 ; — π 6 ; π 12 .

Ответ: корнями уравнения являются ± π 6 + π 2 n , ± π 12 + π 2 m , n , m ∈ ℤ , из них соответствуют промежутку — π 6 ; — π 12 ; π 12 ; π 6 .


источники:

http://urok.1sept.ru/articles/629673

http://wika.tutoronline.ru/algebra/class/10/kak-reshat-trigonometricheskie-uravneniya-svodyashhiesya-k-kvadratnym—primery