Тригонометрические уравнения с выбором корней примеры

Отбор корней в тригонометрическом уравнение

В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.

а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]

Решим пункт а.

Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)

sqrt(2)cos^2x — cosx = 0

cosx(sqrt(2)cosx — 1) = 0

x1 = Pi/2 + Pin, n ∈ Z

sqrt(2)cosx — 1 = 0

x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z

x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z

Решим пункт б.

1) Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.

-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi

Сразу делим все на Pi

-7/2 меньше или равно 1/2 + n меньше или равно -2

-7/2 — 1/2 меньше или равно n меньше или равно -2 — 1/2

-4 меньше или равно n меньше или равно -5/2

Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2

Аналогично делаем еще два неравенства

-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8

Целых n в этом промежутке нет

-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8

Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.

Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4

2) Отбор корней с помощью тригонометрической окружности

Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.

Обойдем раз против часовой стрелки

Обойдем 2 раза против часовой стрелки

Обойдем 1 раз по часовой стрелки (значения будут отрицательные)

Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]

Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 — 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 — 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 — 4Pi = -7Pi/2, также подходит.

Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.

Сравнение двух методов.

Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.

Способы отбора корней в тригонометрических уравнениях

Класс: 10

Автор проекта:
Шелкова Полина,
Класс: 10

Руководитель:
Злобова Людмила Викторовна,
учитель математики

ВВЕДЕНИЕ

Слово «тригонометрия» греческое, оно переводится как «измерение треугольников» (τρίγονον — «тригон» — треугольник и μετρειν — «метрео» — измеряю).

Тригонометрия, как и всякая другая наука, выросла из практической деятельности человека. Потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил, оказали большое влияние на развитие астрономии и тесно связанной с ней тригонометрией. Предполагают, что основополагающее значение для развития тригонометрии в эпоху ее зарождения, имели работы древнегреческого астронома Гиппарха Никейского (180-125 лет до н. э.) (прил. №3). Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд (прил. №2). Т.е. таблицы, которые выражают длину хорды для различных центральных углов в круге постоянного радиуса, что является аналогом современных таблиц тригонометрических функций. Впрочем, до нас не дошли оригинальные таблицы Гиппарха, как и почти все, что им написано. И мы, можем составить себе о них представление главным образом по сочинению «Великое построение» или «Альмагесту» знаменитого астронома Клавдия Птолемея, жившего в середине II века н.э.

Несмотря на то, что в работах ученых древности нет «тригонометрии» в строгом смысле этого слова, но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. Например, задачи на решение треугольников (определение всех сторон и углов треугольника по трем его известным элементам), теоремы Евклида и Архимеда представленные в геометрическом виде, эквивалентны специфическим тригонометрическим формулам. Главным достижением средневековой Индии стала замена хорд синусами. Это позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии, как учению о тригонометрических величинах.

Учёные стран Ближнего и Среднего Востока с VIII века развили тригонометрию своих предшественников. Уже в середине IX века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того, как трактаты мусульманских ученых были переведены на латынь, многие идеи греческих, индийских и мусульманских математиков стали достоянием европейской, а затем и мировой науки. В дальнейшем потребности географии, геодезии, военного дела, способствовали развитию тригонометрии. Особенно усиленно шло ее развитие в средневековое время. Большая заслуга в формировании тригонометрии как отдельной науки принадлежит азербайджанскому ученому Насир ад-Дину ат-Туси (1201-1274), написавшему «Трактат о полном четырехстороннике». Творения ученых этого периода привели к выделению тригонометрии как нового самостоятельного раздела науки. Однако в их трудах еще не была введена необходимая символика. Современный вид тригонометрия получила в трудах Леонарда Эйлера (1707-1783). На основании трудов Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности (прил. №4). Тригонометрические вычисления применяются во многих областях человеческой деятельности: в геометрии, в физике, в астрономии, в архитектуре, в геодезии, инженерном деле, в акустике, в электронике и т.д.

I РАЗДЕЛ (теоретический)

Тема проекта и её актуальность: почему я выбрала тему «Способы отбора корней в тригонометрических уравнениях»?

  • Расширить и углубить свои знания, полученные в курсе геометрии 8-9 класса.
  • Тригонометрические уравнения рассматриваются в курсе алгебры и начал математического анализа 10-11 класса.
  • Тригонометрические уравнения включены в КИМы ЕГЭ по математике.

Решение тригонометрических уравнений и отбор корней, принадлежащих заданному промежутку — это одна из сложнейших тем математики, которая выносится на Единый Государственный Экзамен. По результатам анкетирования многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и особенно затрудняются в отборе корней, принадлежащих промежутку. Немаловажно также знать, тригонометрические формулы, табличные значения тригонометрических функций для решения целого ряда заданий Единого Государственного Экзамена по математике.

