Целые корни уравнения с целыми коэффициентами

Решение уравнений высших степеней.

В общем случае уравнение степени выше четвертой не разрешимо в радикалах. Однако, иногда можно отыскать корни многочлена, который находится в левой части уравнения высшей степени, представив его в виде призведения многочленов степени не выше четвертой. Таким образом, разложение многочлена на множители лежит в основе решения таких уравнений, поэтому, рекомендуем подробно изучить этот раздел, прежде чем двигаться дальше.

Достаточно часто рассматриваются уравнения высших степеней с целыми коэффициентами. В этом случае можно попытаться найти рациональные корни уравнения, после чего можно разложить на множители многочлен, находящийся в левой части исходного уравнения, тем самым перейти к нахождению корней уравнения, степень которого будет ниже.

В этой статье как раз разберемся с решением уравнений высших степеней с целыми коэффициентами.

Уравнения высших степеней с целыми коэффициентами.

Любое уравнение вида можно свести к приведенному уравнению той же степени домножив обе его части на и выполнив замену переменной вида :

Полученные коэффициенты тоже будут целыми.

Таким образом, будем решать приведенное уравнение степени n с целыми коэффициентами вида .

Находим целые корни уравнения.

Целые корни уравнения , i=1, 2, …, m ( m – количество целых корней уравнения) находятся среди делителей свободного члена . То есть, первым делом выписываем делители свободного члена и подставляем их по очереди в исходное равенство для проверки. Перебираем их по очереди, пока не получим тождество. Как только тождество получено, то первый целый корень уравнения найден и уравнение предстает в виде , где — корень уравнения, а — частное от деления на .

Продолжаем подставлять выписанные ранее делители в уравнение , начиная с (так как корни могут повторяться). Как только получаем тождество, то корень найден и уравнение предстает в виде , где — частное от деления на .

И так продолжаем перебор делителей, начиная с . В итоге найдем все m целых корней уравнения и оно представится в виде , где — многочлен степени n-m . Весь этот процесс удобно проводить по схеме Горнера.

Дробных корней приведенное уравнение с целыми коэффициентами иметь не может.

Находим оставшиеся корни (иррациональные и/или комплексные) из уравнения любым способом.

Рациональные корни многочленов с целыми коэффициентами. Алгебраические и трансцендентные числа

Рациональные корни многочленов с целыми коэффициентами
Алгебраические и трансцендентные числа

Рациональные корни многочленов с целыми коэффициентами

Прежде, чем дать общую формулировку теоремы о рациональных корнях многочленов с целыми коэффициентами , решим следующую задачу.

Задача . Найти все корни уравнения

Решение . Предположим, что рассматриваемое уравнение имеет корень, являющийся рациональным числом. Тогда, поскольку каждое рациональное число можно представить в виде несократимой дроби

,

где m – число целое, а n – число натуральное, то выполняется равенство:

Умножая это равенство на n 3 , получаем равенство:

2m 3 + m 2 n – 5 m n 2 –
– 3n 3 = 0.
(1)

Теперь преобразуем равенство (1):

Отсюда вытекает, что число 2m 3 нацело делится на число n . А из этого, в свою очередь, следует, что, поскольку числа m и n не имеют общих простых делителей, то число n является делителем числа 2 . Таким образом, число n равно 1 или 2 .

Теперь преобразуем равенство (1) по-другому:

Значит, число 3n 3 нацело делится на число m . А из этого, в свою очередь, следует, что, так как числа m и n не имеют общих простых делителей, то число m является делителем числа 3. Таким образом, число m может быть равно: – 1, 1, – 3 или 3 .

Далее, рассматривая все возможные комбинации чисел m и n , получаем, что дробь

может принимать только следующие значения:

Таким образом, если у исходного уравнения и есть рациональный корень, то искать его нужно среди полученных шести чисел. Других рациональных корней у исходного уравнения быть не может.

Подставляя поочередно каждое из этих чисел в исходное уравнение, получаем, что корнем уравнения является лишь число .

Оставляя читателю проверку того, что другие числа корнями исходного уравнения не являются, покажем, что число действительно является его корнем:

Ответ . Число является единственным рациональным корнем исходного уравнения.

Замечание . Для того, чтобы найти все остальные корни исходного уравнения, нужно, воспользовавшись теоремой Безу, разделить многочлен

В результате деления получится квадратный трехчлен

Теорема . Если рациональное число (несократимая дробь)

,

где m – число целое, а n – число натуральное, является корнем многочлена k -ой степени

которого являются целыми числами, то числитель дроби m является делителем коэффициента ak , а знаменатель дроби n является делителем коэффициента a0 .

Коэффициент a0 называют старшим коэффициентом многочлена, а коэффициент ak – свободным членом многочлена.

Алгебраические и трансцендентные числа

Определение . Действительное число называют действительным алгебраическим числом , если существует многочлен с целочисленными коэффициентами, корнем которого это число является. Если же такой многочлен не существует, то указанное число называют действительным трансцендентным числом .

