Целая дробная часть числа уравнения

Целая и дробная части числа

Разделы: Математика

Цели урока: познакомить учащихся с понятием целой и дробной части числа; сформулировать и доказать некоторые свойства целой части числа; познакомить учащихся с широким спектром применения целой и дробной части числа; совершенствовать умение решать уравнения и системы уравнений, содержащих целую и дробную части числа.

Оборудование: плакат “Кто смолоду делает и думает сам, тот и становится потом надёжнее, крепче, умнее” (В. Шукшин).
Проектор, магнитная доска, справочник по алгебре.

  1. Организационный момент.
  2. Проверка домашнего задания.
  3. Изучение нового материала.
  4. Решение задач по теме.
  5. Итоги урока.
  6. Домашнее задание.

I. Организационный момент: сообщение темы урока; постановка цели урока; сообщение этапов урока.

II. Проверка домашнего задания.

Ответить на вопросы учащихся по домашнему заданию. Решить задачи, вызвавшие затруднения при выполнении домашней работы.

III. Изучение нового материала.

Во многих задачах алгебры приходится рассматривать наибольшее целое число, не превосходящее данного числа. Такое целое число получило специальное название “целая часть числа”.

Целой частью действительного числа х называется наибольшее целое число, не превосходящее х. Целая часть числа х обозначается символом [x] или Е(х) (от французского Entier “антье” ─ “целый”). Например, [5] = 5, [ π ] = 3,

Из определения следует, что [x] ≤ х, так как целая часть не превосходит х.

С другой стороны, т.к. [x] – наибольшее целое число, удовлетворяющее неравенству, то [x] +1>х. Таким образом, [x] есть целое число, определяющееся неравенствами [x] ≤ х α = υ ─ [x] называют дробной частью числа х и обозначают <х>. Тогда имеем: 0 ≤ <х>0 ≤ α о [x+у] = [x] + [у].

Если 1≤ α т.е. α = 1 + α` , где 0 ≤ α` α` и

Это свойство распространяется на любое конечное число слагаемых:

Умение находить целую часть величины очень важно в приближенных вычислениях. В самом деле, если мы умеем находить целую часть величины х, то, приняв [x] или [x]+1 за приближенное значение величины х, мы сделаем погрешность, величина которой не больше единицы, так как

≤ х – [x] ≥ 0 , а во-вторых, в сумме, стоящей в середине полученного двойного неравенства, все слагаемые, начиная с третьего, равны 0, так что x .

Поскольку х – целое число, то остается проверить значения от 0 до 6. Решениями уравнения оказываются числа 0,4 и 5.

Задача 7. Решить систему уравнение

(Провести проверку с помощью проектора.)

Найти число корней уравнения

Преобразуем, неравенство к виду , откуда получим, что искомое количество целых чисел равно 5. Значит, число корней данного уравнения равно 5.

Задача 9. (Соросовская олимпиада).

а) провести проверку самостоятельных работ с помощью проектора;

б) ответить на вопросы:

  1. “Дайте определение целой и дробной части числа”;
  2. “При решении, каких задач используется целая и дробная часть числа?”;

в) выставление отметок.

VI. Домашнее задание.

Дополнительная задача (по желанию).

Некто измерил длину и ширину прямоугольника. Он умножил целую часть длины на целую часть ширины и получил 48; умножил целую часть длины на дробную часть ширины и получил 3,2; умножил дробную часть длины на целую часть ширины и получил 1,5. Определите площадь прямоугольника.

Решение уравнений, содержащих целую часть числа стр. 1-2

Главная > Решение

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Министерство образования Российской Федерации

Целая и дробная части числа

Выполнил: Остащенко О. Г.

г. Братск, 10 класс, МОУ »СОШ №38»

Научный руководитель: Попугаева Г. Н.

