Тригонометрическая функция и ее уравнения

Геометрия. Урок 1. Тригонометрия

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник A B C , угол C равен 90 °:

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x , ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x , против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A . Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B ) и на ось игрек (точка C ) .

Отрезок O B является проекцией отрезка O A на ось x , отрезок O C является проекцией отрезка O A на ось y .

Рассмотрим прямоугольный треугольник A O B :

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Опускаем из точки A перпендикуляры к осям x и y . Точка B в этом случае будет иметь отрицательную координату по оси x . Косинус тупого угла отрицательный .

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x . (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y .

Координата по оси x – косинус угла , координата по оси y – синус угла .

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный .

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный .

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Тригонометрия: Таблица значений тригонометрических функций

0 °30 °45 °60 °90 °sin α01 22 23 21cos α13 22 21 20tg α03 313нетctg αнет313 30

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β :

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

a sin ∠ A = b sin ∠ B = c sin ∠ C

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Тригонометрия: Тригонометрические уравнения

Это тема 10-11 классов.

Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!

Тригонометрические функции с примерами решения и образцами выполнения

Тригонометрические функции — служат прежде всего для описания разнообразных периодических процессов. С периодически повторяющимися ситуациями человек сталкивается повсюду. Его жизнь сопровождают различные астрономические явления — восход и заход Солнца, изменение фаз Луны, чередование времен года, положение звезд на небе, затмения и движения планет. Человек давно заметил, что все эти явления возобновляются периодически. Жизнь на Земле тесно связана с ними, и поэтому неудивительно, что астрономические наблюдения явились источником многих математических открытий.

Биение сердца, цикл в жизнедеятельности организма, вращение колеса, морские приливы и отливы, заполненность городского транспорта, эпидемии гриппа — в этих многообразных примерах можно найти общее: эти процессы периодичны.

Открывая утром газету, мы часто читаем сообщение об очередном запуске искусственного спутника Земли. Обычно в сообщении указываются наименьшее и наибольшее расстояния спутника от поверхности Земли и период его обращения. Если сказано, что период обращения спутника составляет 92 мин, то мы понимаем, что его положение относительно Земли в какой-то момент времени и через каждые 92 мин с этого момента будет одинаковым. Так мы приходим к понятию периодической функции как функции, обладающей периодом, т. е. таким числом Т, что значения функции при значениях аргумента, отличающихся на Т, 2Т, ЗТ и т. д., будут одинаковыми.

Астрономия, которая дает нам наиболее наглядное представление о периодических процессах, определяет положение объектов в небесной сфере с помощью углов. Можно сказать так: в качестве аргумента периодических функций очень часто выступает угол. Поэтому в нашей беседе мы обсудим вопрос об измерении углов.

Область определения и множество значений тригонометрических функций

Вы знаете, что каждому действительному числу х соответ­ствует единственная точка единичной окружности, получаемая
поворотом точки (1; 0) на угол х радиан. Для этого угла
опре­делены sin х и cos х. Тем самым каждому действительному чис­лу х поставлены в соответствие числа sin х и cos х, т. е. на мно­жестве R всех действительных чисел определены функции

y = sin x и у = cos x.

Таким образом, областью определения функций y = sin x и
у = cos x является множество R всех действительных чисел.
Чтобы найти множество значений функции y = sin х, нужно
вы­яснить, какие значения может принимать у при различных зна­чениях х, т. е. установить, для каких значений у есть такие зна­чения х, при которых sin x = y. Известно, что уравнение
sin x = a имеет корни, если , и не имеет корней, если
|а |> 1 .

Томсон Уильям, лорд Кельвин (1824— 1907) — английский физик, прези­дент Лондонского королевского общества. Дал одну из формулировок второго начала термодинамики, предложил абсолютную шкалу температур (шкалу Кельвина).

Следовательно, множеством значений функции у = sin x
является отрезок

Аналогично множеством значений функции у = сos x также
является отрезок

Задача:

Найти область определения функции

Найдем значения х, при которых выражение —
не имеет смысла, т. е. значения х, при которых знаменатель равен
нулю. Решая уравнение sin x + cos х = 0, находим tg x = — 1,
Следовательно, областью определения дан­ной функции являются все значения

Задача:

Найти множество значений функции y = 3 + sin х cos х.

Нужно выяснить, какие значения может принимать у при
различных значениях х, т. е. установить, для каких значений а
уравнение 3 + sin х cos х = а имеет корни. Применяя формулу
синуса двойного угла, запишем уравнение так:

откуда sin2x = 2a — 6. Это уравнение имеет корни, если
|2а — 6| = 1, т. е. если , откуда

Следовательно, множеством значений данной функции яв­ляется промежуток

Функция y = tg x определяется формулой

Эта функция определена при тех значениях х, для которых
Известно, что cos x = 0 при

Следовательно, областью определения функции y = tg х яв­ляется множество чисел

Так как уравнение tg x = a имеет корни при любом
дейст­вительном значении а, то множеством значений функции
y = tg х является множество R всех действительных чисел.

Функции y = sin x, у = cos x, y = tg x называются
тригономет­рическими функциями.

Задача:

Найти область определения функции y = sin Зх + tg 2х.

Нужно выяснить, при каких значениях х выражение
sin 3x + tg 2х имеет смысл. Выражение sin Зх имеет смысл при
любом значении х, а выражение tg 2х — при т. е. при

Следовательно, областью опреде­ления данной функции является множество действительных чисел

Задача:

Найти множество значений функции
у = 3 sin x + 4 cos х.

Выясним, при каких значениях а уравнение 3 sin x + 4 cos x = a имеет корни. Поделим уравнение на

Так как то очевидно найдется такой угол первой четверти , что (этот угол )

Тогда откуда
так как . Уравнение примет вид т. e. Это уравнение имеет корни, если

Ответ.

Четность, нечетность, периодичность тригонометрических функций

Вы знаете, что для любого значения х верны равенства
sin ( — x ) = — sin x, cos ( — x) = — cos x.

Следовательно, y = sin х — нечетная функция, а у = cos х —
четная функция. Так как для любого значения х из области
определения функции y — tg x верно равенство tg (— х)= — tg х,
то y = tg хнечетная функция.

Задача:

Выяснить, является ли функция

четной или нечетной.

Используя формулу приведения, запишем данную функцию
так:

Имеем , т. е. данная функция является четной. ▲

Известно, что для любого значения х верны равенства

Из этих равенств следует, что значения синуса и косинуса
периодически повторяются при изменении аргумента на
Та­кие функции называются периодическими с периодом

Функция f (x) называется периодической, если существует такое число что для любого х из области определения этой функции выполняется равенство f (х — T) = f (x) = f( x+ T ).

Число 7 называется периодом функции f (х).

Из этого определения следует, что если х принадлежит об­ласти определения функции f (х), то числа х + T , х — Т и вообще
числа х + Tn , также принадлежат области определения
этой периодической функции и f (х + Tn ) = f (х),

Покажем, что число является наименьшим положи­тельным периодом функции у = cos х.
Пусть T > 0 — период косинуса, т. е. для любого х выпол­няется равенство cos (х + T) = cos х. Положив х = 0, получим
cos T = 1 . Отсюда

Так как T > 0 , то T может при­нимать значения … и поэтому период не может быть меньше

Можно доказать, что наименьший положительный период функции у = sin х также равен

Задача:

Доказать, что f (x) = sin 3 x — периодическая
функция с периодом

Если функция f (х) определена на всей числовой оси, то для
того, чтобы убедиться в том, что она является периодической
с периодом T, достаточно показать, что для любого х верно
ра­венство f (х + T ) = f (х). Данная функция определена для всех и

Покажем, что функция tg х является периодической с пери­одом

Если х принадлежит области определения этой функ­ции, т. е. то по формулам приведения полу­чаем:

Следовательно, — период функции tg х.

Покажем, что — наименьший положительный период функции tg х.

Пусть T — период тангенса, тогда tg ( x + T ) = tg x , откуда
при х = 0 получаем:

Так как наименьшее целое положительное k равно 1, то
наименьший положительный период функции tg х.

