Тригонометрические уравнения сводящиеся к линейным

Тригонометрические уравнения сводящиеся к линейным

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Методы решения тригонометрических уравнений
методическая разработка по алгебре (11 класс) на тему

В работе рассматриваются различные способы решения тригонометрических уравнений

и основные ошибки, которые при этом допускаются. Материал можно использовать

при подготовке к ЕГЭ как наиболее подготовленными школьниками, так и учителями.

Скачать:

ВложениеРазмер
metody_resheniya_trigonometricheskih_uravneniy.doc425.5 КБ

Предварительный просмотр:

Методы решения тригонометрических уравнений, неравенств и систем.

Тригонометрическим уравнением называется равенство тригонометрических выражений, содержащих переменную только под знаком тригонометрических функций. Решить тригонометрическое уравнение – значит найти все его корни – все значения неизвестного, удовлетворяющие уравнению. Тригонометрические уравнения сводятся цепочкой равносильных преобразований, заменами и решениями алгебраических уравнений к простейшим тригонометрическим уравнениям. Уравнения sin x = х; tg 3x = х 2 +1 и т.д. не являются тригонометрическими и, как правило, решаются приближенно или графически. Может случится так, что уравнение не является тригонометрическим согласно определению, однако оно может быть сведено к тригонометрическому. Например, 2(х – 6) cos 2x = х – 6, (х – 6)(2 cos 2x – 1) = 0, откуда х = 6 или cos 2x = , х = + π n, nZ.

Выделим основные методы решения тригонометрических равнений

  1. Разложение на множители.
  2. Введение новой переменной:

а) сведение к квадратному;

б) универсальная подстановка;

в) введение вспомогательного аргумента.

3. Сведение к однородному уравнению.

4. Применение формул.

5. Использование свойств функций, входящих в уравнение:

а) обращение к условию равенства тригонометрических функций;

б) использование свойства ограниченности функции.

1.Уравнения, в которых все функции выражаются через одну тригонометрическую функцию от одного и того же аргумента.

Примеры: sin 2 x – cos x – 1 = 0,

tg 3x + 2 ctg 3x – 3 = 0.

Преобразованиями sin 2 x= 1 — cos 2 x и ctg 3x = эти уравнения приводятся к алгебраическим, решая которые получаем простейшие тригонометрические уравнения. Метод сведения к квадратному состоит в том, что, пользуясь изученными формулами, надо преобразовать уравнение к такому виду, чтобы какую-то функцию (например, sin x или cos x) или комбинацию функций обозначить через y, получив при этом квадратное уравнение относительно y.

2.Уравнения, решаемые разложением на множители.

Под разложением на множители понимается представление данного выражения в виде произведения нескольких множителей. Если в одной части уравнения стоит несколько множителей, а в другой – 0, то каждый множитель приравнивается к нулю. Таким образом, данное уравнение можно представить в виде совокупности более простых уравнений.

sin 4x — cos 2x = 0,

2 sin 2x cos 2x — cos 2x = 0,

cos 2x (2 sin 2x – 1) = 0,

cos 2x = 0 или 2 sin 2x – 1 = 0.

3.Уравнения однородные относительно sin x и cos x.

Примеры: 3 sin 2 x + 4 sin x cos x + cos 2 x =0,

2 sin 3 5x — 2 sin 2 5x cos 5x + sin 5x cos 2 5x – cos 3 x =0,

3 sin 7x — 2 cos 7x =0.

Если первый коэффициент не равен нулю, то разделив обе части уравнения на cos n x, получим уравнение n- степени, относительно tg. Решая полученное уравнение перейдем к простейшему. При делении уравнения на выражение, содержащее неизвестное, могут быть потеряны корни. Поэтому нужно проверить, не являются ли корни уравнения cos x =0 корнями данного уравнения. Если cos x =0, то из уравнений следует, что sin x = 0. Однако sin x и cos x не могут одновременно равняться нулю, так как они связаны равенством sin 2 x + cos 2 x = 1. Следовательно, при делении уравнения на cos n x, получаем уравнение, равносильное данному. В случае, если первый или последний коэффициент равен нулю, то имеет смысл вынести за скобки sin x или cos x. Решить уравнение приравняв к нулю каждый множитель.

