Целое рациональное уравнение 3 степени

Решение кубических уравнений

Здесь мы рассматриваем решение кубических уравнений вида
(1) .
Далее считаем, что – это действительные числа.

Если исходное уравнение имеет вид:
(2) ,
то разделив его на , получаем уравнение вида (1) с коэффициентами
.

Уравнение (1) имеет три корня: , и . Один из корней всегда действительный. Действительный корень мы обозначаем как . Корни и могут быть либо действительными, либо комплексно сопряженными. Действительные корни могут быть кратными. Например, если , то и – это двукратные корни (или корни кратности 2), а – простой корень.

Если известен один корень

Пусть нам известен один корень кубического уравнения (1). Обозначим известный корень как . Тогда разделив уравнение (1) на , получим квадратное уравнение. Решая квадратное уравнение, найдем еще два корня и .

Для доказательства воспользуемся тем, что кубический многочлен можно представить в виде:
.
Тогда, разделив (1) на , получаем квадратное уравнение.

Примеры деления многочленов представлены на странице
“Деление и умножение многочлена на многочлен уголком и столбиком”.
Решение квадратных уравнений рассмотрено на странице
“Корни квадратного уравнения”.

Если один из корней – целый

Если исходное уравнение имеет вид:
(2) ,
и его коэффициенты , , , – целые числа, то можно попытаться найти целый корень. Если это уравнение имеет целый корень, то он является делителем коэффициента . Метод поиска целых корней заключается в том, что мы находим все делители числа и проверяем, выполняется ли для них уравнение (2). Если уравнение (2) выполняется, то мы нашли его корень. Обозначим его как . Далее делим уравнение (2) на . Получаем квадратное уравнение. Решая его, находим еще два корня.

Поиск рациональных корней

Если в уравнении (2) , , , – целые числа, причем , и целых корней нет, то можно попытаться найти рациональные корни, то есть корни вида , где и – целые.

Для этого умножим уравнение (2) на и сделаем подстановку :
;
(3) .
Далее ищем целые корни уравнения (3) среди делителей свободного члена .

Если мы нашли целый корень уравнения (3), то, возвращаясь к переменной , получаем рациональный корень уравнения (2):
.

Формулы Кардано и Виета для решения кубического уравнения

Если нам не известен ни один корень, и целых корней нет, то найти корни кубического уравнения можно по формулам Кардано.

Рассмотрим кубическое уравнение:
(1) .
Сделаем подстановку:
.
После этого уравнение приводится к неполному или приведенному виду:
(4) ,
где
(5) ; .

Формула Кардано для неполного (приведенного) кубического уравнения имеет вид:
;
;
;
;
.
По формуле Кардано, мы находим три корня величины . Затем, используя формулу , находим значения величины .

После разделения кубических корней величины , формула Кардано принимает следующий вид:
(6) , ,
где
(7) ; ; ;
(8) .

При , для и нужно выбирать действительные корни, которые автоматически связаны соотношением . При этом мы получим одно действительное решение и два комплексно сопряженных и .

При имеем:
; ; .
В этом случае мы имеем два кратных действительных корня. Если , то мы имеем три кратных корня.

При мы имеем три действительных корня. При этом и – комплексные. Поэтому решение приводится к тригонометрической форме, которая имеет название формулы Виета:
(9) ;
(10) ,
где
(11) ; .

Примеры решений по формулам Кардано и Виета

Решить кубические уравнения:
;
.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

Автор: Олег Одинцов . Опубликовано: 30-04-2016 Изменено: 02-10-2016

Лекция по теме «Уравнения высших степеней. Методы их решения». 9-й класс

Разделы: Математика

Класс: 9

  1. Закрепить понятие целого рационального уравнения -й степени.
  2. Сформулировать основные методы решения уравнений высших степеней (n > 3).
  3. Обучить основным методам решения уравнений высших степеней.
  4. Научить по виду уравнения определять наиболее эффективный способ его решения.