Задача:

Доказать, что периодическая функция
с периодом

Так как то — периодическая функция с периодом

Периодическими функциями описываются многие физические
процессы (колебания маятника, вращение планет, переменный
ток и т. д.).
На рисунке 34 изображены графики некоторых периодичес­ких функций.
Отметим, что на всех последовательных отрезках числовой
прямой, длина которых равна периоду, график периодической
функции имеет один и тот же вид.

Функция у = cos x, ее свойства и график

Напомним, что функция у = cos х определена на всей число­вой прямой и множеством ее значений является отрезок [— 1; 1].
Следовательно, график этой функции расположен в полосе между прямыми у = — 1 и у = 1.
Так как функция у = cos х периодическая с периодом , то
достаточно построить ее график на каком-нибудь промежутке длиной , например на отрезке тогда на
проме­жутках, получаемых сдвигами выбранного отрезка на график будет таким же.

Функция у = cos х является четной. Поэтому ее график симмет­ричен относительно оси Оу. Для построения графика на отрезке достаточно построить его для а затем сим­метрично отразить относительно оси Оу.

Прежде чем перейти к построению графика, покажем, что
функция у = cos х убывает на отрезке

В самом деле, при повороте точки Р (1; 0) вокруг начала ко­ординат против часовой стрелки на угол от 0 до абсцисса точки,
т. е. cos х, уменьшается от 1 до — 1. Поэтому если то (рис. 35). Это и означает, что функция у = cos х убывает на отрезке .

Используя свойство убывания функции y = cos x на отрезке и найдя несколько точек, принадлежащих графику,
построим его на этом отрезке (рис. 36).
Пользуясь свойством четности функции у = cos х, отразим
по­строенный на отрезке график симметрично относительно оси Оу, получим график этой функции на отрезке (рис. 37).

Так как у = cos х — периодическая функция с периодом
и ее график построен на отрезке длиной, равной периоду, распространим его по всей числовой прямой с помощью сдвигов на и т. д. вправо, на и т. д. влево, т. е. вообще на (рис. 38).

Итак, график функции у = cos x: построен геометрически на
всей числовой прямой, начиная с построения его части на отрезке
. Поэтому свойства функции у = cos х можно получить,
опи­раясь на свойства этой функции на отрезке . Например, функ­ция y = cosx возрастает на отрезке так как она убы­вает на отрезке и является четной.

Перечислим основные свойства функции у = cos х;
1) Область определения — множество R всех действительных
чисел.
2) Множество значений — отрезок [— 1; 1].
3) Функция у = cos х периодическая с периодом .
4) Функция у = cos х четная.
5) Функция у = cos х принимает:
значение, равное 0, при
наибольшее значение, равное 1, при
наименьшее значение, равное — 1, при
положительные значения на интервале и на
интервалах, получаемых сдвигами этого интервала на …;
отрицательные значения на интервале и на
ин­тервалах, получаемых сдвигами этого интервала на …;
6) Функция у = cos х:
возрастает на отрезке и на отрезках, получаемых
сдвигами этого отрезка на , … ;
убывает на отрезке и на отрезках, получаемых
сдвигами этого отрезка на , … .

Задача:

Найти все корни уравнения

при­надлежащие отрезку

Построим графики функций у = сos х и — на данном
отрезке (рис. 39). Эти графики пересекаются в трех точках,
аб­сциссы которых являются корнями уравнения

На отрезке корнем уравнения является число . Из рисунка видно, что точки и симметричны относительно оси Оу, т. е. а
.

Ответ.

Задача:

Найти все решения неравенства принадлежащие отрезку

Из рисунка 39 видно, что график функции у = cos x лежит
выше графика функции на промежутках и

Ответ.

Функция y=sin x, ее свойства и график

Функция y = sin x определена на всей числовой прямой, яв­ляется нечетной и периодической с периодом . Ее график можно
построить таким же способом, как и график функции у = cos x,
начиная с построения, например, на отрезке . Однако проще воспользоваться следующей формулой:

Эта формула показывает, что график функции у = sin х можно
получить сдвигом графика функции у = соs х вдоль оси абсцисс
вправо на (рис. 40).

График функции у = sin х изображен на рисунке 41.
Кривая, являющаяся графиком функции у = sin х, называется
синусоидой.

Так как график функции у = sin х получается сдвигом гра­фика функции у = соs х, то свойства функции у = sin х можно по­лучить из свойств функции у = соs x.

Перечислим основные свойства функции у = sin х :
1) Область определения — множество Я всех действитель­ных чисел.
2) Множество значений — отрезок [— 1; 1].
3) Функция у = sin x периодическая с периодом .
4) Функция у = sin х нечетная.

5) Функция y = sin x принимает:
значение, равное 0 , при
наибольшее значение, равное 1, при
наименьшее значение, равное — 1, при
положительные значения на интервале и на
интервалах, получаемых сдвигами этого интервала на , … ;
отрицательные значения на интервале и на
интервалах, получаемых сдвигами этого интервала
на , … .

6) Функция у = sin х:
— возрастает на отрезке и на отрезках, по­лучаемых сдвигами этого отрезка на и на отрезках, получае­мых сдвигами этого отрезка на ,

Задача:

Найти все корни уравнения
принад­лежащие отрезку

Построим графики функций у = sin х и — на данном
отрезке (рис. 42). Эти графики пересекаются в двух точках,
абс­циссы которых являются корнями уравнения

На от­резке уравнение имеет корень

Второй корень так как

Ответ .

Задача:

Найти все решения неравенства
при­надлежащие отрезку

Из рисунка 42 видно, что график функции y = sin x лежит
ниже графика функции на промежутках и

Ответ.

Функция y=tg x, ее свойства и график

Напомним, что функция y = tg x определена при является нечетной и периодической с периодом . Поэтому достаточно построить ее график на промежутке . Затем, отразив его симметрично относительно начала координат, полу­чить график на интервале .

Наконец, используя пе­риодичность, построить график функции
y = tgx на всей области определения.

Прежде чем строить график функции на промежутке ,
покажем, что на этом промежутке функция y = tg x воз­растает.

Пусть Покажем, что т. е.

По условию откуда по свойствам функции
у = sin х, имеем а по свойствам функции
y = cos x имеем откуда

Перемножив неравенства и получим

Используя свойство возрастания функции y = tg x на про­межутке и найдя несколько точек, принадлежащих графику, построим его на этом промежутке (рис. 43).

Пользуясь свойством нечетности функции y = tg x, отразим
построенный на промежутке график симметрично относи­тельно начала координат; получим график этой функции на интервале

Напомним, что при функция y = tg x не определена.
Если и х приближается к , то sin х приближается к 1,
a cos х, оставаясь положительным, стремится к 0. При этом дробь неограниченно возрастает, и поэтому график функции

у = tg х приближается к вертикальной прямой . Анало­гично при отрицательных значениях х, больших и приближающихся к , график функции y = tg x приближается к вер­тикальной прямой .

Перейдем к построению графика функции у = tg х на всей об­ласти определения. Функция y = tg х периодическая с периодом .
Следовательно, график этой функции получается из ее графика
на интервале (рис. 44) сдвигами вдоль оси абсцисс
на (рис. 45).

Итак, весь график функции у = tg х строится с помощью
гео­метрических преобразований его части, построенной на
проме­жутке .

Поэтому свойства функции y = tg x можно получить, опираясь
на свойства этой функции на промежутке . Например,
функция y = tg x возрастает на интервале , так как
эта функция возрастает на промежутке и является
не­четной.

Перечислим основные свойства функции y = tg x:
1) Область определения — множество всех действительных
чисел

2) Множество значений — множество R всех действительных
чисел.
3) Функция у = tg х периодическая с периодом
4) Функция y = tg x нечетная.
5) Функция у = tg x принимает:
значение, равное 0, при
положительные значения на интервалах отрицательные значения на интервалах
6) Функция у = tg х возрастает на интервалах

Задача:

Найти все корни уравнения tg х = 2, принадлежащие отрезку

Построим графики функций y = tg х и у = 2 на данном от­резке (рис. 46, а) . Эти графики пересекаются в трех точках, абс­циссы которых являются корнями уравнения tg x = 2.
На интервале уравнение имеет корень
Так как функция у = tg х периодическая с периодом , то

Ответ.

Задача:

Найти все решения неравенства
принадлежащие отрезку

Из рисунка 46, а видно, что график функции y = tg х лежит
не выше прямой у = 2 на промежутках

и .

Ответ.