4.Уравнения, сводящиеся к однородным.

Примеры: 3 sin 2 x — sin x cos x — 4cos 2 x =2,

sin 3 x + sin x cos 2 x – 2cos x =0.

Эти уравнения сводятся к однородным уравнениям следующим образом:

3 sin 2 x — sin x cos x — 4cos 2 x =2 (sin 2 x + cos 2 x),

sin 3 x + sin x cos 2 x – 2cos x(sin 2 x + cos 2 x) =0.

5. Уравнения, линейные относительно sin x и cos x

а sin x + в cos x = с, где а, в и с – любые действительные числа.

Если а=в=0, а с0, то уравнение теряет смысл;

Если а=в=с=0, то х – любое действительное число, то есть уравнение обращается в тождество.

Рассмотрим случай, когда а,в,с 0.

sin x + 4 cos x = 1,

3 sin 5x — 4 cos 5x = 2,

2 sin 3x + 5 cos 3x = 8.

Последнее уравнение не имеет решений, так как левая часть его не превосходит 7.

Уравнения, этого вида можно решить многими способами: с помощью универсальной подстановки, выразив sin x и cos x через tg ; сведением уравнения к однородному; введением вспомогательного аргумента и другими.

Рассмотрим последний из них.

Разделим обе части уравнения на .

Так как += 1, то найдется аргумент φ, при котором

Уравнение примет вид sin x cos φ + sin φ cos x = .

Используя формулу получим sin (x+ φ) = .

Следовательно решением уравнения будет х = (-1) n arcsin — arccos+ π n, nZ.

Решение этого уравнения существует при a 2 + b 2 c 2 .

6.Уравнения, сводящиеся к равенству одной тригонометрической функции от различных аргументов:

1) sin x = sin у, 2) cos x = cos у, 3) tg x = tg у.

При решении этих уравнений можно применить метод использования условий равенства одноименных тригонометрических функций. Равенство этих функций имеет место тогда и только тогда, когда, соответственно, x = (-1) n y + π n,

f(x) = π — g(x) + 2 π n

Примеры: cos 4x = sin 6х, сtg x = tg .

Первое уравнение с помощью формул приведения приводим к виду : sin(- 4x) = sin 6х, а второе – к виду tg (- x) = tg .

Решим уравнение tg 3x tg (5x + ) = 1.

Разделим обе части уравнения на tg 3x. Это допустимо, так как в данных условиях tg 3x не может равняться нулю:

tg (5x + ) = , tg (5x + ) = сtg 3x, tg (5x + ) = tg ( — 3x).

На основании условия равенства тангенсов двух углов имеем:

8х = + π n; х = + ; х = (6n + 1) , nZ.

При каждом значении х из этой совокупности каждая из частей уравнения tg (5x + ) = tg ( — 3x) существует.

Уравнения sin x = sin у и cos x = cos у можно решать и с применением формул, заменив разность функций произведением.

7. Выделение полного квадрата в тригонометрических уравнениях.

sin 4 x + cos 4 x = sin 2х,

cos 6 x + sin 6 х = cos 2x,

cos 6 x + sin 6 х + sin 4 x + cos 4 x = 1 — sin 2х.

Данный метод можно применить для уравнений, содержащих следующие выражения:

sin 4 x + cos 4 x, cos 6 x sin 6 х, sin 8 х cos 8 x.

Преобразуем первое выражение:

sin 4 x + cos 4 x = sin 4 x + 2 sin 2 x cos 2 x +cos 4 x — 2 sin 2 x cos 2 x = (sin 2 x + cos 2 x) 2 — 2= 1 — sin 2 2х .

Преобразуем второе выражение:

cos 6 x + sin 6 х = (cos 2 x + sin 2 х) ( sin 4 x — sin 2 x cos 2 x +cos 4 x) = 1 — sin 2 2х — sin 2 2х = 1 — sin 2 2х.

cos 6 x — sin 6 х = (cos 2 x — sin 2 х) ( sin 4 x + sin 2 x cos 2 x +cos 4 x) = cos 2x (1 — sin 2 2х + sin 2 2х) = cos 2x (1 — sin 2 2х).