Формы, методы и педагогические приемы, которые используются учителем на уроке:

  • Лекционно-семинарская система обучения (лекции – объяснение нового материала, семинары – решение задач).
  • Информационно-коммуникационные технологии (фронтальный опрос, устная работа с классом).
  • Дифференцированное обучение, групповые и индивидуальные формы.
  • Использование исследовательского метода в обучении, направленного на развитие математического аппарата и мыслительных способностей каждого конкретного ученика.
  • Печатный материал – индивидуальный краткий конспект урока (основные понятия, формулы, утверждения, материал лекций сжато в виде схем или таблиц).
  1. Организационный момент.
    Цель этапа: включить учащихся в учебную деятельность, определить содержательные рамки урока.
  2. Актуализация знаний учащихся.
    Цель этапа: актуализировать знания учащихся по изученным ранее смежным темам
  3. Изучение новой темы (лекция). Цель этапа: сформулировать основные методы решения уравнений высших степеней (n > 3)
  4. Подведение итогов.
    Цель этапа: еще раз выделить ключевые моменты в материале, изученном на уроке.
  5. Домашнее задание.
    Цель этапа: сформулировать домашнее задание для учащихся.

1. Организационный момент.

Формулировка темы урока: “Уравнения высших степеней. Методы их решения”.

2. Актуализация знаний учащихся.

Теоретический опрос – беседа. Повторение некоторых ранее изученных сведений из теории. Учащиеся формулируют основные определения и дают формулировки необходимых теорем. Приводят примеры, демонстрируя уровень полученных ранее знаний.

  • Понятие уравнения с одной переменной.
  • Понятие корня уравнения, решения уравнения.
  • Понятие линейного уравнения с одной переменной, понятие квадратного уравнения с одной переменной.
  • Понятие равносильности уравнений, уравнения-следствия (понятие посторонних корней), переход не по следствию (случай потери корней).
  • Понятие целого рационального выражения с одной переменной.
  • Понятие целого рационального уравнения n-й степени. Стандартный вид целого рационального уравнения. Приведенное целое рациональное уравнение.
  • Переход к совокупности уравнений более низких степеней путем разложения исходного уравнения на множители.
  • Понятие многочлена n-й степени от x. Теорема Безу. Следствия из теоремы Безу. Теоремы о корнях (Z-корни и Q-корни) целого рационального уравнения с целыми коэффициентами (соответственно приведенного и неприведенного).
  • Схема Горнера.

3. Изучение новой темы.

Будем рассматривать целое рациональное уравнение n-й степени стандартного вида с одной неизвестной переменной x : Pn(x) = 0 , где Pn(x) = anx n + an-1x n-1 + a1x + a0 – многочлен n-й степени от x, an ≠ 0 . Если an = 1 то такое уравнение называют приведенным целым рациональным уравнением n-й степени. Рассмотрим такие уравнения при различных значениях n и перечислим основные методы их решения.

n = 1 – линейное уравнение.

n = 2 – квадратное уравнение. Формула дискриминанта. Формула для вычисления корней. Теорема Виета. Выделение полного квадрата.

n = 3 – кубическое уравнение.

Пример: x 3 – 4x 2 – x + 4 = 0 (x – 4)(x 2 – 1) = 0 x1 = 4 , x2 = 1, x3 = -1.

Возвратное кубическое уравнение вида ax 3 + bx 2 + bx + a = 0. Решаем, объединяя члены с одинаковыми коэффициентами.

Пример: x 3 – 5x 2 – 5x + 1 = 0 (x + 1)(x 2 – 6x + 1) = 0 x1 = -1, x2 = 3 + 2, x3 = 3 – 2.

Уравнение с целыми коэффициентами. Подбор Z-корней на основании теоремы. Схема Горнера. При применении этого метода необходимо сделать акцент на том, что перебор в данном случае конечный, и корни мы подбираем по определенному алгоритму в соответствии с теоремой о Z-корнях приведенного целого рационального уравнения с целыми коэффициентами.

Пример: x 3 – 9x 2 + 23x – 15 = 0. Уравнение приведенное. Выпишем делители свободного члена <+1; +3; +5; +15>. Применим схему Горнера:

x 3x 2x 1x 0вывод
1-923-15
111 х 1 – 9 = -81 х (-8) + 23 = 151 х 15 – 15 = 01 – корень
x 2x 1x 0

Получаем (x – 1)(x 2 – 8x + 15) = 0 x1 = 1, x2 = 3, x3 = 5.

Уравнение с целыми коэффициентами. Подбор Q-корней на основании теоремы. Схема Горнера. При применении этого метода необходимо сделать акцент на том, что перебор в данном случае конечный и корни мы подбираем по определенному алгоритму в соответствии с теоремой о Q-корнях неприведенного целого рационального уравнения с целыми коэффициентами.