Замечание . Числа π и e – наиболее известные примеры действительных трансцендентных чисел.

Утверждение . Каждое рациональное число является алгебраическим числом.

Доказательство . Каждое рациональное число представимо в виде несократимой дроби

,

где m – число целое, а n – число натуральное. Но указанная дробь является корнем уравнения первой степени

что и требовалось доказать.

Следствие . Каждое действительное трансцендентное число является иррациональным числом.

Решение уравнений высших степеней

В общем случае уравнение, имеющее степень выше 4 , нельзя разрешить в радикалах. Но иногда мы все же можем найти корни многочлена, стоящего слева в уравнении высшей степени, если представим его в виде произведения многочленов в степени не более 4 -х. Решение таких уравнений базируется на разложении многочлена на множители, поэтому советуем вам повторить эту тему перед изучением данной статьи.

Чаще всего приходится иметь дело с уравнениями высших степеней с целыми коэффициентами. В этих случаях мы можем попробовать найти рациональные корни, а потом разложить многочлен на множители, чтобы потом преобразовать его в уравнение более низкой степени, которое будет просто решить. В рамках этого материала мы рассмотрим как раз такие примеры.

Уравнения высшей степени с целыми коэффициентами

Все уравнения, имеющие вид a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 , мы можем привести к уравнению той же степени с помощью умножения обеих частей на a n n — 1 и осуществив замену переменной вида y = a n x :

a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 a n n · x n + a n — 1 · a n n — 1 · x n — 1 + … + a 1 · ( a n ) n — 1 · x + a 0 · ( a n ) n — 1 = 0 y = a n x ⇒ y n + b n — 1 y n — 1 + … + b 1 y + b 0 = 0

Те коэффициенты, что получились в итоге, также будут целыми. Таким образом, нам нужно будет решить приведенное уравнение n-ной степени с целыми коэффициентами, имеющее вид x n + a n x n — 1 + … + a 1 x + a 0 = 0 .

Схема решения уравнения

Вычисляем целые корни уравнения. Если уравнение имеет целые корни, нужно искать их среди делителей свободного члена a 0 . Выпишем их и будем подставлять в исходное равенство по очереди, проверяя результат. Как только мы получили тождество и нашли один из корней уравнения, то можем записать его в виде x — x 1 · P n — 1 ( x ) = 0 . Здесь x 1 является корнем уравнения, а P n — 1 ( x ) представляет собой частное от деления x n + a n x n — 1 + … + a 1 x + a 0 на x — x 1 .

Подставляем остальные выписанные делители в P n — 1 ( x ) = 0 , начав с x 1 , поскольку корни могут повторяться. После получения тождества корень x 2 считается найденным, а уравнение может быть записано в виде ( x — x 1 ) ( x — x 2 ) · P n — 2 ( x ) = 0 .Здесь P n — 2 ( x ) будет частным от деления P n — 1 ( x ) на x — x 2 .

Продолжаем и дальше перебирать делители. Найдем все целые корни и обозначим их количество как m . После этого исходное уравнение можно представить как x — x 1 x — x 2 · … · x — x m · P n — m ( x ) = 0 . Здесь P n — m ( x ) является многочленом n — m -ной степени. Для подсчета удобно использовать схему Горнера.

Если у нас исходное уравнение имеет целые коэффициенты, мы не можем получить в итоге дробные корни.

У нас в итоге получилось уравнение P n — m ( x ) = 0 , корни которого могут быть найдены любым удобным способом. Они могут быть иррациональными или комплексными.

Покажем на конкретном примере, как применяется такая схема решения.

Условие: найдите решение уравнения x 4 + x 3 + 2 x 2 — x — 3 = 0 .

Решение

Начнем с нахождений целых корней.

У нас есть свободный член, равный минус трем. У него есть делители, равные 1 , — 1 , 3 и — 3 . Подставим их в исходное уравнение и посмотрим, какие из них дадут в итоге тождества.

При x , равном единице, мы получим 1 4 + 1 3 + 2 · 1 2 — 1 — 3 = 0 , значит, единица будет корнем данного уравнения.

Теперь выполним деления многочлена x 4 + x 3 + 2 x 2 — x — 3 на ( х — 1 ) в столбик:

Значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

Перебираем возможные делители дальше, но подставляем их в равенство x 3 + 2 x 2 + 4 x + 3 = 0 :

1 3 + 2 · 1 2 + 4 · 1 + 3 = 10 ≠ 0 ( — 1 ) 3 + 2 · ( — 1 ) 2 + 4 · — 1 + 3 = 0

У нас получилось тождество, значит, мы нашли еще один корень уравнения, равный — 1 .

Делим многочлен x 3 + 2 x 2 + 4 x + 3 на ( х + 1 ) в столбик:

x 4 + x 3 + 2 x 2 — x — 3 = ( x — 1 ) ( x 3 + 2 x 2 + 4 x + 3 ) = = ( x — 1 ) ( x + 1 ) ( x 2 + x + 3 )

Подставляем очередной делитель в равенство x 2 + x + 3 = 0 , начиная с — 1 :

— 1 2 + ( — 1 ) + 3 = 3 ≠ 0 3 2 + 3 + 3 = 15 ≠ 0 ( — 3 ) 2 + ( — 3 ) + 3 = 9 ≠ 0

Равенства, полученные в итоге, будут неверными, значит, у уравнения больше нет целых корней.

