Тригонометрические уравнения вида ctg a

Тригонометрические уравнения вида ctg a

Простейшие тригонометрические уравнения

Тригонометрическое уравнение – это уравнение, содержащее неизвестное под знаком тригонометрической функции.

Простейшими тригонометрическими уравнениями называют уравнения вида
sin x = a, cos x = a, tg x = a, ctg x = a, где a – действительное число (a ∈ R).

Уравнение cos x = a.

Принцип:

arccos a = x.

Следовательно, cos x = a.

Условия: модуль а не больше 1; x не меньше 0, но не больше π

Формулы:

x = ± arccos a + 2πk, где k – любое целое число

arccos (-a) = π – arccos a, где 0 ≤ a ≤ 1

Пример 1 : Решим уравнение

Применим первую формулу:

Сначала находим значение арккосинуса:

√3 π
arccos —— = —
2 6

Осталось подставить этот число в нашу формулу:

Пример 2 : Решим уравнение

Сначала применим первую формулу из таблицы:

Теперь с помощью второго уравнения вычислим значение арккосинуса:

√3 √3 π π π 6π π 5π
arccos (– ——) = π – arcos —— = π – — = — – — = — – — = ——
2 2 6 1 6 6 6 6

Применяя формулу для —а, обращайте внимание на знак а: он меняется на противоположный.

Осталось подставить значение арккосинуса и решить пример:

Уравнение sin x = a.

Принцип:

arcsin a = x,

следовательно sin x = a.

Условия: модуль а не больше 1; x в отрезке [-π/2; π/2]

Формулы.

(1 из 3)

x = arcsin a + 2πk

x = π – arcsin a + 2πk

Эти две формулы можно объединить в одну:
x = (–1) n arcsin a + πn

(k – любое целое число; n – любое целое число; | a | ≤ 1)

Значение четного n: n = 2k

Значение нечетного n: n = 2k + 1

Если n – четное число, то получается первая формула.

Если n – нечетное число, то получается вторая формула.

√3
Пример 1 : Решить уравнение sin x = ——
2

Применяем первые две формулы:

√3
2) x = π – arcsin —— + 2πk
2

Находим значение арксинуса:

√3 π
arcsin —— = —
2 3

Осталось подставить это значение в наши формулы:

π 2π
2) x = π – — + 2πk = —— + 2πk
3 3

Пример 2 : Решим это же уравнение с помощью общей формулы.

Пояснение : если n будет четное число, то решение примет вид № 1; если n будет нечетным числом – то вид №2.

(2 из 3)
Для трех случаев есть и более простые решения:

Если sin x = 0, то x = πk

Если sin x = 1, то x = π/2 + 2πk

Если sin x = –1, то x = –π/2 + 2πk

Пример 1 : Вычислим arcsin 0.

Пусть arcsin 0 = x.

Тогда sin x = 0, при этом x ∈ [–π/2; π/2].

Синус 0 тоже равен 0. Значит:

Пример 2 : Вычислим arcsin 1.

Пусть arcsin 1 = x.

Число 1 на оси ординат имеет имя π/2. Значит:

(3 из 3)


arcsin (–a) = –arcsin a

Пример : Решить уравнение

√3
2) x = π – arcsin (– ——) + 2πk
2

Находим значение арксинуса:

√3 √3 π
arcsin (– ——) = – arcsin (——) = – —
2 2 3

Подставляем это значение arcsin в обе формулы:

π
1) x = – — + 2πk
3
π π 4π
2) x = π – (– —) + 2πk = π + — + 2πk = —— + 2πk
3 3 3

Уравнение tg x = a.

Принцип:

arctg a = x,

следовательно tg x = a.

Условие: x больше –π/2, но меньше π/2

(–π/2
Пример 1 : Вычислить arctg 1.

Пусть arctg 1 = x.

Тогда tg x = 1, при этом x ∈ (–π/2; π/2)

π π
x = — при этом — ∈ (–π/2; π/2)
4 4

π
Ответ : arctg 1 = —
4

Пример 2 : Решить уравнение tg x = –√3.

arctg (–√3) = –arctg √3 = –π/3.

Уравнение ctg x = a.

Принцип:

arcctg a = x,

следовательно ctg x = a.

Условие: x больше 0, но меньше π

(0 Пример 1 : Вычислить arcctg √3.

Ответ : arcctg √3 = π/6

Пример 2 : Вычислить arcctg (–1).

Применяя формулу (2), обращайте внимание на знак а: он меняется на противоположный. В нашем примере –1 меняется на 1:

arcctg (–1) = π – arcctg 1 = π – π/4 = 3π/4.

Арккотангенс и решение уравнения ctg x=a (продолжение)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы продолжим изучение арккотангенса и решение уравнений вида ctg x = a для любого а. В начале урока решим уравнение с табличным значением и проиллюстрируем решение на графике, а потом и на круге. Далее решим уравнение ctgt = a в общем виде и выведем общую формулу ответа. Проиллюстрируем вычисления на графике и на круге и рассмотрим различные формы записи ответа. В конце урока решим несколько типовых уравнений и задач с арккотангенсом.

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)


источники:

http://interneturok.ru/lesson/algebra/10-klass/trigonometricheskie-uravneniyab/arkkotangens-i-reshenie-uravneniya-ctg-x-a-prodolzhenie

http://ya-znau.ru/znaniya/zn/280