Тригонометрические уравнения примеры решения 11 класс

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)

Математика, которая мне нравится

Математика для школьников и студентов, обучение и образование

24. Решение тригонометрических уравнений

Уравнение при 1″ title=»Rendered by QuickLaTeX.com» height=»18″ width=»49″ style=»vertical-align: -4px;»/> решений не имеет,

при имеет решения ,

при имеет решения ,

при имеет решения ,

при всех остальных имеет решения .

Уравнение при 1″ title=»Rendered by QuickLaTeX.com» height=»18″ width=»49″ style=»vertical-align: -4px;»/> решений не имеет,

при имеет решения ,

при имеет решения >,

при имеет решения ,

при всех остальных имеет решения .

Уравнение имеет решения .

Уравнение имеет решения .

Приемы решения тригонометрических уравнений

1. Сведение к одной функции

1. заменяем на , — на .

Пример 1.

Пример 2.

2. заменяем на , — на , — на .

Пример 1.

1) 2) ,
В первом случае решений нет, во втором .

Пример 2.

Пример 3.

3. Однородные уравнения относительно .

Если , то деля обе части уравнения на или на , получаем равносильные уравнения. Действительно, пусть — корень уравнения и . Подставляя в уравнение, получаем, что и , а это невозможно.

Пример.

4. Уравнения, приводящиеся к однородным

а) Домножение на

Пример.

б) Переход к половинному аргументу

Пример.

5. Использование формулы 0″ title=»Rendered by QuickLaTeX.com» height=»21″ width=»415″ style=»vertical-align: -5px;»/>

Пример.

6. Замена .
Пример.

Разложение на множители

1. Формулы преобразования суммы в произведение

2. Формулы

Пример 1.

Ответ. .

Пример 2.

\sqrt<2>\]» title=»Rendered by QuickLaTeX.com»/>

Ответ. , .

Понижение степени

Сравнение левой и правой части

Пример 1.

Ответ. .
Пример 2.

1. \end\]» title=»Rendered by QuickLaTeX.com»/>

Ответ. .
Пример 3.

Подставляем во второе уравнение:

Ответ. .

Пример 4.

Если , то . Если , то .

Ответ. .

Комментариев: 68

1 Татьяна:

Пожалуйста,подскажите,как решать такие системы?

1/2\]» title=»Rendered by QuickLaTeX.com»/>

Сначала решите уравнение (можно записать , и оно станет однородным), затем выберите те решения, которые удовлетворят неравенству (неравенство вполне решаемо тоже).

2 Наташа:

Здравствуйте,как решить такое уравнение sin6x+2=2cos4x

2 перенесите в правую часть, перейдите к половинному аргументу. Для sin 6x примените формулу тройного аргумента. Все сводится к квадратному уравнению (кубическое легко раскладывается на множители).

Наташа Reply:
Ноябрь 1st, 2014 at 13:44

А как к половинному перейти,что-то не понимаю.

3 Наурзалинова А.А.:

Здравствуйте, помогите решить Sin (x – 1) = cos (x+2)

Здравствуйте.
А если так перепишем: , дальше понятно, что делать (если нет, смотрите здесь: http://hijos.ru/izuchenie-matematiki/mat-analiz-10-klass/31-prostejshie-trigonometricheskie-uravneniya/)?

4 Алена:

Добрый день! Подскажите, как решается уравнение 2-2*cos(x) + x*sin(x) = 0 ?

Перейдите к половинному аргументу.

Варвара Reply:
Ноябрь 5th, 2018 at 15:50

Уравнение все равно останется смешанным, куда прикажете лишний х девать?

5 Вика:

Здравствуйте. Помогите пожалуйста решить
sin^2(x/2)+sin^2(x/3)+sin^2(x/5)=0

Здравствуйте! А когда сумма квадратов вещественных чисел равна нулю?

6 Вася:

Здравствуйте,как решить такое уравнение 4cos^2(x)+sin(x)*cos(x)+3sin^2(x)=3?

, и получается однородное уравнение.

7 Бати:

Подскажите, как решается уравнение sin6x+sin4x=0

8 Аня:

2*cos(x) – 6*sin(x)*cos(x) + 3 = arccos (-1/2) – (2/3)пи
не подскажите, как решить такое уравнение?