Пример: 9x 3 + 27x 2 – x – 3 = 0. Уравнение неприведенное. Выпишем делители свободного члена <+1; +3>. Выпишем делители коэффициента при старшей степени неизвестного. <+1; +3; +9> Следовательно, корни будем искать среди значений <+1; +; +; +3>. Применим схему Горнера:

x 3x 2x 1x 0вывод
927-1-3
191 x 9 + 27 = 361 x 36 – 1 = 351 x 35 – 3 = 32 ≠ 01 – не корень
-19-1 x 9 + 27 = 18-1 x 18 – 1 = -19-1 x (-19) – 3 = 16 ≠ 0-1 – не корень
9 x 9 + 27 = 30 x 30 – 1 = 9 x 9 – 3 = 0корень
x 2x 1x 0

Получаем (x)(9x 2 + 30x + 9) = 0 x1 = , x2 = — , x3 = -3.

Для удобства подсчета при подборе Q-корней бывает удобно сделать замену переменной, перейти к приведенному уравнению и подбирать Z-корни.

  • Если можно воспользоваться заменой вида y = kx.

Формула Кардано. Существует универсальный метод решения кубических уравнений – это формула Кардано. Эту формулу связывают с именами итальянских математиков Джероламо Кардано (1501–1576), Николо Тарталья (1500–1557), Сципиона дель Ферро (1465–1526). Эта формула лежит за рамками нашего курса.

n = 4 – уравнение четвертой степени.

Пример: x 4 + 2x 3 + 5x 2 + 4x – 12 = 0 (x 4 + 2x 3 ) + (5x 2 + 10x) – (6x + 12 ) = 0 (x + 2)(x 3 + 5x – 6) = 0 (x + 2)(x – 1)(x 2 + x + 6) = 0 x1 = -2, x2 = 1.

Метод замены переменной.

  • Возвратное уравнение четвертой степени вида ax 4 + bx 3 + cx 2 + bx + a = 0.

Решаем, объединяя члены с одинаковыми коэффициентами, путем замены вида

  • Обобщенное возвратное уравнение четвертой степени вида ax 4 + bx 3 + cx 2 – bx + a = 0.

  • Обобщенное возвратное уравнение четвертой степени вида ax 4 + bx 3 + cx 2 + kbx + k 2 a = 0.

  • Замена общего вида. Некоторые стандартные замены.

Пример 3. Замена общего вида (вытекает из вида конкретного уравнения).

Уравнение с целыми коэффициентами. Подбор Z-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Уравнение с целыми коэффициентами. Подбор Q-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Формула общего вида. Существует универсальный метод решения уравнений четвертой степени. Эту формулу связывают с именем Людовико Феррари (1522–1565). Эта формула лежит за рамками нашего курса.

n > 5 – уравнения пятой и более высоких степеней.

Уравнение с целыми коэффициентами. Подбор Z-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Уравнение с целыми коэффициентами. Подбор Q-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Симметрические уравнения. Любое возвратное уравнение нечетной степени имеет корень x = -1 и после разложения его на множители получаем, что один сомножитель имеет вид (x + 1), а второй сомножитель – возвратное уравнение четной степени (его степень на единицу меньше, чем степень исходного уравнения). Любое возвратное уравнение четной степени вместе с корнем вида x = φ содержит и корень вида . Используя эти утверждения, решаем задачу, понижая степень исследуемого уравнения.

Метод замены переменной. Использование однородности.

Не существует формулы общего вида для решения целых уравнений пятой степени (это показали итальянский математик Паоло Руффини (1765–1822) и норвежский математик Нильс Хенрик Абель (1802–1829)) и более высоких степеней (это показал французский математик Эварист Галуа (1811–1832)).

  • Напомним еще раз, что на практике возможно использование комбинации перечисленных выше методов. Удобно переходить к совокупности уравнений более низких степеней путем разложения исходного уравнения на множители.
  • За рамками нашего сегодняшнего обсуждения остались широко используемые на практике графические методы решения уравнений и методы приближенного решения уравнений высших степеней.
  • Бывают ситуации, когда у уравнения нет R-корней. Тогда решение сводится к тому, чтобы показать, что уравнение корней не имеет. Для доказательства анализируем поведение рассматриваемых функций на промежутках монотонности. Пример: уравнение x 8 – x 3 + 1 = 0 не имеет корней.
  • Использование свойства монотонности функций. Бывают ситуации, когда использование различных свойств функций позволяет упростить поставленную задачу.
    Пример 1: уравнение x 5 + 3x – 4 = 0 имеет один корень x = 1. По свойству монотонности анализируемых функций других корней нет.
    Пример 2: уравнение x 4 + (x – 1) 4 = 97 имеет корни x1 = -2 и x2 = 3. Проанализировав поведение соответствующих функций на промежутках монотонности, заключаем, что других корней нет.