Решение уравнений, содержащих целую часть числа—————стр. 1-2

Решение уравнений, содержащих дробную часть числа ———-стр. 3-4

Решение неравенства, содержащего целую и дробную части числа-стр. 5

Преобразование графиков в системе координат ———————стр. 9-10

Графики, содержащие целую и дробную части——————— стр. 11-12

Графическое решение уравнений, содержащих целую и дробную части числа—————————————————————————стр. 13

В данной работе даются определения таких понятий, как »дробная» и »целая» части числа, решения задач на данную тему, не входящую в программу для общеобразовательных школ, но предлагаемых на вступительных экзаменах по математике и олимпиадах.

Участвуя в олимпиадах по математике, я столкнулся с трудностями при использовании таких понятий, как »целая» и »дробная» части числа, эти понятия представляют наибольшую сложность, как в логическом, так и в техническом плане. Так как данной темы нет в программе для общеобразовательных школ, то я поставил перед собой следующие цели:

познакомиться с понятиями »целая» и »дробная» части числа

уметь применять эти понятия при решении уравнений и неравенств

рассмотреть функции вида: y=[ x ] и y= < x >их графики и свойства

Целая часть числа — 1 —

Целой частью числа x называется наибольшее целое число n, не превышающее x. Целая часть числа x обозначается символом [x] или (реже) E(x) (от фр. entier «антье» — целый).

Примеры: [2,6] = 2; [- 2,6] = -3.

Свойство целой части числа:

Если x принадлежит интервалу [n; n +1), где n — целое число, то [x]=n, т.е. x находится в интервале [ [x]; [x]+1). Значит [x] x Решение уравнений, содержащих целую часть числа

Решение системы неравенств:


Дробная часть числа — 3 —

Дробной частью числа называют разность между самим числом x и его целой частью.

Свойство дробной части числа:

Дробная часть числа всегда неотрицательна и не превышает 1, т.е.

Решение уравнений, содержащих дробную часть числа

Решение неравенства, содержащего дробную и целую части числа

Функция y=[ x ], ее свойства и график

1. Функция имеет смысл для всех значений переменной x , что следует из определения целой части числа и свойств числовых множеств. Следовательно, ее областью определения является все множество действительных чисел:

2. Функция ни четная, ни нечетная, т.е. не выполняется ни условие четности ( f (- x ) = f ( x ) ), ни условие нечетности ( f (- x ) = — f ( x ) ).

3. Функция y = [ x ] не периодическая.

4. Множество значений функции y = [ x ], это множество целых чисел (по определению целой части числа)

5. Функция неограничена, так как множество значений функции — все целые числа, множество целых чисел неограничено.

6. Функция разрывная. Все целые значения x — точки разрыва первого рода с конечным скачком равным 1. В каждой точке разрыва имеется непрерывность справа.

7. Функция принимает значение 0 для всех x , принадлежащих интервалу [0;1), что следует из определения целой части числа. Следовательно, нулями функции будут все значения этого интервала.

8. Учитывая свойства целой части числа функция y = [ x ] принимает отрицательные значения при x меньших нуля, и положительные значения при x больших 1.

9. Функция y = [ x ] кусочно — постоянная и неубывающая.

10. Точек экстремума функция не имеет, так как не меняет характер монотонности.

11. Так как функция y = [ x ] постоянна на каждом интервале [ n ; n +1), она не принимает наибольшего и наименьшего значений на области определения.

12. График функции.

Функция y=< x >, ее свойства и график

1. Функция имеет смысл для всех значений переменной x , что следует из определения дробной части числа. Таким образом, область определения этой функции все действительные числа:

2. Функция ни четная, ни нечетная, не выполняется ни условие четности ( f (- x ) = f ( x ) ), ни условие нечетности ( f (- x ) = — f ( x ) ).

3. Функция периодическая с наименьшим положительным периодом T = 1.

4. Функция y = < x >принимает значения на интервале [0 ; 1), что следует из определения дробной части числа, т.е.

5. Из предыдущего свойства следует, что функция y = < x >ограничена.