Цель проекта: изучить способы отбора корней в тригонометрических уравнениях и выбрать для себя наиболее рациональные подходы для качественной подготовки к ЕГЭ.

Задачи:

  • познакомиться с историческими сведениями о возникновении тригонометрии, как науки;
  • изучить соответствующую литературу;
  • научиться решать тригонометрические уравнения;
  • найти теоретический материал и изучить методы отбора корней в тригонометрических уравнениях;
  • научиться отбирать корни в тригонометрических уравнениях, принадлежащим заданному промежутку;
  • подготовиться к ЕГЭ по математике.

Приёмы отбора корней тригонометрического уравнения на заданном промежутке.

При решении тригонометрических уравнений предлагается провести отбор корней из множества значений неизвестного. В тригонометрическом уравнении отбор корней можно осуществлять следующими способами: арифметическим, алгебраическим, геометрическим и функционально-графическим.

Арифметический способ отбора корней состоит в непосредственной подстановке полученных корней в уравнение, учитывая имеющиеся ограничения, при переборе значений целочисленного параметра.

Алгебраический способ предполагает составление неравенств, соответствующих дополнительным условиям, и их решение относительно целочисленного параметра.

Геометрический способ предполагает использование при отборе корней двух вариантов: тригонометрической окружности или числовой прямой. Тригонометрическая окружность более удобна, когда речь идет об отборе корней на промежутке или в случае, когда значение обратных тригонометрических функций, входящих в решения, не являются табличными. В остальных случаях предпочтительнее модель числовой прямой. Числовую прямую удобно использовать при отборе корней на промежутке, длина которого не превосходит 2 или требуется найти наибольший отрицательный или наименьший положительный корень уравнения.

Функционально-графический способ предполагает отбор корней осуществлять с использование графиков тригонометрических функций. Чтобы использовать данный способ отбора корней, требуется умение схематичного построения графиков тригонометрических функций.

II РАЗДЕЛ (практический)

Покажу практически три наиболее эффективных и рациональных, с моей точки зрения, метода отбора корней на примере решения следующего тригонометрического уравнения:

sinx−cos2x=0; [применили формулу двойного угла: cos2x = cos 2 x−sin 2 x]

sinx−(cos 2 x−sin 2 x)=0;

sinx−(1−sin 2 x−sin 2 x)=0;

Введем новую переменную: sinx = t, -1 ≤ t ≤1, получим

Вернемся к замене:

б) Рассмотрим три способа отбора корней, попадающих в отрезок .

1 способ: обратимся к единичной окружности. Отметим на ней дугу, соответствующую указанному отрезку, т.е. выполним отбор корней арифметическим способом и с помощью тригонометрической окружности:

2 способ: указанный отрезок соответствует неравенству: Подставим в него полученные корни:

3 способ: разместим корни уравнения на числовой прямой. Сначала отметим корни, подставив вместо n, и нуль (0), а потом добавим к каждому корню периоды.

Нам останется только выбрать корни, которые попали в нужный нам отрезок.

ЗАКЛЮЧЕНИЕ

При работе над моим проектом я изучила методы решения тригонометрических уравнений и способы отбора корней тригонометрических уравнений. Выяснила для себя положительные и отрицательные моменты. При апробации этих подходов в отборе корней тригонометрического уравнения, понимаешь, что каждый из этих способов удобен по-своему в том или ином случае. Например, алгебраический способ (решение неравенством) наиболее эффективен, когда промежуток для отбора корней достаточно большой, в тоже время он дает практически стопроцентное нахождение целочисленного параметра для вычисления корней, а применение арифметического способа приводит к громоздким вычислениям. При отборе корней уравнения, удовлетворяющих дополнительным условиям, т.е. когда корни уравнения принадлежат заданному промежутку, мне проще и нагляднее получить корни с помощью тригонометрической окружности, а проверить себя можно арифметическим способом. Замечу, что при решении тригонометрических уравнений трудности, связанные с отбором корней, возрастают, если в уравнении приходится учитывать ОДЗ. Как показывает практика и анкетирование моих одноклассников, из четырёх возможных методов отбора корней тригонометрического уравнения по дополнительным условиям, наиболее предпочтительным является отбор корней по окружности. Анкетирование проходили 12 респондентов, изучающих тригонометрию (прил. №5). Большинство из них отвечали, что этот раздел математики достаточно сложный: большой объем информации, очень много формул, табличных значений, которые нужно знать и уметь применять на практике. Еще как одна из проблем — небольшое количество времени, отведенное на изучение этого сложного раздела математики. И я разделяю их мнение. При такой сложности, многие считают, что тригонометрия важный раздел математики, который находит применение в других науках и практической деятельности человека.