Задача:

Решить неравенство tg х > 1.
Построим графики функций y = tg x и у = 1 (рис. 46, б).
Рисунок показывает, что график функции y = tgx лежит выше
прямой у = 1 на промежутке , а также на промежутках,
полученных сдвигами его на и т. д.

Ответ.

Тригонометрические функции широко применяются в мате­матике, физике и технике. Например, многие процессы, такие, как колебание струны, колебание маятника, напряжение в цепи
переменного тока и т. д., описываются функцией, которая задает­ся формулой Такие процессы называют
гар­моническими колебаниями, а описывающие их функции —
гар­мониками (от греческого harmonikos — соразмерный). График
функции получается из синусоиды y = sin x
сжатием или растяжением ее вдоль координатных осей и
сдви­гом вдоль оси Ох. Обычно гармоническое колебание является
функцией времени: где А — амплитуда
коле­бания, — частота, — начальная фаза, — период колебания.

Углы и их измерение

Геометрический угол — это часть плоскости, ограниченная двумя лучами, выходящими из одной точки, вершины угла. Чтобы сравнивать углы, удобно закрепить их вершины в одной точке и вращать стороны.

Как измеряют углы? В качестве единицы измерения геометрических углов принят градус часть развернутого угла.

Конкретные углы удобно измерять в градусах с помощью транспортира. Многие оптические приборы также используют градусную меру угла. Углы, получающиеся при непрерывном вращении, удобно измерять не в градусах, а с помощью таких чисел, которые отражали бы сам процесс построения угла, т. е. вращение. На практике углы поворота зависят от времени, и поэтому удобно связать измерение углов со временем.

Представим себе, что зафиксирована не только вершина угла, но и один из образующих его лучей. Заставим второй луч вращаться вокруг вершины. Ясно, что получающиеся углы будут зависеть от скорости вращения и времени. Можно считать, что вращение происходит равномерно (с постоянной угловой скоростью). Тогда поворот будет определяться путем, который пройдет какая-либо фиксированная точка подвижного луча.

Если расстояние точки от вершины равно /?, то при вращении точка движется по окружности радиуса R. Отношение пройденного пути к радиусу R не зависит от радиуса и может быть взято за меру угла. Численно она равна пути, пройденному точкой по окружности единичного радиуса.

Итак, пусть угол получен вращением подвижного луча от некоторого начального положения. Его величина численно равна пути, который пройдет точка этого луча, находящаяся на единичном расстоянии от вершины.

Развернутый угол измеряется половиной длины единичной окружности. Это число обозначается буквой л. Число я было известно людям с глубокой древности и с довольно большой точностью. Первые десятичные знаки этого числа таковы:

π = 3,14159265358….

Угол величиной π часто используется как самостоятельная единица измерения углов — прямой угол равен угол в равностороннем треугольнике равен .

Часто встречаются записи меры углов в виде и т. д. Угол, мера которого равна числу 1, называют радианом. Он соответствует некоторому углу, чуть меньшему, чем , ведь ≈ 1,047.

АННА ВОВК u715078663 ДЕЛАЕТ АЛГЕБРУ №2 (дополнительная)

Гаусс Карл Фридрих

(1777—1855) — немецкий математик, астроном и физик. Еще студентом написал «Арифметические исследования», определившие развитие теории чисел до нашего времени. В 19 лет определил, какие правильные многоугольники можно построить циркулем и линейкой. Занимался геодезией и вычислительной астрономией. Создал теорию кривых поверхностей. Один из создателей неевклидовой геометрии.

Так как на практике приходится иметь дело как с градусной, так и с радианной мерой, то на микрокалькуляторе обычно есть рычажок, регулирующий способ измерения используемого в вычислениях угла. Фактически микрокалькулятор умеет переводить градусы в радианы и обратно.

Выведем формулы для этого перевода. Достаточно сравнить меры одного и того же угла, например прямого:

Откуда

Обратно можно выразить единицу (т. е. один радиан) в градусной мере:

В географии, астрономии и других прикладных науках используют доли градуса — минуту и секунду. Минута — это градуса, а секунда — минуты. Запишем соотношения между различными единицами измерения углов:

Заметим еще, что обозначение градуса (минуты, секунды) нельзя пропускать в записи, а обозначение радиана опускают. С физической точки зрения угол — безразмерная величина, поэтому имеют смысл записи: а = 0,23, а = 3,14, а=0,01. Во всех этих записях подразумевается, что угол а измерен в радианах. Подведем некоторые итоги. Угол мы можем получить вращением подвижного луча. Радианная мера угла численно равна пути, который проходит точка этого луча, отстоящая от вершины на расстояние 1.

Движение точки по окружности во многом аналогично движению точки по прямой. Чтобы определить положение точки на прямой, недостаточно знать путь, пройденный ею от начальной точки, нужно указать еще направление движения. Обычно на прямой фиксируют положительное направление, а положение точки определяют одним числом, которое может быть не только положительным (как путь), но и отрицательным.

Аналогично поступают и с вращательным движением. В качестве положительного направления движения по окружности выбирается движение против часовой стрелки. Угол задают числом t (которое может принимать произвольное значение). Чтобы построить угол t, на единичной окружности от неподвижной точки откладывают путь, равный|t|, в направлении, определяемом знаком числа t. Таким образом, для произвольного числа t мы построили угол t, определяемый двумя лучами — неподвижным и тем, который проходит через построенную точку (рис. 84).

При таком обобщении понятия угла постепенно отходят от его геометрического образа как части плоскости, лежащей между двумя лучами. Фактически слово «угол» становится для нас синонимом слова «число». Угол t (т. е. произвольное число t) может выступать у нас в качестве аргумента тригонометрических функций. Изображать угол t нам будет удобно не в виде пары лучей, а в виде точки единичной окружности. Для этого мы подробно рассмотрим вращательное движение.

Вращательное движение и его свойства

Представим себе маленький шарик, который равномерно вращается по единичной окружности в положительном направлении (т. е. против часовой стрелки). Будем считать, что в момент времени t = О шарик находился в положении А и что за время t = 1 он проходит по окружности расстояние, равное 1. Половину окружности шарик проходит за время, равное π, а всю окружность — за время 2 π.

Обозначим через Pt точку на окружности, в которой шарик находится в момент времени t. Для того чтобы найти на окружности точку Рt надо отложить от точки Р0—А по окружности дугу длиной |t| в положительном направлении, если t>0, и в отрицательном направлении (т. е. по часовой стрелке), если t

2. Пусть . Отложим от точки Р0 путь длиной

Заметим, что Пройдя путь длиной 2 π, мы опять попадаем в точку А. Пройдя оставшийся путь, мы попадаем в середину дуги АВ. Таким образом, точка совпадает с точкой .

3. Найдем теперь точку Для этого нам необходимо пройти в отрицательном направлении путь длиной

Таким образом, мы для каждого значения t можем построить точку Рt. На языке механики аргумент t — это время, на языке геометрии t — это угол.

Оси координат делят плоскость на четыре части. В зависимости от того, в какую часть плоскости попадает точка Рt, говорят о том, в какую четверть попадает угол t. При этом полезно помнить, что 1 радиан чуть меньше 60°, т. е. трети развернутого угла. Перечислим некоторые свойства вращательного движения.

Свойство 1. Для всякого целого числа k точка Рt совпадает с точкой Это свойство выражает периодичность вращательного движения: если моменты времени отличаются на число, кратное 2 π, то шарик в эти моменты времени занимает одно и то же положение.

Свойство 2. Если , то найдется такое целое число k, что

Свойство 3. Для всякого значения t точки Рt и Рt+π диаметрально противоположны.

Свойство 4. Для всякого значения t точки Рt и Р_t симметричны друг другу относительно оси абсцисс.

Свойство 5. Для всякого значения t точки Рt и Р_t+π симметричны относительно оси ординат.

Свойство 6. Для всякого значения t точки Рt и симметричны друг другу относительно биссектрисы первого и третьего координатных углов.

Эти свойства легко объяснить с помощью рисунка 86. Сделаем лишь пояснение к свойству 6. Возьмем две точки Р0 и

Они симметричны друг другу относительно биссектрисы первого и третьего координатных углов. Чтобы построить точку Рt, надо от точки Р0 двигаться в одном каком-то направлении на расстояние |t|, а чтобы построить точку , надо на такое же

расстояние двигаться от точки , но в противоположном направлении. Ясно, что при этом точки Рt и при всяком t будут

оставаться симметричными друг другу относительно указанной прямой.