6. Функция y = < x >непрерывна на каждом интервале [ n ; n +1), где n — целое, в каждой точке n функция терпит разрыв первого рода. Скачок равен 1.

7. Функция y = < x >обращается в 0 при всех целых значениях x , что следует из определения функции. То есть нулями функции будут все целочисленные значения аргумента.

8. Функция y = < x >на всей области определения принимает только положительные значения.

9. Функция, строго монотонно возрастающая на каждом интервале [ n ; n +1), где n — целое число.

10. Точек экстремума функция не имеет, так как не меняет характер монотонности.

11. Учитывая свойства 6 и 9, на каждом интервале [ n ; n +1) функция y = < x >принимает минимальное значение в точке n .

12. График функции.

Преобразование графиков в системе координат

вдоль оси OX в 2 раза

y =

вдоль оси OX в 2 раза

растяжение

вдоль оси OY в 2 раза

y = 2

вдоль оси OY в 2 раза

Изобразить на координатной плоскости множество точек, координаты которых удовлетворяют заданному условию

Построить график функции

Графическое решение уравнений содержащих целую и дробную части числа

y=1-x

y=

Ответ:

y=[x]

y=2

Ответ:

0,5[x] =

y=

y=0,5[x]

Ответ: Решений нет.

В ходе своего исследования я пришёл к выводу, что данный материал можно использовать на факультативах, элективных уроках, при подготовке к олимпиадам и вступительным экзаменам в ВУЗ.

В.А. Кирзимов, Центр образования «Царицыно» № 548, М. 2000 г.

Милованова Л.Н. Функции и их исследование.- М.: Академия педагогических наук РСФСР, 1958 г.

Глаголева Е.Г. Серебринкова Л.Г. Метод координат

Евсюк С.Л. Математика. Решение задач повышенной сложности. Минск «Мисанта» 2003 г.

Абрамов А. М. Ивлев Б.М. Задачи повышенной трудности по алгебре и началам анализа «Просвещение» 1990 г.

Методическое пособие на тему «Целая и дробная часть числа»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

История и определение целой и дробной части числа

В эпоху Средневековья жил один из величайших английских учёных монах — францисканец Уильям Оккам. Он родился в Оккаме, английском графстве Серрей, где — то между 1285 и 1300 годами, учился и преподавал в Оксфорде, а затем в Париже. Преследуемый из-за своего учения, Оккам нашел себе убежище при дворе Людовика IV Баварского в Мюнхене и, благоразумно не покидая его, прожил там вплоть до своей кончины в 1349 г.

Оккама считают одним из предшественников великих мыслителей Рене Декарта и Иммануила Канта. Согласно его философским воззрениям, реальность есть бытие конкретной вещи, поэтому «тщетно делать с большим то, что можно делать с меньшим». Это высказывание стало основой принципа экономии мышления. Уильям Оккам применял его с такой разящей силой, что он получил впоследствии столь популярное сейчас название «бритвы Оккама».

Для многих людей, не сведущих в математике, общим местом стали вопросы типа «Что же ещё можно открыть в математике?». Учитывая математическую подготовленность спрашивающих, можно предположить, что речь идёт только о математике школьного уровня. Вполне в духе Оккама мы предлагаем вопрошающим, и в первую очередь самим учащимся, некоторые задачи, варьирующие хорошо знакомые им понятия целой и дробной частей числа. На этих задачах мы покажем, как важно рассматривать не каждую задачу в отдельности, а соединять их в систему, разрабатывая общий алгоритм решения. Такой методический приём диктует нам принцип экономии мышления Оккама.

Определение: целой частью числа х называется наибольшее целое число с, не превышающее х, т.е. если [х] = с, c ≤ x c + 1.

Обозначается целая часть действительного числа x символом [x] или E(x).

Символ [x] был введён немецким математиком К. Гауссом (1771-1855) в 1808 г. для обозначения целой части числа x .

Функцию у = [х] называют функцией «Антье» ( фр. e ntier — целый) и обозначается E(x). Этот знак предложил в 1798 году французский математик А.Лежандр (1752-1833) . По некоторым значениям функции можно построить её график. Он выглядит следующим образом:

Простейшие свойства функции y = [x]:

1. Область определения функции y = [x] есть множество всех действительных чисел R.

2. Область значений функции y = [x] есть множество всех целых чисел Z .

3. Функция y = [x] кусочно-постоянная.

4. Функция y = [x] неубывающая, т. е. для любых х 1 и х 2 из R таких,

что х 1 ≤ х 2 ,имеет место неравенство [ х 1 ] ≤ [ х 2 ].

5. Для любого целого числа n и любого действительного числа x выполняется равенство: [x + n] = [x] + n.

6. Если х ─ нецелое действительное число, то справедливо следующее равенство [-x] = -[x] — 1.

7. Для любого действительного числа х верно соотношение

[x] ≤ x ─ целое число, т. е. х Z.

Возникает вопрос: «Если есть функция целой части числа, может, есть и функция дробной части числа?»

Определение: дробная часть числа (обозначается <х>) есть разность х — [х].

Построим график функции у = <х>. Он выглядит следующим образом:

Простейшие свойства функции y = :

1. Область определения функции y = есть множество всех действительных чисел R.

2. Область значений функции y = есть полуинтервал [0;1).

3. Функция y = ограничена, т. е. для любого действительного числа x имеет место соотношение: 0 ≤

4. Для любого целого числа n и любого действительного числа х выполняется равенство: = , т. е. функция y = — периодическая с основным периодом, равным единице.

5. Если х ― нецелое действительное число, то справедливо равенство: <-x>= 1 — .

Представление о том, как выглядят графики функций у = [х] и у = <х>поможет выполнить и некоторые задания.

1) Построить графики функций:

2) Какими могут быть числа х и у, если:

3) Что можно сказать о величине разности х — у , если:

4) Что больше: [а] или <а>?

2.1. Простейшие уравнения

К простейшим уравнениям относятся уравнения вида [х] = а.

Уравнения такого вида решаются по определению:

Если а — дробное число, то такое уравнение не будет иметь корней.

Рассмотрим пример решения одного из таких уравнений:

[х + 1,3] = — 5. По определению такое уравнение преобразуется в неравенство:

Это и будет являться решением уравнения.

Ответ: х[-6,3;-5,3).

Рассмотрим ещё одно уравнение, относящееся к разряду простейших:

Для решения уравнений такого вида необходимо использовать свойство функции целого числа: Если р — целое число, то справедливо равенство

Доказательство: х = [х] +

х = k + а, где k = [х], а =

[ k + a ± p ] = [ k + a ] ± p = [х] ± p .

Решим предложенное уравнение, используя доказанное свойство: Получим [х] + 1 + [х] — 2 — [х] — 3 = 2. Приведём подобные слагаемые и получим простейшее уравнение [х] = 6. Его решением является полуинтервал х[6;7), который и будет решением данного уравнения.

Ответ: х[6;7).

Рассмотрим более сложное уравнение:

Преобразуем уравнение в неравенство: 1 ≤ х 2 -5х+6

х 2 — 5х + 6

х 2 — 5х + 6 ≥ 1 и решим её;

Получаем х(1;4)

х(-∞;(5 — )/2][(5 +)/2; +∞),

х(1; (5 — )/2][(5 +)/2;4).

Ответ: х(1; (5 — )/2][(5 +)/2;4).

РЕШИТЕ ПРЕДЛОЖЕННЫЕ УРАВНЕНИЯ САМОСТОЯТЕЛЬНО:


источники:

http://gigabaza.ru/doc/37003.html

http://infourok.ru/metodicheskoe-posobie-na-temu-celaya-i-drobnaya-chast-chisla-1890919.html