4. Подведение итогов.

Резюме: Теперь мы овладели основными методами решения различных уравнений высших степеней (для n > 3). Наша задача научиться эффективно использовать перечисленные выше алгоритмы. В зависимости от вида уравнения мы должны будем научиться определять, какой способ решения в данном случае является наиболее эффективным, а также правильно применять выбранный метод.

5. Домашнее задание.

[1]: п.7, стр. 164–174, №№ 33–36, 39–44, 46,47.

[4]: №№ 9.1–9.4, 9.6–9.8, 9.12, 9.14–9.16, 9.24–9.27.

Возможные темы докладов или рефератов по данной тематике:

  • Формула Кардано
  • Графический метод решения уравнений. Примеры решения.
  • Методы приближенного решения уравнений.

Анализ усвоения материала и интереса учащихся к теме:

Опыт показывает, что интерес учащихся в первую очередь вызывает возможность подбора Z-корней и Q-корней уравнений при помощи достаточно простого алгоритма с использованием схемы Горнера. Также учащиеся интересуются различными стандартными типами замены переменных, которые позволяют существенно упрощать вид задачи. Особый интерес обычно вызывают графические методы решения. В этом случае дополнительно можно разобрать задачи на графический метод решения уравнений; обсудить общий вид графика для многочлена 3, 4, 5 степени; проанализировать, как связано число корней уравнений 3, 4, 5 степени с видом соответствующего графика. Ниже приведен список книг, в которых можно найти дополнительную информацию по данной тематике.

  1. Виленкин Н.Я. и др. “Алгебра. Учебник для учащихся 9 классов с углубленным изучением математики” – М., Просвещение, 2007 – 367 с.
  2. Виленкин Н.Я., Шибасов Л.П., Шибасова З.Ф. “За страницами учебника математики. Арифметика. Алгебра. 10-11 класс” – М., Просвещение, 2008 – 192 с.
  3. Выгодский М.Я. “Справочник по математике” – М., АСТ, 2010 – 1055 с.
  4. Галицкий М.Л. “Сборник задач по алгебре. Учебное пособие для 8-9 классов с углубленным изучением математики” – М., Просвещение, 2008 – 301 с.
  5. Звавич Л.И. и др. “Алгебра и начала анализа. 8–11 кл. Пособие для школ и классов с углубленным изучением математики” – М., Дрофа, 1999 – 352 с.
  6. Звавич Л.И., Аверьянов Д.И., Пигарев Б.П., Трушанина Т.Н. “Задания по математике для подготовки к письменному экзамену в 9 классе” – М., Просвещение, 2007 – 112 с.
  7. Иванов А.А., Иванов А.П. “Тематические тесты для систематизации знаний по математике” ч.1 – М., Физматкнига, 2006 – 176 с.
  8. Иванов А.А., Иванов А.П. “Тематические тесты для систематизации знаний по математике” ч.2 – М., Физматкнига, 2006 – 176 с.
  9. Иванов А.П. “Тесты и контрольные работы по математике. Учебное пособие”. – М., Физматкнига, 2008 – 304 с.
  10. Лейбсон К.Л. “Сборник практических заданий по математике. Часть 2–9 класс” – М., МЦНМО, 2009 – 184 с.
  11. Макарычев Ю.Н., Миндюк Н.Г. “Алгебра. Дополнительные главы к школьному учебнику 9 класса. Учебное пособие для учащихся школ и классов с углубленным изучением математики.” – М., Просвещение, 2006 – 224 с.
  12. Мордкович А.Г. “Алгебра. Углубленное изучение. 8 класс. Учебник” – М., Мнемозина, 2006 – 296 с.
  13. Савин А.П. “Энциклопедический словарь юного математика” – М., Педагогика, 1985 – 352 с.
  14. Сурвилло Г.С., Симонов А.С. “Дидактические материалы по алгебре для 9 класса с углубленным изучением математики” – М., Просвещение, 2006 – 95 с.
  15. Чулков П.В. “Уравнения и неравенства в школьном курсе математик. Лекции 1–4” – М., Первое сентября, 2006 – 88 с.
  16. Чулков П.В. “Уравнения и неравенства в школьном курсе математик. Лекции 5–8” – М., Первое сентября, 2009 – 84 с.

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x iКоэффициенты многочлена
2— 11129
— 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.


источники:

http://urok.1sept.ru/articles/646258

http://zaochnik.com/spravochnik/matematika/systems/reshenie-kubicheskih-uravnenij/