Это будет так: . А дальше… Вы уверены, что нет ошибки в условии? Получается уравнение 4-й степени без рациональных корней

9 Тимур:

Найти (в градусах) решение уравнения sin9x=cos9x, удовлетворяющее условиям 10 Елизавета Александровна Калинина Reply:
Февраль 27th, 2015 at 17:43

Перепишем: , откуда . Дальше выбирайте правильное

10 bim:

(ctgx+3)/tg(x+(pi/6))=ctg(5*pi/6) помогите решить

по формулам приведения. раскройте по формуле тангенса суммы.После этого получится квадратное уравнение относительно ( выразите через тангенс.

11 Георгий:

помогите решить систему уравнений. два уравнения, два неизвестных.

Георгий Reply:
Апрель 29th, 2015 at 16:02

Я, конечно, и сам вывел, что оно сводится к уравнению 4й степени относительно tan(alfa1):

A^2*(1-N^2) * tan(alfa1)^4 – 2*A*C*(1-N^2) * tan(alfa1)^3 + …
(A^2 + C^2*(1-N^2) – B^2)* tan(alfa1)^2 – 2*A*C * tan(alfa1) + C^2 = 0

Но неужели действительно так сложно?

Георгий, у меня тоже уравнение четвертой степени получилось…

Георгий Reply:
Апрель 30th, 2015 at 14:14

Спасибо, Елизавета Александровна.
Решаю задачу численными методами. Сделал цикл с последовательным приближением.

12 Маргарита:

(cos2x-cos3x)²+sin²3x=0 помогите решить уравнение плиз.

Сумма квадратов двух вещественных чисел равна нулю

каждое из этих чисел равно нулю. Получается система из двух довольно простых уравнений.

13 Маргарита:

14 Ната:

Подскажите как решать ур-е пожалуйста:cos2x-4sinx=4cos4x-cos8x

У Вас условие точно такое, нет там степеней?

15 Дарья:

Вы что-то предлагаете?

16 Роза:

Именно для того, чтобы Вы это научились решать самостоятельно, и написано все то, что Вы можете прочитать выше.

17 настя:

помогите 3.1 с б до ж

Используйте формулы преобразования суммы в произведение.

18 Винера:

помогите пожалуйста

Вас какое задание интересует?

19 Kirill:

Помогите решить пожалуйста. решить уравн Ctg^3x=ctgx и sin8x-sin2x=0 . Упростить sinАльфа+sin2Альфа+sin3Альфа+sin4Альфа= и sin^2Альфа+cos^2Альфа+tg^2Альфа=

Первое разложите на множители (вынесите за скобки, дальше — разность квадратов), во втором преобразуйте разность в произведение по стандартным формулам. Остальное тоже делается сразу, если Вы воспользуетесь формулами, которые можно найти даже на этом сайте.

20 Айга:

Здравсвуйте!подскажите подробное решение уравнения:
tg(x-pi\6)(sin2x+1)=0
Уже неделю не могу понять как это решить.

Здравствуйте! Либо , либо . Дальше решаете каждое из этих уравнений. Ответ — объединение множеств решений.

Простейшие тригонометрические уравнения

п.1. Решение простейших тригонометрических уравнений

Про аркфункции (обратные тригонометрические функции) и их свойства – см. §9-11 данного справочника.
Обобщим результаты решения простейших уравнений, полученные в этих параграфах.

УравнениеОДЗРешение
$$ sinx=a $$$$ -1\leq a\leq 1 $$\begin x=(-1)^k arcsin a+\pi k\Leftrightarrow\\ \Leftrightarrow \left[ \begin x_1=arcsin a+2\pi k\\ x_2=\pi-arcsin a+2\pi k \end \right. \end
$$ cosx=a $$$$ -1\leq a\leq 1 $$\begin x=\pm arccos a+2\pi k \end
$$ tgx=a $$$$ a\in\mathbb $$\begin x=arctga+\pi k \end
$$ ctgx=a $$$$ a\in\mathbb $$\begin x=arcctga+\pi k\Leftrightarrow\\ \Leftrightarrow x=arctg\frac1a+\pi k \end