СПИСОК ЛИТЕРАТУРЫ

  1. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс: учеб для общеобразоват. организаций: базовый и углубленный уровни/ [С.М.Никольский, М.К.Потапов, Н.Н.Решетников и др.]-3 -е изд.- М.: Просвещение, 2016.
  2. Алгебра и начала математического анализа: Учеб для 10-11 кл.общеобразоват. организаций / А.Н.Колмогоров, А.М.Абрамов, Ю.П.Дудницин и др. под редакцией А.Н.Колмогорова — М. Просвещение, 2017.
  3. С.В Кравцев и др. Методы решения задач по алгебре: от простых до самых сложных — М: Издательство: «Экзамен», 2005.
  4. Корянов А.Г., Прокофьев А.А. — Тригонометрические уравнения: методы решения и отбор корней. — М.: Математика ЕГЭ, 2012.

Презентация к уроку на тему «Решение тригонометрических уравнений с выбором корней на промежутке»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Практикум по теме: «Решение уравнений, составленных на основе материалов ЕГЭ по математике (группа С1)»

«Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом» Анатоль Франс (1844-1924)

Цель: систематизация знаний по теме: «Решение тригонометрических уравнений с выбором корней на промежутке»

«Метод решения хорош тем, что если с самого начала мы можем предвидеть и впоследствии подтвердить это, то, следуя этому, мы достигнем цели» Вильгельм Лейбниц

а). Решите уравнение б). Найдите все корни этого уравнения, принадлежащие отрезку

y x 1 -1 б). Найдите все корни этого уравнения, принадлежащие отрезку Отбор корней с помощью графиков cos = x y —

y x 1 -1 б). Найдите все корни этого уравнения, принадлежащие отрезку Отбор корней с помощью графиков sin = x y 2 p

x б). Найдите все корни этого уравнения, принадлежащие отрезку Отбор корней с помощью графиков cos = x y — y 1 -1 —

а). Решите уравнение б). Найдите все корни этого уравнения, принадлежащие отрезку

p arcsin 3 5 p – б). Найдем все корни этого уравнения, принадлежащие отрезку

а). Решите уравнение б). Найдите все корни этого уравнения, принадлежащие отрезку б). Выбирать корни по тригонометрической окружности не удобно, т.к. это … полтора круга

б). Найдите все корни этого уравнения, принадлежащие отрезку

Работа в группах

а). Решите уравнение б). Найдите все корни этого уравнения, принадлежащие отрезку

б). Найдите все корни этого уравнения, принадлежащие отрезку

а). Решите уравнение б). Найдите все корни этого уравнения, принадлежащие отрезку p или 2p k p — p + p k +2 p k +2

2p p б). Найдите все корни этого уравнения, принадлежащие отрезку 3p 2 p 3 2 p 2 p 5 3p —

а). Решите уравнение б). Найдите все корни этого уравнения, принадлежащие отрезку + p k + — p k +

б). Найдите все корни этого уравнения, принадлежащие отрезку p 2 p 5 6 p 7 6 p 11 6 p 13 p 2

Решение тригонометрического уравнения с последующим выбором корней из заданного промежутка эксперты оценивают выполнение задания по следующим критериям: — обоснованно получены ответы в обоих пунктах – 2 балла (это макс. балл); — обосновано решение в пункте а или б – 1 балл; — решение не соответствует ни одному из критериев, перечисленных выше – 0 баллов.

«Вы — талантливые дети! Когда – нибудь вы сами приятно поразитесь, какие вы умные, как много вы сумеете, если будете постоянно работать над собой…» Жан-Жак Руссо

Краткое описание документа:

Методическая разработка урока «Решение уравнений, составленных на основе материалов ЕГЭ по математике (группа С1)». Алгебра и начала анализа. 11 класс

Систематизация и углубление знаний учащихся по теме «Решение тригонометрических уравнений с выбором корней на промежутке».

— выявить качество и уровень овладения знаниями и умениями, полученными на предыдущих уроках по теме;

— закрепить умение решать тригонометрические уравнения различными методами;

— продолжать учить находить наиболее рациональные способы выбора корней тригонометрического уравнения на промежутке.

— воспитывать настойчивость в приобретении знаний и умений, умения принимать самостоятельные решения;

— воспитывать общую культуру , эсте тическое восприятие окружающего мира;

— прививать интерес к изучаемому предмету.

— развивать логическое мышление через умение обобщать и систематизировать;

— продолжать учить чётко и ясно излагать свои мысли.

Урок – практикум (урок применения знаний и умений).

Проектор, экран (интерактивная доска), презентация для сопровождения урока.