Определение тригонометрических функций

Тригонометрические функции определяются с помощью координат вращающейся точки. Рассмотрим на координатной плоскости ху единичную окружность, т. е. окружность единичного радиуса с центром в начале координат. Обозначим через Ро точку единичной окружности с координатами (1; 0) (рис. 87). Точку Ро будем называть начальной точкой. Возьмем произвольное число t. Повернем начальную точку на угол t. Получим точку на единичной окружности, которую обозначим через Рt.

Определение. Синусом числа t называется ордината точки Pt, косинусом числа t называется абсцисса точки Pt, где Р, получается поворотом начальной точки единичной окружности на угол t.

Если обозначить координаты точки Р, через х и у, то мы получим x = cost y = sint или можно записать, что точка Рt имеет координаты (cos t; sin t).

Так как координаты точки Р, (х; у), лежащей на единичной окружности, связаны соотношением х2 + у2 = 1, то sin t и cos t связаны соотношением

которое называют основным тригонометрическим тождеством.

Определение. Тангенсом числа t называется отношение синуса числа t к его косинусу, т. е. по определению

Котангенсом числа t называется отношение косинуса числа t к его синусу, т. е. по определению

Тангенс числа t определен для тех значений t, для которых cos t ≠ 0. Котангенс числа t определен для тех значений t, для которых sin t ≠ 0.

Периодичность

Тригонометрические функции являются периодическими функциями.

Число 2π является периодом синуса и косинуса.

Доказательство. Необходимо доказать тождества

Значения тригонометрических функций определяются с помощью координат вращающейся точки. Так как точки Pt и Рt+2π совпадают, то совпадают и их координаты, т. е. cos t = cos (t + 2π) и sin t = sin (t + 2π), что и требовалось доказать.

Действительно, Аналогично доказывается и второе тождество. Это означает, что 2π является одним из периодов тангенса и котангенса.

Равенство sin (t + 2π) = sin t верно при всех значениях t. Подставляем в это равенство вместо t число t+2π, получаем цепочку равенств sin(t+ 2 π +2 π ) = sin (t + 2 π ) = sin t, т. е. равенство sin (t + 4 π ) = sin t также верно при всех значениях t. Аналогично, подставляя вместо t число t— 2 π , получим тождество sin (t —2 π ) = sin t. Можно сказать так, что раз 2 π является периодом синуса, то и 2-2 π , —2 π также являются его периодами. Получаем, что всякое число вида 2πk

Число 2π выделяется тем, что это наименьший положительный период синуса. Аналогично 2π — наименьший положительный период косинуса. У тангенса и котангенса наименьшим положительным периодом будет число π. Эти утверждения мы докажем позже.

Знаки тригонометрических функций

Знаки тригонометрических функций определяются в зависимости от того, в какой четверти лежит рассматриваемый угол.
Синус числа t есть ордината точки Рt. Поэтому синус положителен в первой и второй четвертях и отрицателен в третьей и четвертой.
Косинус числа t как абсцисса точки Рt положителен в первой и четвертой четвертях и отрицателен во второй и третьей.

Тангенс и котангенс являются отношением координат. Поэтому они положительны тогда, когда эти координаты имеют одинаковые
знаки (первая и третья четверти), и отрицательны, когда разные (вторая и четвертая четверти). Знаки тригонометрических функций по четвертям приведены на рисунке 88.

Четность

Синус — нечетная функция, т. е. при всех t выполнено равенство sin (— t) = — sin t.

Косинус — четная функция, т. е. при всех t выполнено равенство cos ( — t) =cos t.

Действительно, мы знаем, что для всякого значения t точки Р, и Р_( симметричны друг другу относительно оси абсциссы (т. е. cos t = cos ( — t)), а ординаты противоположны (т. е. sin t=— sin ( — t)), что и требовалось доказать.

Следствие. Тангенс и котангенс — нечетные функции.

Действительно, . Аналогично доказывается нечетность котангенса.

Формулы приведения

Значения тригонометрических функций острых углов можно вычислить по таблицам или с помощью прямоугольного треугольника. Их вычисление для любого значения аргумента можно привести к вычислению значений для аргумента

Соответствующие формулы так и называются — формулы приведения. Они основаны на симметрии вращательного движения.

Формула (1) —это запись в координатной форме свойства 3 вращательного движения, формула (2) — это запись свойства 5, а формула (3) — запись свойства 6.

С помощью периодичности и формул (1) — (3) можно привести вычисление синуса и косинуса любого числа t к их вычислению для t, лежащего между 0 и .

Из основных формул (1) — (3) можно вывести и другие формулы приведения:

Аналогично выводятся формулы

Формулы приведения для тангенса и котангенса получаются как следствие аналогичных формул для синуса и косинуса. Например:

Мнемоническое правило для запоминания формул приведения следующее:

1) Название функции не меняется, если к аргументу левой части добавляется — π или + π, и меняется, если добавляется число ± или

2) Знак правой части определяется знаком левой, считая, что

1.Вычислить sin . Представим так:


Значения тригонометрических функций

Вычисление значений тригонометрических функций имеет длинную историю. Потребности точных астрономических наблюдений вызвали к жизни появление огромных таблиц, позволявших производить вычисления с четырьмя, пятью и даже семью и более знаками. На составление этих таблиц было затрачено много усилий. Сейчас, нажав кнопку микрокалькулятора, мы можем моментально получить требуемое значение с очень высокой точностью. С помощью большой вычислительной машины нетрудно найти, если нужно, значения тригонометрических функций с любой степенью точности.

Некоторые соображения о значениях тригонометрических функций надо помнить всегда, так как они облегчают вычисления.

1) С помощью формул приведения вычисление значения тригонометрической функции любого числа можно свести к вычислению функции угла, лежащего в первой четверти.

2) Достаточно знать значение лишь одной из тригонометрических функций. С помощью основных тождеств и зная четверть, в которой лежит значение аргумента, легко найти значения остальных функций.

Примеры:

3) Полезно помнить значения тригонометрических функций для углов двух «знаменитых» прямоугольных треугольников —для равнобедренного и для треугольника с углами 30° () и 60° (). Эти значения обычно записывают с помощью радикалов и при необходимости эти радикалы заменяют их приближенными значениями

Сведем их в таблицу, дополнив ее значениями t = 0 и t=.

Решение простейших тригонометрических уравнений

Для решения некоторых,особенно простых, но важных уравнений достаточно вспомнить определение тригонометрической функции.

  1. sin t = 0. Вращающаяся точка Рt имеет нулевую ординату в моменты времени t—0, π, 2 π, …, а также t— π, —2 π…..В общем виде множество этих значений можно записать в виде t=πk, k ∈ Z. Таким образом, решением уравнения sin t = 0 будут числа t = πk, k ∈ Z.

Запишем кратко решения еще нескольких уравнений, правильность которых предлагается проверить самостоятельно.

Все рассмотренные уравнения имеют бесчисленное множество решений. Эти решения записываются в виде бесконечных серий с помощью переменной (в наших примерах к), которая может принимать любые целые значения.

Теперь легко доказать, что 2π является наименьшим положительным периодом синуса и косинуса. Действительно, формула 3 показывает, что значение 1 синус принимает только в точках

Расстояние между соседними точками этой последовательности равно 2 π, поэтому синус не может иметь положительный период, меньший 2 π. Рассуждения для косинуса аналогичны.

Исследование тригонометрических функций

Основные свойства синуса и косинуса

При введении тригонометрических функций мы обозначали аргумент буквой t, так как буквы х и у были заняты — они обозначали координаты вращающейся точки Рt. Сейчас при исследовании мы вернемся к обычным обозначениям: х — аргумент, у — функция.

Рассмотрим функции y = sinx и y = cosx.

1) Область определения. Синус и косинус числа х задаются как координаты точки Рх, получающейся из точки Ро (1; 0) поворотом на угол х. Так как поворот возможен на любой угол, то областью определения синуса и косинуса является множество R всех вещественных чисел.