Частные случаи, для которых запись результата отличается от общей формулы:

a=0a=-1a=1
$$ sinx=a $$$$ x=\pi k $$$$ -\frac\pi2+2\pi k $$$$ \frac\pi2+2\pi k $$
$$ cosx=a $$$$ x=\frac\pi2+\pi k $$\begin \pi+2\pi k \end\begin 2\pi k \end
\begin sinx=\frac<\sqrt<2>><2>\\ x=(-1)^k arcsin\frac<\sqrt<2>><2>+\pi k=(-1)^k\frac\pi4+\pi k\Leftrightarrow \left[ \begin x_1=\frac\pi4+2\pi k\\ x_2=\frac<3\pi><4>+2\pi k \end \right. \end
\begin ctgx=3\\ x=arcctg3+\pi k\Leftrightarrow x=arctg\frac13+\pi k \end

п.2. Решение уравнений с квадратом тригонометрической функции

К простейшим также можно отнести уравнения вида:

УравнениеОДЗРешение
$$ sin^2x=a $$$$ 0\leq a\leq 1 $$\begin x=\pm arcsin\sqrt+\pi k \end
$$ cos^2x=a $$$$ 0\leq a\leq 1 $$\begin x=\pm arccos\sqrt+\pi k \end
$$ tg^2x=a $$$$ a\geq 0 $$\begin x=\pm arctg\sqrt+\pi k \end
$$ ctg^2x=a $$$$ a\geq 0 $$\begin x=\pm arcctg\sqrt+\pi k \end
\begin cos^x=\frac14\\ x=\pm arccos\frac12+\pi k=\pm\frac\pi3+\pi k \end \begin tg^2x=1\\ x=\pm arctg1+\pi k=\pm\frac\pi4+\pi k \end

п.3. Различные формы записи решений

Как известно, в тригонометрии все функции связаны между собой базовыми отношениями (см. §12 данного справочника). Если нам известна одна из функций, мы можем без труда найти все остальные. Преобразования в уравнениях приводят к тому, что решение может быть записано через любую из этих функций.
Кроме того, понижение степени или универсальная подстановка (см. §15 данного справочника) приводят к увеличению или уменьшению исходного угла в 2 раза, и ответ может оказаться очень непохожим на решения, полученные другими способами для того же уравнения.

Решим уравнение \(sin^2x=0,64\)
Для квадрата синуса решение имеет вид: \begin x=\pm arcsin\sqrt<0,64>+\pi k=\\ =\pm arcsin0,8+\pi k \end На числовой окружности этому решению соответствуют 4 базовых точки, которые можно представить по-разному: \begin x=\pm arcsin0,8+\pi k=\\ =\pm arccos0,6+\pi k=\\ =\pm arctg\frac43+\pi k \end

Если решать уравнение с помощью формулы понижения степени, получаем: \begin sin^2x=\frac<1-cos2x><2>=0,64\Rightarrow 1-cos2x=1,28\Rightarrow cos2x=-0,28\Rightarrow\\ \Rightarrow 2x=\pm arccos(-0,28)+2\pi k\Rightarrow x=\pm\frac12 arccos(-0,28)+\pi k \end Если же решать уравнение с помощью универсальной подстановки: \begin sin^2x=\left(\frac<2tg\frac<2>><1+tg^2\frac<2>>\right)^2=0,64\Rightarrow\frac<2tg\frac<2>><1+tg^2\frac<2>>=\pm 0,8\Rightarrow 1+tg^2\frac<2>=\pm 2,5tg\frac<2>\Rightarrow\\ \left[ \begin tg^2\frac<2>+2,5tg\frac<2>+1=0\\ tg^2\frac<2>-2,5tg\frac<2>+1=0 \end \right. \Rightarrow \left[ \begin \left(tg\frac<2>+2\right)\left(tg\frac<2>+\frac12\right)=0\\ \left(tg\frac<2>-2\right)\left(tg\frac<2>-\frac12\right)=0 \end \right. \Rightarrow \left[ \begin tg\frac<2>=\pm 2\\ tg\frac<2>=\pm\frac12 \end \right. \Rightarrow\\ \Rightarrow \left[ \begin x=\pm arctg2+2\pi k\\ x=\pm 2arctg\frac12+2\pi k \end \right. \end Таким образом, решая одно и то же уравнение, мы получаем очень разные по виду ответы. Однако, при проверке, все полученные множества решений совпадают.

п.4. Примеры

Пример 1. Решите уравнение обычным способом и с помощью универсальной подстановки. Сравните полученные ответы и множества решений. Сделайте вывод.
a) \(sin x=\frac<\sqrt<3>><2>\)

Обычный способ: \begin x=(-1)^k arcsin\frac<\sqrt<3>><2>+\pi k=(-1)^k\frac\pi3 +\pi k \Leftrightarrow\\ \Leftrightarrow \left[ \begin x=\frac\pi3+2\pi k\\ x=\frac<2\pi><3>+2\pi k \end \right. \end 2 базовых точки на числовой окружности.

Универсальная подстановка: \begin sinx=\frac<2tg\frac<2>><1+tg^2\frac<2>>\Rightarrow 1+tg^2\frac<2>=\frac<2tg\frac<2>><\sqrt<3>/2>\Rightarrow tg^2\frac<2>-\frac<4><\sqrt<3>>tg\frac<2>+1=0\\ D=\left(-\frac<4><\sqrt<3>>\right)^2-4=\frac<16><3>-4=\frac43,\ \ tg\frac<2>=\frac<\frac<4><\sqrt<3>>\pm\frac<2><\sqrt<3>>><2>\Rightarrow \left[ \begin tg\frac<2>=\frac<1><\sqrt<3>>\\ tg\frac<2>=\sqrt <3>\end \right. \\ \left[ \begin \frac<2>=\frac\pi6+\pi k\\ \frac<2>=\frac\pi3+\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi3+2\pi k\\ x=\frac<2\pi><3>+2\pi k \end \right. \Leftrightarrow x=(-1)^k\frac\pi3+\pi k \end Ответы и множества решений совпадают.
Ответ: \((-1)^k\frac\pi3+\pi k\)

Обычный способ: \begin 2x=\pm arccos\frac12+2\pi k\Rightarrow\\ x=\pm\frac12\left(arccos\frac12+2\pi k\right)=\\ =\pm\frac12\cdot\frac\pi3+\pi k=\pm\frac\pi6+\pi k \end 4 базовых точки на числовой окружности.

Универсальная подстановка: \begin cos2x=\frac<1-tg^2x><1+tg^2x>=\frac12\Rightarrow 2(1-tg^2x)=1+tg^2x\Rightarrow 3tg^2x=1\Rightarrow tgx=\pm\frac<1><\sqrt<3>>\\ x=\pm\frac\pi6+\pi k \end Ответы и множества решений совпадают.
Ответ: \(\pm\frac\pi6+\pi k\)

в) \(sin\left(\frac<2>+\frac\pi3\right)=1\)
Обычный способ: \begin \frac<2>+\frac\pi3=\frac\pi2+2\pi k\Rightarrow \frac<2>=\frac\pi2-\frac\pi3+2\pi k=\frac\pi6+2\pi k\Rightarrow x=\frac\pi 3+4\pi k \end Одна базовая точка на числовой окружности с периодом \(4\pi\).
Универсальная подстановка: \begin sin\left(\frac<2>+\frac\pi3\right)=\frac<2tg\frac<\frac<2>+\frac\pi3><2>><1+tg^2\frac<\frac<2>+\frac\pi3><2>>=1\Rightarrow tg^2\left(\frac<4>+\frac\pi6\right)-2tg\left(\frac<4>+\frac\pi6\right)-2tg\left(\frac<4>+\frac\pi6\right)+1=0\Rightarrow\\ \left(tg\left(\frac<4>+\frac\pi6\right)-1\right)^2=0\Rightarrow tg\left(\frac<4>+\frac\pi6\right)=1\Rightarrow \frac<4>+\frac\pi6=\frac<\pi><4>+\pi k\Rightarrow\\ \Rightarrow \frac<4>=\frac\pi4-\frac\pi6+\pi k\Rightarrow \frac<4>=\frac<\pi><12>+\pi k\Rightarrow x=\frac\pi3+4\pi k \end Ответы и множества решений совпадают.
Ответ: \(\frac\pi3+4\pi k\)

г*) \(tg\left(3x+\frac\pi3\right)=0\)
Обычный способ: \begin 3x+\frac\pi3=arctg0+\pi k=\pi k\Rightarrow 3x=-\frac\pi3+\pi k\Rightarrow x=-\frac\pi9+\frac<\pi k> <3>\end Универсальная подстановка: \begin tg\left(3x+\frac\pi3\right)=\frac<2tg\frac<3x+\frac\pi3><2>><1-tg^2\frac<3x+\frac\pi3><2>>=0\Rightarrow tg\frac<3x+\frac\pi3><2>=0\Rightarrow\frac<3x+\frac\pi3><2>=\pi k\Rightarrow\\ \Rightarrow 3x+\frac\pi3=2\pi k=3x=-\frac\pi3+2\pi k\Rightarrow=-\frac\pi9+\frac<2\pi> <3>\end При использовании универсальной подстановки потеряна половина корней (период увеличился в 2 раза). Это связано с тем, что мы отбросили еще одно решение: \(tg\frac<3x+\frac\pi3><2>\rightarrow\infty\) — значение тангенса у асимптот. Действительно, в этом случае дробь стремится к 0, что удовлетворяет уравнению. Получаем: \begin \frac<3x+\frac\pi3><2>=\frac\pi2+\pi k\Rightarrow 3x+\frac\pi3=\pi+2\pi k\Rightarrow 3x=\frac<2\pi><3>+2\pi k\Rightarrow x=\frac<2\pi><9>+\frac<2\pi k> <3>\end Таким образом, мы получили два семейства решений: \begin \left[ \begin x=-\frac\pi9+\frac<2\pi k><3>\\ x=\frac<2\pi><9>+\frac<2\pi> <3>\end \right. \end Представим последовательности решений в градусах, подставляя возрастающие значения \(k\): \begin \left[ \begin x=-20^<\circ>+120^<\circ>k=\left\<. -20^<\circ>,100^<\circ>,220^<\circ>. \right\>\\ x=40^<\circ>+120^<\circ>k=\left\<. 40^<\circ>,160^<\circ>,280^<\circ>. \right\> \end \right. \end Теперь представим полученное обычным способом решение в градусах: $$ x=-\frac\pi9+\frac<\pi k><3>=-20^<\circ>+60^<\circ>k=\left\<. -20^<\circ>,40^<\circ>,100^<\circ>,160^<\circ>,220^<\circ>,280^<\circ>. \right\> $$ Получаем, что: \begin \left[ \begin x=-\frac\pi9+\frac<2\pi k><3>\\ x=\frac<2\pi><9>+\frac<2\pi> <3>\end \right. \Leftrightarrow x=-\frac\pi9+\frac<\pi k> <3>\end Ответы и множества решений после учета значений у асимптот совпадают.
Ответ: \(-\frac\pi9+\frac<\pi k><3>\)

Вывод: при использовании универсальной подстановки нужно быть аккуратным и помнить о возможности потерять корни. Семейство бесконечных решений для тангенса \(\frac<2>=\frac\pi2+\pi k\), т.е. \(x=\pi+2pi k\) нужно проверять как возможное решение для исходного уравнения отдельно.

При использовании универсальной подстановки можно потерять часть корней исходного тригонометрического уравнения.
Поэтому вместе с универсальной подстановкой проверяется также дополнительное возможное решение для бесконечного тангенса половинного угла: \(x=\pi+2\pi k\). \begin f(sin(x), cos(x). )=0\Leftrightarrow\\ \left[ \begin f\left(tg\left(\frac<2>\right)\right)=0\\ (?) x=\pi+2\pi k \end \right. \end где слева – исходное уравнение, а справа – универсальная подстановка и дополнительное возможное (не обязательное) семейство решений.

Пример 2. Решите уравнение обычным способом и с помощью формул понижения степени. Сравните полученные ответы и множества решений. Сделайте вывод.
a) \(sin^2x=\frac34\)

Обычный способ: \begin x=\pm arcsin\sqrt<\frac34>+\pi k=\pm arcsin\frac<\sqrt<3>><2>+\pi k=\pm\frac\pi3+\pi k \end

Формулы понижения степени: \begin sin^2x=\frac<1-cos2x><2>=\frac34\Rightarrow 1-cos2x=\frac32\Rightarrow cos2x=-\frac12\Rightarrow\\ \Rightarrow 2x=\pm arccos\left(-\frac12\right)+2\pi k=\pm\frac<2\pi><3>+2\pi k\Rightarrow x=\pm\frac\pi3+\pi k \end Ответы и множества решений совпадают.
Ответ: \(\pm\frac\pi3+\pi k\)

Обычный способ: \begin 2x=\pm arccos\sqrt<1>+\pi k=\pm 0+\pi k=\pi k\Rightarrow x=\frac<\pi k> <2>\end Формулы понижения степени: \begin cos^2 2x=\frac<1+cos4x><2>=1\Rightarrow 1+cos4x=2\Rightarrow\\ cos4x=1\Rightarrow 4x=0+2\pi k=2\pi k\Rightarrow x=\frac<\pi k> <2>\end

Ответы и множества решений совпадают.
Ответ: \(\frac<\pi k><2>\)

Обычный способ: \begin \frac<2>+\frac\pi3=\pm arcsin\sqrt<\frac14>+\pi k=\pm arcsin\frac12+\pi=\pm\frac\pi6+\pi k\\ \frac<2>=-\frac\pi3\pm\frac\pi6+\pi k= \left[ \begin \frac\pi2+\pi k\\ -\frac\pi6+\pi k \end \right. \Rightarrow x= \left[ \begin -\pi+2\pi k\\ -\frac\pi3+2\pi k \end \right. \end

Формулы понижения степени: \begin sin^2\left(\frac<2>+\frac\pi3\right)=\frac<1-cos\left(2\left(\frac<2>+\frac\pi3\right)\right)><2>=\frac14\Rightarrow 1-cos\left(x+\frac<2\pi><3>\right)=\frac12\Rightarrow\\ \Rightarrow cos\left(x+\frac<2\pi><3>\right)=\frac12\Rightarrow x+\frac<2\pi><3>=\pm arccos\left(\frac12\right)+2\pi k\Rightarrow\\ \Rightarrow x=-\frac<2\pi><3>\pm\frac\pi3+2\pi k= \left[ \begin -\pi+2\pi k\\ -\frac\pi3+2\pi k \end \right. \end Ответы и множества решений совпадают.
Ответ: \(-\pi+2\pi k,\ \ -\frac\pi3+2\pi k\)

Обычный способ: \begin x+\frac\pi4=\pm arctg\sqrt<1>+\pi k=\pm\frac\pi4+\pi k\Rightarrow\\ \Rightarrow x=-\frac\pi4\pm\frac\pi4+\pi k= \left[ \begin -\frac\pi2+\pi k\\ \pi k \end \right. \end

Формулы понижения степени: \begin cos^2\left(x+\frac\pi4\right)=\frac<1><1+\underbrace_<=1>>=\frac12\\ cos^2\left(x+\frac\pi4\right)=\frac<1+cos\left(2\left(x+\frac\pi4\right)\right)><2>=\frac12 \Rightarrow cos\left(2x+\frac\pi2\right)=0\Rightarrow\\ \Rightarrow -sin2x=0\Rightarrow sin2x=0 \Rightarrow 2x=\pi k\Rightarrow x=\frac<\pi k> <2>\end Из чертежа видно, что \begin \left[ \begin -\frac\pi2+\pi k\\ \pi k \end \right. \Leftrightarrow x=\frac<\pi k> <2>\end Оба решения соответствуют 4 базовым точкам на числовой окружности через каждые 90°. Множества решений совпадают. Ответы не совпадают, но являются равнозначными.
Ответ: \(\frac<\pi k><2>\)
Вывод: формулы понижения степени не расширяют и не урезают множество корней исходного уравнения. Полученные ответы либо совпадают, либо нет, но всегда являются равнозначными.


источники:

http://hijos.ru/izuchenie-matematiki/algebra-11-klass/24-reshenie-trigonometricheskix-uravnenij/

http://reshator.com/sprav/algebra/10-11-klass/prostejshie-trigonometricheskie-uravneniya/