Можно упростить эти выражения и с помощью формул понижения степени.

8. Уравнения вида f(sin х + cos x, sinх cosx) = 0, f(sin х — cos x, sinх cosx) = 0.

Решить такие уравнения можно заменой sin х + cos x = t или sin х — cos x = t.

sin х + cos x = 1 + sin 2х,

6 sinх cosx + 2 sin х = 2 + 2 cos x,

3 sin 3х = 1 + 3 cos 3x — sin 6х.

После преобразования и соответствующей замены эти уравнения сводятся к квадратным. В первом уравнении, сделав замену sin х + cos x = t, получим

sin 2 x + 2 sin x cos x +cos 2 x = t 2 , 1 + sin 2х = t 2 , sin 2х = 1 — t 2 . Уравнение примет вид t = 1 + 1 — t 2 .

9. Универсальная тригонометрическая подстановка tg = t.

Эта подстановка позволяет рационально выразить все тригонометрические функции через одну переменную.

sin х = ; cos x = ; tg x = .

Значит, если tg = t, то sin х = , cos x = , tg x = . Универсальная подстановка может привести к потере корней, так как tg не существует при = + π n, значит x π + 2 π n.

ctg + sin х + tg x = 1,

sin 2х + cos x = 2 — tg x.

Решим уравнение ctg = 2 — sin х.

Пусть tg = t, тогда sin х = , а так как tg ctg = 1, то ctg = .

Получим = 2 — , 2 t 3 – 3t 2 + 2t – 1= 0, (t — 1)(2t 2 – t + 1) = 0.

Уравнение 2t 2 – t + 1 = 0 не имеет решений, значит t – 1 = 0, t = 1.

Следовательно, tg = 1, x = + 2 π n, nZ. Убедимся, что x = π + 2 π n не является решением исходного уравнения.

10 . Метод использования свойства ограниченности функции.

Суть этого метода заключается в следующем: если функции f(х) и g(х) таковы, что для всех х выполняются неравенства f(х)а и g(х) в, и дано уравнение

f(х) + g(х) = а + в, то оно равносильно системе

3 sin 5 x + 2 cos 5 x = 5 ⇔

2 sin 2 2x + 1 = cos 5x ⇔

sin 9х + cos 3x = — 2 ⇔

Решим последнее уравнение sin — cos 6x = 2.

Так как и , то имеем систему: ; ;

Покажем общее решение на тригонометрической окружности. Решение первого уравнения системы обозначим , а второго – точкой и найдем их общее решение.

Нужна ли проверка решения тригонометрического уравнения? На этот вопрос утвердительно ответить нельзя. Если тригонометрическое уравнение представляет собой целый многочлен относительно синуса и косинуса и если грамотно решать уравнение, то проверка может понадобится только для самоконтроля – для уверенности в правильности решения. Проверка, как правило, не нужна. Если следить в процессе решения уравнения за равносильностью перехода, то проверку решения можно не делать. Если же решать уравнение без учета равносильности перехода, то проверка обязательно нужна, особенно когда уравнение содержит тангенс, котангенс, дробные члены или тригонометрические функции от неизвестного, входящие под знак радикала. Не сделав в этом случае проверку, приходят к грубым ошибкам, к посторонним решениям. При решении уравнений, содержащих дробные члены, нужно следить за сокращением дробей, ссылаясь на основное свойство дроби. В этом случае мы избегаем посторонних корней и избавляем себя от проверки найденных решений.

Проблемы, возникающие при решении тригонометрических уравнений.

  1. Делим на g(х).
  2. Применяем опасные формулы.

1 сosx = sinx* sin,

Заменим левую часть уравнения по формуле 1 — сosx = 2sin 2 ,

а правую часть уравнения по формуле sinx = 2sin *cos , получим

2sin 2 = 2sin * сos *sin , разделим на 2 sin 2 обе части уравнения, получим 1 = сos , решая это уравнение, найдем корни = 2 π n, x = 4 π n, n Z.

Потеряли корни sin = 0, х = 2 π k, k Z.

Правильное решение: 2sin 2 (1 – сos ) = 0.

sin 2 = 0 или 1 – сos = 0

x = 2 π k, k ∈ Z. x = 4 π n, n ∈ Z.

Ответ: x = 2 π k, k ∈ Z, x = 4 π n, n ∈ Z.

2. Посторонние корни.

  1. Освобождаемся от знаменателя.
  2. Возводим в четную степень.

( sin4x – sin2x – сos3x + 2sinx — 1):(2sin2x — ) = 0.

Проект «Методы решения тригонометрических уравнений!

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

О бластное государственное автономное

дополнительного профессионального образования

«Белгородский институт развития образования»

Методы решения тригонометрических уравнений

Остапенко Татьяна Ивановна,

учитель математики и физики

МБОУ «Бехтеевская СОШ

Тригонометрические уравнения возникают при решении задач по планиметрии, стереометрии, астрономии, физики и в других областях. Еще древнегреческие математики, используя элементы тригонометрии для решения прямоугольных треугольников, фактически составляли и решали простейшие тригонометрические уравнения. Исторически учение о решении тригонометрических уравнений формировалось с развитием теории тригонометрических функций, а также черпало из алгебры общие методы их решения.

Цель работы: изучить методы решения тригонометрических уравнений, исследовать применение их к решению уравнений повышенной сложности и задач различного содержания.

Уравнение, содержащее неизвестную величину под знаком триго­нометрической функции, называется тригонометрическим.

Часть тригонометрических уравнений непосредственно решается сведением их к простейшему виду, иногда – с предварительным разложением левой части уравнения на множители, когда правая часть равна нулю. В некоторых случаях удается произвести замену неизвестных таким образом, что тригонометрическое уравнение преобразуется в «удобное» для решения алгебраическое уравнение.

Простейшие тригонометрические уравнения — это уравнения вида

sin x = a, cos x= a, tq x = a, ctq x = a

Каждое из таких уравнений решается по формулам, которые следует знать.

sinx = a, x = (-1) k arcsin a + πk, k Є Z,

arcsin a — угол, содержащийся в промежутке от — π/2 до π/2, синус которого равен a.

cosx= a, x= arccos a +2πk, k Є Z,

arccos a — угол, содержащийся в промежутке от 0 до π, косинус которого равен a .

tq x = a, x = arctq a + πk, k Є Z,

arctg a — угол, содержащийся в промежутке от — π/2 до π/2, тангенс которого равен a .

ctq x = a, x = arcctq a + πk, k Є Z,

arcctg a — угол, содержащийся в промежутке от 0 до π, котангенс которого равен a .

Поскольку каждому значению тригонометрической функции соответствует неограниченное множество углов, то тригонометрическое уравнение, если не сделано каких-либо оговорок, имеет бесчисленное множество решений.

Особо используются частные случаи элементарных тригонометрических уравнений, когда тригонометрические функции равны -1, 0, 1, в которых решение записывается без применения общих формул.

При решении тригонометрических уравнений важную роль играет период тригонометрических функций.

Рекомендации по решению тригонометрических уравнений

Если аргументы функций одинаковые, попробовать получить одинаковые функции, использовав формулы без изменения аргументов.

Если аргументы функций отличаются в два раза, попробовать получить одинаковые аргументы, использовав формулы двойного аргумента.

Если аргументы функций отличаются в четыре раза, попробовать их привести к промежуточному двойному аргументу.

Если есть функции одного аргумента, степени свыше первой, попробовать понизить степень, используя формулы понижения степени или формулы сокращенного умножения.

Если есть сумма одноименных функций первой степени с разными аргументами (вне случаев 2,3), попробовать преобразовать сумму в произведение для появления общего множителя.

Если есть сумма разноимённых функций первой степени с разными аргументами (вне случаев 2, 3), попробовать использовать формулы приведения, получить затем случай 5.

Если в уравнении есть произведение косинусов (синусов) различных аргументов, попробовать свести его к формуле синус двойного аргумента, умножив и разделив это выражение на синус (косинус) подходящего аргумента:

Если в уравнении есть числовое слагаемое (множитель), то его можно представить в виде значений функции угла. Например:

Методы решения тригонометрических уравнений.

При решении тригонометрических уравнений все задачи сводятся к тому, чтобы привести к такому виду, чтобы слева стояла элементарная тригонометрическая функция, а справа – число. После того, как это будет достигнуто, следует найти значение аргумента функции , используя одну из основных формул выражения аргумента через обратные тригонометрические функции.

Алгебраические уравнения относительно одной из тригонометри­ческих функций.

Необходимо произвести замену неизвестных таким образом, чтобы тригонометрическое уравнение преобразовалось в «удобное» для решения алгебраическое уравнение.

1)Решить уравнение 2 sin 2 + 3 sin —2 = 0.

Это уравнение является квадратным относительно sin .

Его корни: sin = , sin =—2. Второе из полученных простейших уравнений не имеет решений, так как Isin l 1, решения первого можно записать так:

+2 k ,π+ 2 k

Если в уравнении встречаются разные тригонометрические функции, то надо заменить их все на какую-нибудь одну, используя три­гонометрические тождества.

2) Решить уравнение 2 sin + cos = 2.

Если в этом уравнении заменим косинус на синус (по аналогии с предыдущими примерами) или наоборот, то по­лучим уравнение с радикалами. Чтобы избежать этого, ис­пользуем формулы, выражающие синус и косинус через тангенс половинного угла:

и .

Делая замену, получаем уравнение относительно: .

Квадратное уравнение имеет корни откуда

Это же уравнение можно решить другим способом, вводя вспомогательный угол:

Пусть. Тогда можно продолжить преобразование: . Получаем простей­шее уравнение т. е. , откуда , или

Ответ получился в другом виде, однако можно проверить, что решения на самом деле совпадают.

Понижение порядка уравнения.

Формулы удвоения позволяют квадраты синуса, косинуса и их произведения заме­нять линейными функциями от синуса и косинуса двойного угла. Такие замены делать выгодно, так как они понижают порядок уравнения.

1)Решить уравнение.

Можно заменить cos 2 на 2 cos 2 —1 и получить квадратное уравнение относительно cos , но проще заменитьна и получить линейное уравнение относительно.

2) Решить уравнение

Подставляя вместо, их выражения через, получаем:

,

2

Использование тригонометрических формул сложения и след­ствий из них.

Иногда в уравнениях встречаются тригонометрические функции кратных углов. В таких случаях нужно использовать формулы сложения.

1) Решить уравнение.

Сложим два крайних слагаемых:, откуда,. Тогда, .

2) Решить уравнение.

Преобразуем произведение синусов в сумму:,

откуда. Полученное уравнение можно ре­шить разными способами: 1) воспользоваться формулами сложения; 2) преобразовать в произведение. Удобнее воспользоваться условием равенства косинусов двух углов и:.

Получаем два уравнения:.

Здесь решения второй серии содержат в себе все решения первой серии. Учитывая это, ответ можно записать короче:.

Уравнение, в котором каждое слагаемое имеет одну и ту же степень, называется однородным. Его можно решить, выполнив деление на старшую степень синуса (или косинуса).

Так как, то постоянные слагаемые можно счи­тать членами второй степени.

Пример: .

Заменяя 4 на ,получаем:

Переход к половинному углу

Рассмотрим этот метод на примере:

Пример 6. Решить уравнение: 3 sin x – 5 cos x = 7.

6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

t g ² ( x / 2 ) – 3 t g ( x / 2 ) + 6 = 0 ,

Введение вспомогательного угла

Рассмотрим уравнение вида:

a sin x + b cos x = c ,

где a, b, c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль (абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1. Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение принимает вид:

Пример. Решить уравнение:

Приемы решения тригонометрических уравнений, требующих искусственных преобразований.

Умножение обеих частей уравнения на одну и ту же тригонометрическую функцию.

Пример. Решите уравнение

Решение. Раскроем скобк и и преобразуем про­изведение

в сумму:

Умножим обе части уравнения на. Заме­тим, что , не является решением данного уравнения. . Преобразуем левую часть уравнения:

; или тогда

или, т.е.

Исключим из найденных серий корни вида , :

а). Ясно, что — четное число, т.е. , а потому .

б). Tax как , то ,но тогда ,.

Ответ:

Прибавление к обеим частям уравнения одного и того же числа, одной и той же тригонометрической функции.

Пример. Решите уравнение.

Решение. Область определения уравнения задается неравенствами:

При6авим к обеим частям уравнения по единице. ;

Разделим обе части уравнения на и после преобразований получим.

Тогда или .

Из первой серии корней области определения принадлежит только , но это серия корней содержится в серии. Нетрудно убедиться, что входит в область определения. Например:что верно, поскольку левая часть — число четное, а правая — нечетное.

Ответ:.

Тождественные преобразования одной из частей уравнения.

Пример. Решите уравнение .

Решение. Преобразуем левую часть уравнения:

Откуда , тогда или

Легко видеть, что

Ответ:

Использование свойств пропорции.

Необходимо помнить, что применение равенств

и т. д. приводит к изменению области определения урав­нения. Так, у пропорции существует ограничение: , а у пропорции место другое ограничение:.

Пример. Решите уравнение

Решение. Применяя формулу тангенса разности, получим уравнение: . Используем свойство пропорции: ;

Область определения исходного уравнения:

В ходе решения произошло сужение области определения, добавились новые, ограничения: откуда

Проверим, удовлетворяют ли исходному уравне­нию значения

а) -верное равенство,

— решение исходного уравнения.

б) верное равенство.

в)-1 -1 — верное равенство, Ответ:

Решение тригонометрических уравнений методом экстремальных значений.

При решении некоторых тригонометрических уравнений бывает удобно использовать ограничен­ность функций, и. Покажем это на конкретных примерах.

Пример 1. Решите уравнение .

Решение. Так как , то ,, откуда и возможные корни данного уравнения Подставив эти значения в левую часть уравне­ния, получим а последнее равенство возможно только при .

Следовательно, — решение дан­ного уравнения.

Ответ:

Пример 2. Решите уравнение .

Решение. Легко видеть, что и . Следовательно, , но тогда , , откуда , — возможные корни данного

уравнения. Подстановка в данное урав­нение показывает, что эти числа действительно являются его корнями.

Ответ:.

Уравнения, содержащие модуль функции и корень четной степени

При отборе корней нет надобности решать неравенство, достаточно вынести корни на тригонометрический круг и выбрать нужные.

Ответ:

Решение: Учитывая ОДЗ функций, получим:

Ответ:

Уравнения повышенной сложности

2sin 3 x +2sin 2 x cos x – sin x cos 2 x – cos 3 x = 0 | : cos 3 x ≠ 0;

т.к. уравнение однородное тригонометрическое 3-ей степени

2 tg 3 x + 2 tg 2 x – tgx – 1 = 0;

Разложим левую часть на множители, сгруппировав члены, получим

(tg x + 1)(2tg 2 x – 1) = 0;

tgx = -1 х = — + n , n ͼ Z

tgx= ; х = arctg + k, k ͼ Z.

Ответ : — + n , n ͼ Z ; arctg + k, k ͼ Z.

( Сканави М.И. 8.081)

6sin 2 x + sin x cos x – cos 2 x = 2;

4sin 2 x + sin x cos x – 3 cos 2 x = 0; | : cos 2 x ≠ 0;

т. к. уравнение однородное тригонометрическое 2-ой степени

4tg 2 x + tg x – 3 = 0;

tgx = -1, х = — + n , n ͼ Z

tgx= ; х = arctg + k, k ͼ Z.

Ответ : — + n , n ͼ Z;

arctg + k, k ͼ Z.

( Сканави М.И. 8.076)

sin x – sin 2 x + sin 5 x + sin 8 x = 0;

сгруппировав первое с третьим, второе с четвертым слагаемые левой части и применив формулы суммы и разности синусов, получим

2sin 3x cos 2x + 2sin 3x cos 5x = 0;

вынесем в левой части общий множитель за скобки и применим формулу суммы косинусов

2sin 3x ∙ 2 cos cos = 0;

sin 3x = 0, x = , n ͼ Z

cos = 0, x = + , k ͼ Z

cos = 0; x = + , m ͼ Z.

Произведем отбор корней, воспользовавшись тригонометрической окружностью

Ответ: , n ͼ Z ;

+ , k ͼ Z \ < 7 m +3| m ͼ Z >.

( Сканави М.И. 8.076)

= 2;

воспользуемся формулой косинуса двойного угла

= 2;

sin = 1,

sin ≠ 0;

sin = 1;

х= + 4 , k ͼ Z .

Ответ: + 4 , k ͼ Z .

(Сканави М.И. 8.120)

+ =0

;понизим степень, воспользовавшись формулами косинуса двойного угла

1 +cos x +1 + cos 3x -1 +cos 4x -1 +cos 8x =0;

сгруппируем слагаемые и воспользуемся формулой суммы косинусов

2cos 2x cos x + 2cos 2x cos 6x =0;

2cos 2x 2cos 3,5x cos 2,5x=0;

произведение всюду определенных множителей равно нулю тогда и только тогда, когда хотя бы один из этих множителей равен нулю

cos 2x=0 2x= + , n ͼ Z

cos 3,5x=0 3,5x= + , m ͼ Z

cos 2,5x=0; 2,5x= + , k ͼ Z;

x= + , n ͼ Z

x= + , m ͼ Z

x= + , k ͼ Z .

Ответ: + , n ͼ Z ;

+ , m ͼ Z ;

+ , k ͼ Z .

Изучение тригонометрических уравнений позволяет учащимся овладеть конкретными математическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, развития умственных способностей, умение извлекать учебную информацию на основе сопоставительного анализа графиков, самостоятельно выполнять различные творческие работы.

В данной работе рассмотрены основные методы решения тригонометрических уравнений, причем, как специфические, характерные только для тригонометрических уравнений, так и общие функциональные методы решения уравнений, применительно к тригонометрическим уравнениям.

Для успешного решения уравнений необходимо знать формулы корней простейших тригонометрических уравнений, значение тригонометрических функций для основных углов и значение обратных тригонометрических функций, универсальные правила решения уравнений. Рассмотрено решение элементарных тригонометрических уравнений, метод разложения на множители, методы сведения тригонометрических уравнений к алгебраическим. Указано, что при решении тригонометрических уравнений широко используются тождества, выражающие соотношение между тригонометрическими функциями одного и разных аргументов.

Приведенные методы не исчерпывают все многообразие способов решений тригонометрических уравнений. Однако рассмотренные типы уравнений встречаются наиболее часто и важно уметь распознавать в данном уравнении тот или иной тип.

Результаты данной работы могут быть использованы в качестве учебного материала при подготовке творческих работ, при составлении факультативных курсов для школьников, так же работа может применяться при подготовке учащихся к Единому государственному экзамену, вступительным экзаменам.

Алексеев А. Тригонометрические подстановки. // Квант. – 1995. — №2. –с. 40 – 42.

Выгодский М. Я. «Справочник по элементарной математике». М., «Наука», 1982 г.

Г. И. Глейзер История математики в школе. – М.: «Просвещение» 1983г.

Карасев В.А., Лёвшина Г.Д. «12 уроков по тригонометрии» — М.: Илекса, 2013.- 200 с.:ил.

Крамор В.С. Тригонометрические функции. – М.: Просвещение, 1979.

Сост. Гряда Н. Н. и др. Обобщающее повторение в системе подготовки к ЕГЭ по теме «Тригонометрические уравнения», Армавир, 2005г.

Цукарь А.Я. Упражнения практического характера по тригонометрии //Математика в школе. 1993-№3- с 12-15.

Шаталов В.Ф. Методические рекомендации для работы с опорными сигналами по тригонометрии. — М.: Новая школа, 1993.


источники:

http://nsportal.ru/shkola/algebra/library/2012/07/24/metody-resheniya-trigonometricheskikh-uravneniy

http://infourok.ru/proekt_metody_resheniya_trigonometricheskih_uravneniy-574453.htm