2) Промежутки монотонности. Проследим за характером изменения координат точки Рх, движущейся по окружности. При х = 0 точка занимает положение Ро (1; 0). Пока она движется по окружности, оставаясь в первой четверти, ее абсцисса уменьшается, а ордината увеличивается. При x= точка займет положение Р (0; 1). Итак, в первой четверти синус (ордината) возрастает от 0 до 1, а косинус (абсцисса) убывает от 1 до 0.

Когда точка переходит во вторую четверть, ордината начинает убывать от 1 до 0. Абсцисса становится отрицательной и растет по абсолютной величине, значит, косинус продолжает убывать от 0 до — 1. В третьей четверти синус становится отрицательным и убывает от 0 до —1, а косинус начинает возрастать от — 1 до 0.

Наконец, в четвертой четверти синус возрастает от — 1 до 0 и косинус возрастает от 0 до 1. Монотонность синуса и косинуса по четвертям показана на схеме VIII.

3) Точки экстремума. Координаты вращающейся точки меняются между —1 и +1. Эти числа являются наименьшими и наибольшими значениями синуса и косинуса. Если требуется указать абсциссы точек экстремума, то надо решить уравнения sin х = ±1 и cos х= ± 1.

4) Промежутки постоянного знака и корни функции. Мы повторим их еще раз при построении графика.

5) Множество значений. Синус и косинус принимают любые значения от —1 до +1, так как являются координатами точки, движущейся по единичной окружности.

Графики синуса и косинуса

Для приближенного построения синусоиды можно поступить так. Разделим первую четверть на 8 равных частей и на столько же частей разделим отрезок [0; ]оси абсцисс. Удобно при этом начертить окружность слева, как на рисунке 89. Перенесем значения синуса (проекции на ось у точек деления окружности) к соответствующим точкам оси х. Получим точки, лежащие на синусоиде, которые нужно плавно соединить и продолжить кривую дальше, пользуясь симметрией.

Так мы получим график синуса на промежутке [0;]. Так

как sin (—х = sin +x). то график синуса должен быть

симметричен относительно прямой x=. Это позволяет построить

график синуса на отрезке [-; π]. Воспользовавшись нечетностью

синуса, получим график синуса на отрезке [ — π; 0] симметричным отражением построенной части синусоиды относительно начала координат. Так как отрезок [— π; π] имеет длину, равную периоду синуса, то график синуса на всей числовой оси можно получить параллельными переносами построенной кривой.

График синуса мы построили, воспользовавшись его свойствами. При этом к определению синуса мы обращались только при построении графика на отрезке [0; ].

Построение графика на всей оси потребовало знания симметрии вращательного движения (формулы приведения, нечетность, периодичность). После того как график построен, полезно вернуться к свойствам синуса и посмотреть, как они проявляются на графике.

Функция y = sin х имеет период 2 π. На графике это свойство отражается следующим образом: если мы разобъем ось х на отрезки длиной 2 π, например, точками… —4 π, —2 π, 0, 2 π, 4 π, …, то весь график разобьется на «одинаковые» части, получающиеся друг из друга параллельным переносом вдоль-оси х. При этом видно, что 2 π — наименьший положительный период синуса.

Функция y = sin x: нечетна. На графике это свойство проявляется так: синусоида симметрична относительно начала координат.

Функция y = sin x обращается в нуль при х = πk, k ∈ Z. На графике это точки пересечения синусоиды с осью абсцисс.

Функция y = sin x положительна при и отрицательна при или третьей-четвертой четвертям (sin х

Указанные отрезки соответствуют четвертой-первой и второй-третьей четвертям.

Множеством значений функции y = sinx является отрезок [— 1; 1]. Действительно, проекции вращающейся точки на ось заполняют отрезок [—1; 1]. На графике это свойство проявляется так: синусоида расположена в полосе и при этом проекции точек графика на ось у целиком заполняют отрезок [— 1; 1].

График косинуса можно построить так же, как и график синуса. Возможен и другой путь. Формулы приведения показывают, что синус и косинус связаны между собой простыми соотношения-
ми. Воспользуемся, например, формулой cosx = sin (x+)
Эта формула показывает, что график косинуса получается сдвигом синусоиды на влево по оси х (схема VIII).

Если изображать графики синуса и-косинуса в системе координат с одинаковым масштабом по осям, то синусоида получается очень растянутой. Однако на практике величины х и у, связанные с помощью тригонометрических функций, имеют различные единицы измерения и необязательно изображать их в одном масштабе.

Если аргумент умножить на некоторое число, то синусоида будет, как гармоника, сжиматься и растягиваться по оси х. Примеры такого преобразования приведены на рисунке 90.

Если значение синуса умножить на число, то будет происходить растяжение (сжатие) по оси у.

Графики функций вида у = А sin ( ω х + а) при различных А, ω, а являются синусоидами. Эти функции описывают так называемые гармонические колебания — движение проекции вращающегося шарика на ось или колебания конца упругой пружины.

Постоянные величины А, ω, а, задающие колебания, имеют наглядный физический смысл: А — амплитуда колебания, ω — его частота, а — начальная фаза.

Исследование тангенса и котангенса

Если свойства синуса и косинуса мы получили, рассматривая свойства движения точки по окружности, то для исследования тангенса и котангенса нам нет необходимости возвращаться к механической модели.

По определению тангенс числа х задается как отношение sin х и cos х. Изучим свойства тангенса.

1.Областью определения функции является

множество всех вещественных чисел, за исключением тех, в которых косинус обращается в нуль. Мы запишем это множество следующим образом:

2. Тангенс — периодическая функция с периодом π:

3. Тангенс — нечетная функция, т. е. tg ( — х)= — tg х.

4. Функция y = tg x обращается в нуль одновременно с синусом, т. е. при x=πk, k ∈ Z.

5. Функция у= tg x: положительна в первой и третьей четвертях и отрицательна во второй и четвертой.

Выберем для дальнейшего изучения тангенса какой-либо промежуток числовой оси длиной, равной периоду, т. е. числу π. Можно было бы выбрать отрезок от 0 до π, но это неудобно, так как внутри этого отрезка есть точка x= в которой тангенс не определен. Лучше выбрать промежуток ( —; ).

6. Тангенс возрастает в первой четверти. Действительно, пусть

Тогда (возрастание синуса) и (убывание косинуса). Так как значения косинуса положительны, то по свойству неравенств имеем

Умножим это неравенство на неравенство с положительными членами: sin х1

На промежутке (—; 0 ] тангенс отрицателен и возрастает. На тангенс становится положительным и возрастает.

В итоге тангенс возрастает на промежутке (-; ).

7. Какие же значения принимает тангенс? Когда х возрастает от 0 до тангенс возрастает. При этом когда х приближается к синус х близок к единице, а косинус близок к нулю. Поэтому отношение становится сколь угодно большим. То, что любое вещественное число может быть значением тангенса, видно из рисунка 91. Построим ось, параллельную оси ординат с началом в точке Ро. Возьмем на этой оси точку, соответствующую произвольно выбранному числу а. Соединим 0 с а. Получим точку Р на окружности. Пусть х — число, принадлежащее и такое, что (cos х; sin х) — координаты Р. Тогда

Мы показали, что областью значений тангенса является вся числовая ось R.

Вообще на этой оси, которую часто называют осью тангенсов, можно проследить все свойства тангенса.

8. Построим график тангенса. На промежутке график
тангенса можно построить по точкам, учтя, что тангенс строго возрастает, в нуле обращаясь в нуль, а при приближении к становится сколь угодно большим (рис. 92).

Отразив построенную часть графика относительно начала координат (тангенс — нечетная функция), получим график тангенса на промежутке . Для построения полного графика
разобьем числовую ось на отрезки, перенося вправо
и влево на π, 2 π, З π и т. д.

График тангенса распадается на отдельные, не связанные между собой части. Это вызвано тем, что в точках тангенс не определен.

Замечание (о монотонности тангенса).
Мы доказали, что функция тангенс возрастает на .

Можно ли сказать, что тангенс возрастает на всей области определения? Нет. Достаточно посмотреть на график. Если взять

Нарушение монотонности связано с тем, что между точками х1 и х2 лежала точка х = в которой тангенс не определен.

Однако можно сказать, что тангенс возрастает на каждом промежутке, который целиком попадает в его область определения.

Свойства котангенса получаются так же, как и свойства тангенса. Перечислим кратко эти свойства, оставляя их доказательство для самостоятельной работы.