I. Среда — Microsoft Office PowerPoint

II. Вид медиапродукта — наглядная презентация изучаемого учебного материала.

III. Структура презентации:

Фронтальное решение тригонометрического уравнения с выбором корней на промежутке, используя графический способ

Фронтальное решение тригонометрического уравнения с выбором корней на промежутке, используя единичную окружность

Работа в парах. Решение тригонометрического уравнения с выбором корней на промежутке, используя способ оценки границ (двойное неравенство)

Задания для работы в группах

Проверка работы 1 группы

Проверка работы 2 группы

Проверка работы 3 группы

Подведение итогов урока

Здравствуйте, ребята. Девизом нашего сегодняшнего урока я выбрал слова известного ученого «Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом»
Анатоль Франс
(1844-1924)

Еще в древности одним из важнейших достоинств человека считали владение математическими знаниями. Мы начинаем урок алгебры.

2. Формулировка темы, цели, задач урока и мотивация,

Тема сегодняшнего урока:

«Решение тригонометрических уравнений с выбором корней на промежутке»

Сегодня на уроке мы с вами систематизируем, углубим знания и продолжим формировать умение решать тригонометрические уравнения.

А для этого мы вспомним все известные вам методы решения уравнений. Давайте проанализируем следующие слова:

«Метод решения хорош тем, что если с самого начала мы можем предвидеть и впоследствии подтвердить это, то, следуя этому, мы достигнем цели»
Вильгельм Лейбниц

3. Фронтальное решение уравнений

1) на промежутке

4. Работа в парах с последующей проверкой решения на доске

Решить уравнение: на промежутке

Удобно ли отобрать корни с помощью единичной окружности? Почему?

Какой способ отбора корней удобнее применить? (оценка границ)

5. Работа в группах с последующей защитой решения каждой группы на доске

7. Подведение итогов, рефлексия,

Решение тригонометрического уравнения с последующим выбором корней из заданного промежутка эксперты оценивают выполнение задания по следующим критериям:
— обоснованно получены ответы в обоих пунктах – 2 балла (это макс. балл);
— обосновано решение в пункте а или б –
1 балл;
— решение не соответствует ни одному из критериев, перечисленных выше – 0 баллов

Учитель: -Продолжите предложения:

— Я сегодня повторил (а)….

— Мне сегодня понравилось…

— Я сегодня научился (ась)…

Учитель: -Закончить наш урок хочется словами известного учёного:

«Вы — талантливые дети! Когда – нибудь вы сами приятно поразитесь, какие вы умные, как много вы сумеете, если будете постоянно работать над собой…»
Жан-Жак Руссо

Урок окончен! Всего вам доброго! Спасибо за урок.

8. Домашнее задание (можно использовать как дополнительный материал на уроке)

Решить уравнение: на промежутке

Литература, использованная при подготовке к уроку:

1. Мордкович А.Г. Алгебра и начала анализа. 10-11 кл.: В двух частях. Ч. 1: Учеб. для общеобразоват. учреждений. – 4-е изд. – М.: Мнемозина, 2011. – 375 с.: ил.

2. Алгебра и начала анализа. 10-11 кл.: В двух частях. Ч. 2: Задачник для общеобразоват. учреждений. Под ред. А.Г. Мордковича. — 4-е изд. – М.: Мнемозина, 2011. – 315 с.: ил.

3. Глазков Ю.А., Варшавский И.К., Гаиашвили М.Я. Математика. Решение задач группы С. – 2 изд., перераб. и доп. – М.: Издательство «Экзамен», 2009. – 382 с. (Серия «ЕГЭ. 100 баллов»).

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 929 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 686 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 313 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 586 589 материалов в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 17.01.2015
  • 515
  • 0
  • 17.01.2015
  • 551
  • 0
  • 17.01.2015
  • 434
  • 0
  • 17.01.2015
  • 1791
  • 14
  • 17.01.2015
  • 4086
  • 9
  • 17.01.2015
  • 3276
  • 12
  • 17.01.2015
  • 2250
  • 4

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 17.01.2015 4454
  • PPTX 864.1 кбайт
  • 41 скачивание
  • Оцените материал:

Настоящий материал опубликован пользователем Вантрусов Дмитрий Евгеньевич. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 7 лет и 3 месяца
  • Подписчики: 17
  • Всего просмотров: 33045
  • Всего материалов: 15

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Минпросвещения подключит студотряды к обновлению школьной инфраструктуры

Время чтения: 1 минута

В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных

Время чтения: 1 минута

Школьник из Сочи выиграл международный турнир по шахматам в Сербии

Время чтения: 1 минута

Минпросвещения упростит процедуру подачи документов в детский сад

Время чтения: 1 минута

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Ленобласть распределит в школы прибывающих из Донбасса детей

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Получите новую специальность с дополнительной скидкой 10%

Цена от 4900 740 руб. Промокод (до 23 февраля): Промокод скопирован в буфер обмена ПП2302 Выбрать курс Все курсы профессиональной переподготовки


источники:

http://urok.1sept.ru/articles/687140

http://infourok.ru/prezentaciya_k_uroku_na_temu_reshenie_trigonometricheskih_uravneniy_s_vyborom_korney_na-310538.htm