Оставшиеся корни будут корнями выражения x 2 + x + 3 .

D = 1 2 — 4 · 1 · 3 = — 11 0

Из этого следует, что у данного квадратного трехчлена нет действительных корней, но есть комплексно сопряженные: x = — 1 2 ± i 11 2 .

Уточним, что вместо деления в столбик можно применять схему Горнера. Это делается так: после того, как мы определили первый корень уравнения, заполняем таблицу.

x iкоэффициенты многочлена
112— 1— 3
111 + 1 · 1 = 22 + 2 · 1 = 4— 1 + 4 · 1 = 3— 3 + 3 · 1 = 0

В таблице коэффициентов мы сразу можем увидеть коэффициенты частного от деления многочленов, значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

После нахождения следующего корня, равного — 1 , мы получаем следующее:

x iкоэффициенты многочлена
1243
112 + 1 · ( — 1 ) = 14 + 1 · ( — 1 ) = 33 + 3 · ( — 1 ) = 0

Далее мы приходим к разложению x — 1 x + 1 x 2 + x + 3 = 0 . Потом, проверив оставшиеся делители равенства x 2 + x + 3 = 0 , вычисляем оставшиеся корни.

Ответ: х = — 1 , х = 1 , x = — 1 2 ± i 11 2 .

Условие: решите уравнение x 4 — x 3 — 5 x 2 + 12 = 0 .

Решение

У свободного члена есть делители 1 , — 1 , 2 , — 2 , 3 , — 3 , 4 , — 4 , 6 , — 6 , 12 , — 12 .

Проверяем их по порядку:

1 4 — 1 3 — 5 · 1 2 + 12 = 7 ≠ 0 ( — 1 ) 4 — ( — 1 ) 3 — 5 · ( — 1 ) 2 + 12 = 9 ≠ 0 2 4 · 2 3 — 5 · 2 2 + 12 = 0

Значит, x = 2 будет корнем уравнения. Разделим x 4 — x 3 — 5 x 2 + 12 на х — 2 , воспользовавшись схемой Горнера:

x iкоэффициенты многочлена
1— 1— 5012
21— 1 + 1 · 2 = 1— 5 + 1 · 2 = — 30 — 3 · 2 = 312 — 6 · 2 = 0

В итоге мы получим x — 2 ( x 3 + x 2 — 3 x — 6 ) = 0 .

Проверяем делители дальше, но уже для равенства x 3 + x 2 — 3 x — 6 = 0 , начиная с двойки.

2 3 + 2 2 — 3 · 2 — 6 = 0

Значит, 2 опять будет корнем. Разделим x 3 + x 2 — 3 x — 6 = 0 на x — 2 :

x iкоэффициенты многочлена
11— 3— 6
211 + 1 · 2 = 3— 3 + 3 · 2 = 3— 6 + 3 · 2 = 0

В итоге получим ( x — 2 ) 2 · ( x 2 + 3 x + 3 ) = 0 .

Проверка оставшихся делителей смысла не имеет, поскольку равенство x 2 + 3 x + 3 = 0 быстрее и удобнее решить с помощью дискриминанта.

Решим квадратное уравнение:

x 2 + 3 x + 3 = 0 D = 3 2 — 4 · 1 · 3 = — 3 0

Получаем комплексно сопряженную пару корней: x = — 3 2 ± i 3 2 .

Ответ: x = — 3 2 ± i 3 2 .

Условие: найдите для уравнения x 4 + 1 2 x 3 — 5 2 x — 3 = 0 действительные корни.

Решение

x 4 + 1 2 x 3 — 5 2 x — 3 = 0 2 x 4 + x 3 — 5 x — 6 = 0

Выполняем домножение 2 3 обеих частей уравнения:

2 x 4 + x 3 — 5 x — 6 = 0 2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0

Заменяем переменные y = 2 x :

2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0 y 4 + y 3 — 20 y — 48 = 0

В итоге у нас получилось стандартное уравнение 4 -й степени, которое можно решить по стандартной схеме. Проверим делители, разделим и получим в итоге, что оно имеет 2 действительных корня y = — 2 , y = 3 и два комплексных. Решение целиком здесь мы не будем приводить. В силу замены действительными корнями данного уравнения будут x = y 2 = — 2 2 = — 1 и x = y 2 = 3 2 .

Ответ: x 1 = — 1 , x 2 = 3 2

Советуем также ознакомиться с материалами, посвященными решению кубических уравнений и уравнений четвертой степени.


источники:

http://www.resolventa.ru/spr/algebra/ratroot.htm

http://zaochnik.com/spravochnik/matematika/systems/reshenie-uravnenij-vysshih-stepenej/