1.Функция определена при

2. Функция у = ctg х периодична. Ее периодом является число π:

3. Функция у = ctg x нечетна: ctg ( — х)= — ctg х.

4. Функция у = ctg х обращается в нуль одновременно с косинусом, т. е. при х = + лk, k ∈ Z.

5. Функция у = ctgx: положительна в первой и третьей четвертях и отрицательна во второй и четвертой.

6. Функция y=ctgx убывает на промежутке (0; π). Перенося его на kπ, получаем, что котангенс убывает на каждом промежутке ( πk; π + πk).

7. Область значений котангенса — множество R всех вещественных чисел.

8. График котангенса изображен на рисунке 93.

Производные тригонометрических функций

Пусть точка А движется с единичной скоростью . по окружности радиуса 1 с центром в начале координат О в положительном направлении. Координаты точки А в момент времени t равны cos t и sin t. Вектор мгновенной скорости точки А в момент времени t направлен по касательной к окружности в точке А (рис. 94), и в силу теоремы о перпендикулярности касательной к радиусу, проведенному в точку касания, вектор перпендикулярен вектору .

Вычислим координаты вектора . Отложив от точки О вектор , мы получим вектор , координаты которого равны координатам вектора . Далее, так как движение точки А по окружности происходит с единичной скоростью, то длина вектора и равна 1, поэтому длина вектора также равна 1. Следовательно, точка В лежит на окружности.

Вектор перпендикулярен вектору, поэтому если A = Pt,

то . Таким образом, координаты вектора = равны

С другой стороны, координаты скорости являются производными от координат точки А, следовательно,

Найдем производную функции y = A sin ( ωt + а):

Вычислим теперь производную функции y = tgx. Так как то по теореме о производной частного получаем:

Примеры:

Приближенные формулы

Главная приближенная формула: вблизи нуля sin tt.

Доказательство. Дифференциал функции y = sin х равен dy = cos х dx. Найдем dy при х = 0. Так как cos 0=1, то при х = 0 dy = dx. Найдем приращение функции:

∆y = sin ∆х — sin 0 = sin ∆х.

Так как ∆y ≈ dy, то получим ∆y = sin ∆х ≈ dy=dx = ∆х. Вместо ∆х можно написать t и получить sin t ≈ t.

Эта формула дает тем точнее значение синуса, чем ближе t к нулю. Возможность заменять sin t на t при маленьких значениях угла t широко употребляется в приближенных вычислениях. Можно дать различные интерпретации этой приближенной формулы.

1. — это запись того, что отношение приращения

функции к его главной части стремится к единице при стремлении к нулю приращения аргумента.

2. Рассмотрим единичный круг. Пусть для простоты t>0. Тогда длина дуги АВ равна t, а длина отрезка ВС равна sin t. Удвоим дугу АВ и отрезок ВС — дуга BD имеет длину 2t, а хорда BD — длину 2 sin t. Соотношение sin t ≈ t означает, что отношение длины хорды к длине стягиваемой ею дуги стремится к единице, когда дуга стягивается в точку (рис. 95).

3. Рассмотрим касательную к синусоиде в начале координат. Так как (sin x)’=cos х, a cos 0= 1, то уравнение этой касательной у — х. Таким образом, заменяя вблизи начала координат график синуса отрезком касательной, мы вычисляем приближенное значение синуса по формуле sin tt.

Для получения других приближенных формул выпишем дифференциалы тангенса и косинуса:

При x = 0 получим приближенное значение тангенса:

Применяя этот же прием к косинусу, мы получим, что дифференциал косинуса при x=0 равен —sin0 • dx т. е. равен 0. Это означает, что главная часть приращения косинуса равна нулю и в первом приближении cos x ≈ cos 0 = 1. Можно получить более точную формулу таким путем. Запишем cos х так:

Заменим в этой формуле sin х на х и воспользуемся приближенной формулой для квадратного корня:

Полученная приближенная формула для косинуса вблизи точки x = 0 весьма точна.

Более точные приближения можно получить с помощью формул

Примеры:

  1. Вычислить приближенно sin 0,03 • tg 0,12. sin 0,03 ≈ 0,03, tg 0,12 ≈ 0,12, sin 0,03 • tg 0,12 ≈ 0,0036 ≈ 0,004.
  2. Вычислить приближенно sin 2°. Переводим 2° в радианную меру: 2° ≈ 0,034. sin 2° ≈ 0,034.

Тождественные преобразования

Формулы сложения

Тригонометрические функции связаны между собой многочисленными соотношениями. Первая серия тождеств описывает связь между координатами точки окружности — это так называемые основные соотношения. Эти соотношения позволяют выразить значения одних функций через другие (при одном и том же значении аргумента). Вторая серия тождеств происходит от симметрии и периодичности в движении точки по окружности. Отсюда мы получаем формулы приведения. Третий источник тригонометрических формул — это изучение поворотов. Поворот точки на угол а + β можно составить из композиции двух поворотов — на угол а и на угол β. Есть простые формулы, связывающие координаты точек Эти формулы называются формулами сложения.

Нашей целью является вывод формул, связывающих sin (а ± β), cos (а ± β), tg (а ± β), ctg (а ± β) с тригонометрическими функциями углов а и β. Достаточно вывести формулу косинуса разности, остальные формулы получатся как ее следствия.

Теорема. Косинус разности двух углов равен произведению косинусов этих углов, сложенному с произведением синусов:

cos (а — β) =cos а cos β + sin а sin β.

Доказательство. Построим углы а и β помощью единичной окружности, т. е. точки Ра и Рβ , такие, что векторы образуют углы а и β с положительным направлением оси абсцисс. Угол между векторами равен а — β (рис. 96).

Вычислим скалярное произведение этих векторов. По определению скалярного произведения

(так как векторы имеют длину, равную 1).

Теперь вычислим это же скалярное произведение с помощью координат:

Сравнивая результаты вычислений, получаем требуемую формулу:

Доказательство теоремы закончено. Выведем остальные формулы.

Косинус суммы. Сумму а + β представим как разность а — ( — β) и подставим в формулу для косинуса разности:

Воспользуемся тем, что cos( —p) = cos p (четность косинуса), a sin( —p)=—sin p (нечетность синуса). Получим:

Синус суммы. Воспользуемся одной из формул приведения:

Теперь по формуле косинуса разности получим:

В качестве примера вычислим sin 15°. Представим 15° как разность 45° —30°. Получим sin 15° = sin (45° — 30°) = sin 45° cos 30°

Тангенс суммы и разности. По определению tg(a + β) формулам синуса и косинуса суммы имеем:

Разделив числитель и знаменатель этой дроби на cos a cos β, получим:

Заменяя β на ( — β) и пользуясь нечетностью тангенса, получаем:

Формулы удвоения

Формулы сложения являются одними из основных формул, связывающих тригонометрические функции. Из них можно вывести различные следствия. Полагая а = р, получим так называемые формулы удвоения.

Заметим, что в формуле для cos 2a можно заменить на 1 — или на 1 — . Получим две новые формулы:

Тригонометрические функции половинного угла

Из формул двойных углов можно получить формулы для синуса и косинуса половинного угла. Сначала запишем:

Затем в этих формулах подставив вместо а, получим:

Извлекая корень, получим:

(Для того чтобы раскрыть модули, надо знать, в какой четверти лежит угол ).

Обилие тригонометрических формул связано с тем, что между основными тригонометрическими функциями — синусом, косинусом, тангенсом и котангенсом — есть соотношения, которые позволяют по-разному написать одно и то же выражение. Возникает вопрос: нельзя ли выбрать одну какую-то функцию и через нее выражать все остальные? Если в качестве такой функции мы выберем синус, то во многих формулах появятся квадратные корни. Так, например, выражая sin 2а через sin а, мы получим sin 2а = 2 sin а cos а = 2 sin а . Такие формулы неудобны.

Оказывается, что все тригонометрические функции от аргумента х (и от nх при целом n) выражаются через тангенс угла рационально, без квадратных корней. Выведем эти полезные формулы.

Напишем формулы двойного угла для исходного угла

Представим число 1 в виде и поделим на 1 правые части последних формул

Поделим теперь числитель и знаменатель каждой дроби на

Пользуясь этими формулами, можно функцию вида у = а sin x + b cos x + c представить в виде рациональной функции от tg .

Пример. Выразить у = 2 sin х + З cos х — 1 в виде функции от tg .

Преобразование суммы тригонометрических функций в произведение и обратные преобразования

Пусть требуется преобразовать сумму sin a + sin β в произведение. Используем следующий искусственный прием: напишем тождества

заменим а и β выражениями, стоящими справа, в формулах для синуса суммы и разности:

Аналогично выводятся еще три формулы:

Выпишем подряд четыре формулы сложения:

Вычитая почленно из четвертого равенства третье, получим:

Складывая третье и четвертое равенства, получим:

Складывая два первых равенства, получим:

Мы рассмотрели различные тождества, связывающие тригонометрические функции. Все их запомнить трудно, и приходится обращаться к таблицам и справочникам. Важнее запомнить не сами формулы, а то, какие функции между собой они связывают, что с их помощью можно получить.

Тригонометрические уравнения

Простейшим тригонометрическим уравнением называется уравнение вида sinx=a, где cos x=a, tgx=a, где a — некоторое действительное число.

Арксинус

Рассмотрим уравнение sin x = a. Так как областью значений синуса является отрезок [—1; 1], то это уравнение не имеет решений при |a| > 1. Пусть теперь |а|

По рисунку ясно, что прямая у = а пересечет синусоиду бесконечно много раз. Это означает, что при |a| ≤ 1 уравнение sin x = a имеет бесконечно много корней. Так как синус имеет период 2π, то достаточно найти все решения в пределах одного периода. По графику видно, что при |a|

Эти две серии решений иногда записываются одной формулой:

Пример. Решить уравнение

Одно решение этого уравнения Все остальные решения получаются по формулам

Как мы уже выяснили, уравнение sinx=a при |а| ≤ 1 имеет бесконечно много решений. Для одного из них имеется специальное название — арксинус.

Определение. Пусть число а по модулю не превосходит единицы. Арксинусом числа а называется угол х, лежащий в пределах от , синус которого равен а.

Обозначение: х = arcsin а.

Итак, равенство x = arcsin a равносильно двум условиям: sin z = a и

Обратим еще раз внимание на то, что arcsin а существует лишь, если |а|≤ 1.

Примеры:

Теперь решения уравнения sin х = а (при |а| ≤ 1) можно записать так: х = arcsin а+2πk, х= π — arcsin а+2πk, или в виде одной формулы:

Запишем некоторые тождества для арксинуса.

  1. sin arcsin а = а.

Это тождество вытекает из определения арксинуса (arcsin а — это такой угол х, что sin х=а).

Действительно, обозначим sin х через а. Тогда наше тождество будет равносильно определению арксинуса: arcsin а = х, если и sinx = a. Заметим, что выражение arcsin (sin х) имеет смысл при любом х, однако при оно не равно х.

Действительно, синусы от правой и левой частей равны: sin (arcsin ( —а)) = —а и sin ( — arcsin а)= —sin (arcsin а)= —а. В то же время правая часть доказываемого равенства — это угол, принадлежащий отрезку . Поэтому левая и правая части равны между собой.

Арккосинус

Так же как и в предыдущем пункте, при |а|>1 уравнение cosx = a решений не имеет; если |а| ≤ 1 то решений уравнения бесконечно много.

Если a — какое-либо решение уравнения cos х=а, то —а также есть решение этого уравнения, так как cos a = cos ( — a). По графику или на единичном круге видно, что при |а|

Эти серии обычно записывают в виде одной формулы:

Пример. Решить уравнение

Одно решение находится легко: .

Запишем все решения так:

Так же как и для синуса, выделяется одно определенное решение уравнения cos х = а и ему дается специальное название — арккосинус.

Определение. Пусть а — число, по модулю не превосходящее единицы. Арккосинусом числа а называется угол х, лежащий в пределах от 0 до π, косинус которого равен а.

Обозначение: х= arccos а.

Равенство x = arccos a равносильно двум условиям: cos x = a и 0 ≤ х ≤ π. Арккосинус числа а существует лишь при |а| ≤ 1 .

Пример:

Решение уравнения cos х=а (при |а| ≤ 1) можно записать теперь в общем виде:

По каким причинам для значений арксинуса был выбран отрезок , а для арккосинуса отрезок [0; π]?

Это объясняется тем, что на этих отрезках, во-первых, синус и косинус принимают все возможные значения от — 1 до 1 и, во-вторых, каждое значение принимается ровно один раз. Отрезков с этими условиями бесконечно много, но при этом выбраны отрезки «поближе к нулю».

Для арккосинуса можно вывести ряд тождеств.

  1. cos (arccos а) = а.

Это тождество следует из определения арккосинуса.

Обозначим cos x = а. Получим определение арккосинуса: arccos а = х, если x ∈ [0; π ] и cos х = а.

Сначала вычислим косинус от левой и правой частей:

Если равны косинусы двух чисел, то это еще не означает, что равны сами числа. Проверим, что правая часть принадлежит отрезку [0; π]. (Так как левая часть тоже принадлежит этому отрезку, то из равенства косинусов двух чисел теперь уже будет следовать равенство самих чисел.) Итак, надо доказать, что π —arccos а принадлежит [0; π]. Действительно, arccos а ∈ [0; π — arccos а ∈ [ — π ; 0], π— arccos а ∈ [0; π], что и требовалось доказать.

Арктангенс

Область значений тангенса (котангенса) — вся числовая ось. Поэтому уравнения tgx = a, ctg х — а имеют решения при любом а. В пределах одного периода π тангенс и котангенс принимают каждое значение ровно один раз. Поэтому если известно одно решение уравнения tg х—а или ctg х=а, то все остальные получают прибавлением периода:

где a — какое-либо решение соответствующего уравнения. Примеры. Решить уравнения:

Определения арктангенса и арккотангенса вводятся аналогично определениям арксинуса и арккосинуса, поэтому мы проведем его короче.

Определение. Арктангенсом числа а называется угол тангенс которого равен а. Арккотангенсом числа а называется угол x ∈ (0; π), котангенс которого равен а.

Обозначения: х = arctg а и x = arcctg а. Примеры.

2. Решить уравнения:

Решение тригонометрических уравнений

Тригонометрические уравнения встречаются в задачах, в которых из соотношений между тригонометрическими функциями требуется найти неизвестные углы. Основными, чаще всего встречающимися тригонометрическими уравнениями являются уравнения простейшего типа sin х — а, cos х = а, tg х = а и ctg х = а, которые уже рассмотрены в предыдущих пунктах. Следует отметить, что такие уравнения обычно имеют бесконечные серии решений, задаваемые с помощью параметра, принимающего целые значения.

Более сложные тригонометрические уравнения обычно решаются сведением их к простейшим с помощью различных алгебраических и тригонометрических формул и преобразований. Рассмотрим некоторые приемы решения тригонометрических уравнений.

а) Уравнения, алгебраические относительно одной из тригонометрических функций.

Примеры решения уравнений.

Это уравнение является квадратным относительно sin х. Корни этого квадратного уравнения и sin x= — 2. Второе из полученных простейших уравнений не имеет решений, так как |sinx| ≤ 1, решение первого можно записать так:

Если в уравнении встречаются разные тригонометрические функции, то надо пытаться заменить их все через какую-нибудь одну, используя тригонометрические тождества.

Так как квадрат синуса легко выражается через косинус, то, заменяя sin2 х на 1 —cos2 х и приводя уравнение к квадратному относительно cos х, получим 2 (1 —cos2 х) — 5 cos х — 5 = 0, т. е. квадратное уравнение 2 cos2 x + 5 cos x + 3 = 0, корни которого

Уравнение решений не имеет. Решения уравнения cos x= — 1 запишем в виде

Заменив ctg x на и приведя к общему знаменателю, получим квадратное уравнение , корни которого tg x=l, tg х = 3, откуда

Если в этом уравнении заменим косинус на синус (по аналогии с предыдущими примерами) или наоборот, то получим уравнение с радикалами. Чтобы избежать этого, используют формулы, выражающие синус и косинус через тангенс половинного угла, т. е.

Делая замену, получаем уравнение относительно

Квадратное уравнение имеет корни откуда

б) Уравнения, решаемые понижением их порядка.

Формулы удвоения позволяют квадраты синуса, косинуса и их произведения заменить линейными функциями от синуса и косинуса двойного угла. Такие замены делать выгодно, так как они понижают порядок уравнения.

Примеры решения уравнений.

  1. Решить уравнение

Можно заменить cos 2х на 2 — 1 и получить квадратное уравнение относительно cos х, но проще заменить на и получить линейное уравнение относительно cos 2х:

2. Решить уравнение

Подставляя вместо их выражение через cos 2x, получим:

в) Уравнения, решаемые после преобразований с помощью тригонометрических формул.

Иногда в уравнениях встречаются тригонометрические функции кратных углов. В таких случаях нужно использовать формулы преобразования суммы в произведение.

Примеры решения уравнений.

Преобразуем произведение синусов в сумму:

Полученное уравнение можно решить разными способами. Можно воспользоваться формулами сложения и преобразовать в произведение. Удобнее воспользоваться условием равенства косинусов двух углов 2х и 6х:

Получим два уравнения:

Проверьте, что решения второй серии содержат в себе все решения первой серии. Учитывая это, ответ можно записать короче:

г) Однородные уравнения.

Решим уравнение

Если считать, что sin х и cos х — члены первой степени, то каждое слагаемое имеет вторую степень. Уравнение, в котором каждое слагаемое имеет одну и ту же степень, называется однородным. Его можно решать делением на старшую степень синуса (или косинуса). Делим наше уравнение на cos2 х. (При этом мы не потеряем корней, так как если мы в данное уравнение подставим cos x = 0, то получим, что и sin x=0, что невозможно.)

Гармонические колебания

Гармонические колебания — это процесс, который может быть описан функцией вида у = A sin (ω + а).

Примеры:

1) Колебания упругой пружины. Конец упругой пружины (точка Р) при ее сжатии или растяжении описывает колебательные движения. Если на прямой, по которой движется точка Р, ввести координату х так, чтобы в положении равновесия xр = 0, оттянуть конец пружины в положительном направлении на расстояние A и в момент времени t = 0 отпустить его, то зависимость координаты точки Р от времени t (рис. 98) будет иметь следуюший вид: , где ω — некоторый коэффициент, характеризующий упругость пружины.

2) Электрический колебательный контур. Рассмотрим электрическую цепь, состоящую из последовательно соединенных конденсатора С и катушки индуктивности L (рис. 99). Если эту цепь замкнуть накоротко и считать, что в ней есть некоторый запас энергии (например, ненулевой заряд в конденсаторе), то по этой цепи пойдет ток, напряжение которого U будет меняться со временем. При идеальном предположении отсутствия потерь в цепи зависимость U от времени t будет иметь следующий вид: U = U0 sin (ωt + a), где ω — некоторая характеристика контура, которая вычисляется через параметры конденсатора и катушки. Константы Uo и а зависят от состояния цепи в начальный момент времени.

Таким образом, гармоническое колебание у=А sin (ωt + a) определяется тремя параметрами: амплитудой A>0, угловой скоростью ω>0 и так называемой начальной фазой а. Часто вместо угловой скорости ω говорят о частоте колебаний v, которая связана с угловой скоростью ω (или иначе круговой частотой) формулой ω = 2πv. Функция у периодична. Ее основной период равен

Колебания приходится складывать. В механике это связано с тем, что на точку может действовать несколько сил, каждая из которых вызывает гармонические колебания. В электро-и радиотехнике сложение колебаний происходит как естественное наложение токов. Оказывается, имеет место замечательный закон: при сложении гармонических колебаний одной и той же частоты получается снова гармоническое колебание той же частоты. На математическом языке это означает, что сумма двух функций

есть функция того же вида:

Достаточно научиться складывать функции вида у = A1 sin ωt и

y = A2 cos ωt. Для их сложения применяется прием введения вспомогательного угла. Итак, рассмотрим выражение у = A1 sin ωt + A2 cos ωt. Оно похоже на формулу синуса суммы: sin (ωt + a) = sin ωt cos a+ cos ωt sin a. Числа A1 и A2 нельзя считать косинусом и синусом, однако если их разделить на число то тогда это будет возможно. Введем угол а с помощью соотношении

Примеры:

Периодические функции

Тригонометрические функции являются периодическими. В общем виде функция y = f(x) называется периодической, если существует такое число Т ≠ О, что равенство f (x+T)=f (х) выполняется тождественно при всех значениях х.

Обычно среди периодов периодической функции можно выделить наименьший положительный период, который часто называют основным периодом. Все другие периоды функции являются целыми кратными основного. График периодической функции состоит из повторяющихся кусков, поэтому достаточно построить его на отрезке изменения аргумента длиной, равной основному периоду. На рисунке 100 изображены графики различных периодических функций.

Приведем пример одной интересной периодической функции. Всякое число х можно представить в виде суммы его целой и дробной частей. Целая часть числа х определяется как наибольшее целое число, не превосходящее х, и обозначается [х]. Например, [3]=3; [3,14]=3; [ — 3,14]=— 4. Дробная часть обозначается и равна по определению x — [x]. Функция у — <х)=х — [х] является периодической с основным периодом, равным единице. Ее график изображен на рисунке 101.

Если функция y — f (х) периодична и ее периодом является число Т, то и функция y=f (kx) будет периодической, причем ее пе-риодом будет число Действительно, рассмотрим функцию y=g(x), где g(x) = f

Сдвиг аргумента не меняет период функции. Отсюда следует, что функция у=А sin (ωt + а), задающая гармоническое колебание, имеет период

Если Т является общим периодом двух функций f и g, то Т остается периодом их суммы, произведения, частного. Правда, как мы видим на примере тангенса, если Т является основным периодом f и g, то это может быть не так для новых функций, полученных из f и g арифметическими операциями.

Сумма двух функций с различными периодами необязательно будет периодической. Интересен случай сложения двух функций с различными, но очень близкими периодами. Рассмотрим, например, сумму функций близки друг к другу. Складывая синусы, получим

Поэтому при маленьких значениях t и

Однако с ростом t множитель будет убывать.

«Ровное» гармоническое колебание типа у1 заменится «биением», график которого изображен на рисунке 102. Можно представить себе, что «биение» — это колебание, амплитуда которого медленно (и тоже периодически) меняется. Явление «биения» можно наблюдать при наложении звуков близкой частоты, при измерении величины океанских приливов, которые вызываются наложением двух периодических процессов с близкими, но различными периодами — притяжением Солнца и притяжением Луны.

Разложение на гармоники

Чистый звуковой тон представляет собой колебание с некоторой постоянной частотой. Музыка, которую мы слышим, представляет собой наложение различных чистых тонов, т. е. получается сложением колебаний с различными частотами. Преобладание звука той или иной частоты (скажем, низких звуков или высоких) связано с амплитудой соответствующих колебаний. Это знакомое нам разложение звуков на чистые тона часто встречается при изучении различных колебательных процессов.

Можно сказать так: простейшие гармонические колебания являются теми кирпичиками, из которых складывается любое колебание. На языке математики это означает, что любую периодическую функцию можно представить с наперед заданной точностью как сумму синусов.

Эйлер Леонард

(1707—1783) — швейцарский математик и механик, академик Петербургской Академии наук, автор огромного количества научных открытий во всех областях математики. Эйлер первым применил средства математического анализа в теории чисел, положил начало топологии.

«Математика, вероятно, никогда не достигла бы такой высокой степени совершенства, если бы древние не приложили столько усилий для изучения вопросов, которыми сегодня многие пренебрегают из-за их мнимой бесплодности».
Л. Эйлер

Этот замечательный факт обнаружен еще в XVIII в. Д. Бернулли при решении задачи о колебании струны. Это показалось удивительным и невозможным по отношению к любой функции даже такому гениальному математику, как Л. Эйлер, который, кстати, является автором всей современной символики тригонометрии. Систематически разложения периодических функций в сумму синусов (или, как говорят, на гармоники) изучал в начале XIX в. французский математик Ж. Фурье, которые так теперь и называются разложениями (или рядами) Фурье.

Тригонометрические и обратные тригонометрические функции

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Тригонометрическая функция и ее уравнения

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:


источники:

http://lfirmal.com/trigonometricheskie-i-obratnye-trigonometricheskie-funkcii/

http://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij