Целые рациональные уравнения 10 класс

Урок в 10 классе «Рациональные уравнения».
методическая разработка по алгебре (10 класс) по теме

Данный урок предназначен для изучения темы в 10 классе: «Рациональные уравнения.» Тип урока: урок- лекция.

Скачать:

ВложениеРазмер
Данный урок предназначен для изучения темы в 10 классе: «Рациональные уравнения.» Тип урока: урок- лекция.166 КБ
10 класс: «Рациональные уравнения.»209.5 КБ

Предварительный просмотр:

МОУ «Гимназия № 5 г. Белгорода»

Тема урока: Рациональные уравнения.

УМК : Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение , 2006.-432с. Стр.65-74., 45-47.

Образовательная: систематизировать и обобщить известные из основной школы сведения о рациональных выражениях; показать способы решения рациональных уравнений;

Развивающая: расширить и углубить изучение различных видов рациональных уравнений разнообразными методами.

Воспитывающая: показать значимость изучаемой темы в разделе математика.

Тип урока: урок- лекция.

  1. Постановка цели урока (1мин).
  2. Подготовка к изучению нового материала(2 мин).
  3. 3.Ознакомление с новым материалом(38мин).
  4. 4.Итог урока.(2 мин)
  5. 5.Домашнее задание (2 мин)

Оборудование урока: интерактивная доска, проектор, компьютер.

1. Рациональные выражения.

2. Рациональные уравнения.

3.Системы рациональных уравнений.

Алгебра возникла из решения практических задач с помощью уравнений. Цели алгебры оставались неизменными на протяжении тысячелетий- решались уравнения: сначала линейные, потом квадратные, а там и уравнения еще больших степеней. Но форма, в которой излагались алгебраические результаты, менялись до неузнаваемости.

Уравнение- это самая распространенная форма математической задачи. Учение об уравнениях является главным содержанием школьного курса алгебры. Для решения уравнений нужно уметь производить действия над одночленами, многочленами алгебраическими дробями, уметь производить разложение на множители, раскрывать скобки и т. д. Нужно привести свои знания в порядок. Мы начнем повторение с понятия «рациональные выражения». Сообщение ученика о рациональных выражениях известных из основной школы. Таким образом, учение об уравнениях невозможно без учения о законах действий.

II. Основная часть.

Главное в понятии уравнения – это постановка вопроса о его решении. Уравнение, левая и правая части которого есть рациональные выражения относительно х, называют рациональным уравнением с неизвестным х.

Например, уравнения 5х 6 — 9х 5 + 4х — Зх + 1 = 0, являются рациональными.

Корнем (или решением) уравнения с неизвестным х называют число, при подстановке которого в уравнение вместо х получается верное числовое равенство.

Решить уравнение — значит найти все его корни или показать, что их нет. При решении рациональных уравнений приходится умножать и делить обе части уравнения на не равное нулю число, переносить члены уравнения из одной части в другую, применять правила сложения и вычитания алгебраических дробей. В результате будет получаться уравнение, равносильное предшествующему, т. е. уравнение, имеющее те же корни, и только их.

Перечислим стандартные уравнения, которые были нами изучены. Ответы учащихся.( линейное уравнение , квадратное уравнение, простейшее степенное уравнение х n =а). Преобразование уравнений к одному из стандартных является основным шагом в решении уравнения. Полностью алгоритмизировать процесс преобразования нельзя, однако полезно запомнить некоторые приемы, общие для всех типов уравнений.

1).Уравнение вида А(х)•В(х) = О, где А(х) и В(х) — многочлены относительно х, называют распадающимся уравнением .

Множество всех корней распадающегося уравнения есть объединение множеств всех корней двух уравнений А(х)=0 и В(х)=0. К уравнениям вида А(х)=0 применяется метод разложения на множители. Суть этого метода : нужно решить уравнение А(х)=0, где А(х)=А 1 (х)А 2 (х)А 3 (х). Уравнение А(х)=0 заменяют совокупностью простых уравнений: А 1 (х)=0,А 2 (х)=0,А 3 (х)=0. Находят корни уравнений этой совокупности и делают проверку. Метод разложения на множители используется в основном для рациональных и тригонометрических уравнений.

Решим уравнение (х 2 — 5х + 6) (х 2 + х — 2) = 0.

Уравнение распадается на два уравнения.

х 2 — 5х + 6 = 0 х 1 = 2 и х 2 = 3

х 2 + х — 2 = 0. х 3 = -2 и х 4 = 1

Значит, уравнение исходное имеет корни х 1 = 2, х 2 = 3, х 3 = -2, х 4 =1.

ПРИМЕР. Решим уравнение х 3 -7х+6=0.

х-1=0 , х 1 =1; х 2 +х-6=0, х 2 =2,х 3 =-3.

2).Уравнение вида , где А(х) и В(х) — многочлены относительно х.

Сначала решим уравнение

х 2 + 4х — 21 = 0. х 1 = 3 и х 2 = -7

Подставив эти числа в знаменатель левой части исходного уравнения, получим

х 1 2 — х 1 -6 = 9-3-6 = 0,

х 2 2 — х 2 — 6 = 49 + 7 — 6 = 50 ≠0.

Это показывает, что число х 1 = 3 не является корнем исходного уравнения, а число х 2 =- 7 — корень этого уравнения.

где А(х), В(х), С(х) и D(х) — многочлены относительно х, обычно решают по следующему правилу.

Решают уравнение А(х)•D(х) — С(х)·В(х) = 0 и отбирают из его корней те, которые не обращают в нуль знаменатель уравнения.

х 2 — 5х + 6 — (2х + 3) (х — 3) = 0.

х 1 = -5 и х 2 = 3.

Число х 1 не обращает в нуль знаменатель х — 3, а число х 2 обращает. Следовательно, уравнение имеет единственный корень = -5.

Найти корни рационального уравнения часто помогает замена неизвестного. Умение удачно ввести новую переменную- важный элемент математической культуры. Удачный выбор новой переменной делает структуру уравнения более прозрачной.

Решим уравнение х 8 + 4х 6 -10х 4 + 4х 2 + 1 = 0.

Число х 0 = 0 не является корнем уравнения, поэтому уравнение равносильно уравнению

х 4 + 4х 2 — 10 + + =0

Обозначим t = ,тогда х 4 + =t 2 -2 ,

получаем t 2 + 4t — 12 = 0, х 1 = 2 и х 2 = -6.

Следовательно, корни уравнения найдем, объединив все корни двух уравнений: =2, и =-6,

Первое уравнение имеет два корня -1 и 1, а второе уравнение не имеет действительных корней, поэтому уравнение имеет только два корня: -1 и 1. Ответ. -1; 1.

4). Симметрические уравнения.

Многочлен от нескольких переменных называют симметрическим многочленом, если его вид не изменяется при любой перестановке этих переменных.

Например, многочлены х + у, а 2 + b 2 — 1, zt и 5а 3 + 6ab + 5b 3 — симметрические многочлены от двух переменных, а многочлены х + у + г, а 3 + b 3 + с 3 , — симметрические многочлены от трех переменных.

В то же время многочлены х — у, а 2 –b 2 и а 3 + аb – b 3 — не симметрические многочлены.

Уравнение ax 4 +bx 3 +cx 2 +bx+a=0, где а R/ ,b R, с R называется симметрическим уравнением четвертой степени. Чтобы решить это уравнение необходимо:

1).Поделить обе части уравнения на х 2 и сгруппировать полученные выражения: .

2).Введение переменной уравнение приводится к квадратному.

Решите уравнение х 4 +5х 3 +4х 2 -5х+1=0.

Число 0 не является корнем уравнения. Поделим обе части уравнения на х 2 ≠0.

Системы рациональных уравнений.

Системы уравнений появляются при решении задач, в которых неизвестными являются несколько величин. Эти величины связаны определенной зависимостью, которые записываются в виде уравнений.

Уравнение, левая и правая части которого есть рациональные выражения относительно х и у, называют рациональным уравнением с двумя неизвестными х и у.

Если надо найти все пары чисел х и у, каждая из которых является решением каждого из данных уравнений с двумя неизвестными х и у, то говорят, что надо решить систему уравнений с двумя неизвестными х и у и каждую такую пару называют решением этой системы.

Неизвестные могут обозначаться и другими буквами. Аналогично определяется система уравнений, число неизвестных в которой больше двух.

Если каждое решение первой системы уравнений является решением второй системы, а каждое решение второй системы уравнений является решением первой системы, то такие системы называют равносильными. В частности, равносильными считаются две системы, не имеющие решений.

Например, равносильны системы

1). Способ подстановки .

ПРИМЕР 1. Решим систему уравнений

Выразив у через х из первого уравнения системы, получим уравнение:

Решив уравнение 5x 2 -4(3x-1)+3(3x-1) 2 =9, найдем его корни х 1 = 1 и х 2 = . Подставив найденные числа х 1 и х 2 в уравнение у = 3х — 1 , получим у 1 = 2

и у = Следовательно, система имеет два решения: (1; 2) и ( ; )

2). Метод алгебраического сложения.

ПРИМЕР 2. Решим систему уравнений

Оставив без изменения первое уравнение системы и сложив первое уравнение со вторым, получим систему равносильную системе.

Все решения системы есть объединение всех решений двух систем:

Решив каждую из этих систем, найдем все решения системы :

3). Метод введение новых неизвестных.

ПРИМЕР 3. Решим систему уравнений

Обозначив u = ху, v = х — у, перепишем систему в виде

Найдем ее решения: u 1 = 1, v 1 = 0 и u 2 = 5, v 2 = 4. Следовательно, все решения системы есть объединение всех решений двух систем:

Решив методом подстановки каждую из этих систем, найдем ее решения системы: (1; 1), (-1; -1), (5; 1), (-1; -5).

Ответ. (1; 1), (-1; -1), (5; 1), (-1; -5).

4). Уравнение вида ах 2 + bху + су 2 = 0, где а, b, с — данные неравные нулю числа, называют однородным уравнением относительно неизвестных х и у.

Рассмотрим систему уравнений, в котором есть однородное уравнение.

ПРИМЕР 4. Решим систему уравнений

Обозначив t = , перепишем первое уравнение системы в виде t 2 +4t+3=0.

Уравнение имеет два корня t 1 = -1 и t 2 = -3, поэтому все решения системы есть объединение всех решений двух систем:

Решив каждую из этих систем, найдем все решения системы:

При решении некоторых систем помогает знание свойств симметрических многочленов.

Введем новые неизвестные α = х + у и β= ху, тогда, х 4 +у 4 = α 4 -4 α 2 β+2 β 2

Поэтому систему можно переписать в виде

Решим квадратное уравнение относительно β: β 1 =6, β 2 =44.

Следовательно, все решения системы являются объединением

всех решении двух систем:

Первая система имеет два решения х 1 = 2, у 1 = 3 и х 2 = 3, у 2 =2, а вторая система не имеет действительных решений. Следовательно, система имеет два решения: (х: 1 ; у 1 ) и (х 2 ;у 2 )

Сегодня мы подвели итоги изучения темы рациональные уравнения. Мы поговорили об общих идеях, общих методах, на которых основана вся школьная линия уравнений.

Выделили методы решения уравнений:

1) метод разложения на множители;

2) метод введения новых переменных.

Расширили представления о методах решения систем уравнений.

На следующих 4 уроках проведем практические занятия. Для этого необходимо выучить теоретический материал, и подобрать из учебника по 2 примера на рассмотренные методы решения уравнений и систем уравнений, на 6 уроке будет проведен семинар по этой теме, для этого необходимо подготовить вопросы: формула бинома Ньютона, решение симметрических уравнений 3,5 степени. Заключительный урок по этой теме — зачет.

  1. Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение , 2006.-432с. Стр.65-74., 45-47.
  2. Математика: тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов/сост. Г.И.Ковалева, Т.И. Бузулина — Волгоград: Учитель,2009.-494с. – стр. 62-72,194-199.
  3. Титаренко А.М. Математика : т9-11 классы: 6000 задач и примеров/А.М. Титаренко.-М.:Эксмо,2007.-336с.

Много можно говорить об уравнениях. В этой области математики существуют вопросы, на которые математики еще не дали ответа. Возможно, кто-то из вас найдет ответы на эти вопросы.

Альберт Эйнштейн говорил: « Мне приходиться делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует только для данного момента. А уравнения будут существовать вечно ».

Уроки 2-5 отводиться практическим занятиям. Основным видом занятий на этих уроках является самостоятельная работа учащихся по закреплению и углублению теоретического материала, изложенного на лекции. На каждом из них проводится повторение вопросов теории и опрос учащихся. На основе самостоятельной работы на уроке и дома обеспечивается повторение и усвоение вопросов теории, ведется целенаправленная работа по выработке умений и навыков решения задач различного уровня сложности, проводится опрос учащихся. Цель: закрепить и углубить теоретический материал изложенный на лекции, научиться применять его на практике, усвоить алгоритмы решения типовых примеров и задач, добиться, чтобы все учащиеся усвоили основное содержание изучаемого раздела на уровне программных требований.

На семинар отводится 6-й и 7-й уроки, причем целесообразно на 6-м уроке провести семинар, а 7-м- зачет.

План урока – семинара.

Цель: повторение, углубление и обобщение пройденного материала, отработать основные методы, способы и приемы решения математических задач, приобретение новых знаний, обучение самостоятельному применению знаний в нестандартных ситуациях.

1. В начале урока организуется программный контроль. Цель проведения работы- проверка сформированности умений и навыков выполнения несложных упражнений. В процессе фронтального опроса учеников, неверно указавших номер ответа, учитель выясняет, какие из заданий вызвали затруднение. Далее ведется устная или письменная работа по устранению ошибок. На проведение программированного контроля отводится не более 10 минут.

2. Дифференцированный опрос нескольких учащихся по вопросам теории.

3. Историческая справка о возникновении и развитии понятия уравнения (сообщение ученика). Формула бином Ньютона. Решение симметрических уравнений третьей степени, четвертой степени, пятой степени.

х 4 -2х 3 -х 2 -2х+1=0

2х 4 +х 3 -11х 2 +х+2=0

х 5 -х 4 -3х 3 -3х 2 -х+1=0

2х 5 +3х 4 -5х 3 -5х 2 +3х+2=0

4. Решение примеров, проверка готовности учащихся к выполнению контрольной работы – это одна из главных задач семинара.

Проведение зачета не означает отказ от текущего контроля знаний учащихся. Оценки выставляются на практических и семинарских занятиях. На зачет выносятся некоторые типичные упражнения. Заранее ученикам сообщается, какой теоретический материал и упражнения будут представлены на зачете. Приведем содержание одной из карточек для проведения зачета по рассматриваемой теме.

Решите уравнения: (х+3) 4 +(х 2 +х-6) 2 =2(х-2) 4

Решение целых и дробно рациональных уравнений

Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.

Рациональное уравнение: определение и примеры

Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.

Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.

В различных пособиях можно встретить еще одну формулировку.

Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.

Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями.

А теперь обратимся к примерам.

x = 1 , 2 · x − 12 · x 2 · y · z 3 = 0 , x x 2 + 3 · x — 1 = 2 + 2 7 · x — a · ( x + 2 ) , 1 2 + 3 4 — 12 x — 1 = 3 .

Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.

Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.

Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.

Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.

Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.

3 · x + 2 = 0 и ( x + y ) · ( 3 · x 2 − 1 ) + x = − y + 0 , 5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями.

1 x — 1 = x 3 и x : ( 5 · x 3 + y 2 ) = 3 : ( x − 1 ) : 5 – это дробно рациональные уравнения.

К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.

Решение целых уравнений

Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:

  • сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак;
  • затем преобразуем выражение в левой части уравнения в многочлен стандартного вида.

Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n .

Необходимо найти корни целого уравнения 3 · ( x + 1 ) · ( x − 3 ) = x · ( 2 · x − 1 ) − 3 .

Решение

Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = 0 .

Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:

3 · ( x + 1 ) · ( x − 3 ) − x · ( 2 · x − 1 ) + 3 = ( 3 · x + 3 ) · ( x − 3 ) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6

У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x 2 − 5 · x − 6 = 0 . Дискриминант этого уравнения положительный: D = ( − 5 ) 2 − 4 · 1 · ( − 6 ) = 25 + 24 = 49 . Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения:

x = — — 5 ± 49 2 · 1 ,

x 1 = 5 + 7 2 или x 2 = 5 — 7 2 ,

x 1 = 6 или x 2 = — 1

Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3 · ( 6 + 1 ) · ( 6 − 3 ) = 6 · ( 2 · 6 − 1 ) − 3 и 3 · ( − 1 + 1 ) · ( − 1 − 3 ) = ( − 1 ) · ( 2 · ( − 1 ) − 1 ) − 3 . В первом случае 63 = 63 , во втором 0 = 0 . Корни x = 6 и x = − 1 действительно являются корнями уравнения, данного в условии примера.

Ответ: 6 , − 1 .

Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.

Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.

Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.

Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.

Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:

  • переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль;
  • представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений.

Пример 4

Найдите решение уравнения ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) = 2 · x · ( x 2 − 10 · x + 13 ) .

Решение

Переносим выражение из правой части записи в левую с противоположным знаком: ( x 2 − 1 ) · ( x 2 − 10 · x + 13 ) − 2 · x · ( x 2 − 10 · x + 13 ) = 0 . Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x 4 − 12 · x 3 + 32 · x 2 − 16 · x − 13 = 0 . Легкость преобразования не оправдывает всех сложностей с решением такого уравнения.

Намного проще пойти другим путем: вынесем за скобки общий множитель x 2 − 10 · x + 13 . Так мы придем к уравнению вида ( x 2 − 10 · x + 13 ) · ( x 2 − 2 · x − 1 ) = 0 . Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x 2 − 10 · x + 13 = 0 и x 2 − 2 · x − 1 = 0 и найдем их корни через дискриминант: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 .

Ответ: 5 + 2 · 3 , 5 — 2 · 3 , 1 + 2 , 1 — 2 .

Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.

Есть ли корни у уравнения ( x 2 + 3 · x + 1 ) 2 + 10 = − 2 · ( x 2 + 3 · x − 4 ) ?

Решение

Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x 2 + 3 · x .

Теперь мы будем работать с целым уравнением ( y + 1 ) 2 + 10 = − 2 · ( y − 4 ) . Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y 2 + 4 · y + 3 = 0 . Найдем корни квадратного уравнения: y = − 1 и y = − 3 .

Теперь проведем обратную замену. Получим два уравнения x 2 + 3 · x = − 1 и x 2 + 3 · x = − 3 . Перепишем их как x 2 + 3 · x + 1 = 0 и x 2 + 3 · x + 3 = 0 . Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: — 3 ± 5 2 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет.

Ответ: — 3 ± 5 2

Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.

Решение дробно рациональных уравнений

Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p ( x ) q ( x ) = 0 , где p ( x ) и q ( x ) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида.

В основу наиболее употребимого метода решения уравнений p ( x ) q ( x ) = 0 положено следующее утверждение: числовая дробь u v , где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p ( x ) q ( x ) = 0 может быть сведено в выполнению двух условий: p ( x ) = 0 и q ( x ) ≠ 0 . На этом построен алгоритм решения дробных рациональных уравнений вида p ( x ) q ( x ) = 0 :

  • находим решение целого рационального уравнения p ( x ) = 0 ;
  • проверяем, выполняется ли для корней, найденных в ходе решения, условие q ( x ) ≠ 0 .

Если это условие выполняется, то найденный корень является корнем исходного уравнения. Если нет, то корень не является решением задачи.

Найдем корни уравнения 3 · x — 2 5 · x 2 — 2 = 0 .

Решение

Мы имеем дело с дробным рациональным уравнением вида p ( x ) q ( x ) = 0 , в котором p ( x ) = 3 · x − 2 , q ( x ) = 5 · x 2 − 2 = 0 . Приступим к решению линейного уравнения 3 · x − 2 = 0 . Корнем этого уравнения будет x = 2 3 .

Проведем проверку найденного корня, удовлетворяет ли он условию 5 · x 2 − 2 ≠ 0 . Для этого подставим числовое значение в выражение. Получим: 5 · 2 3 2 — 2 = 5 · 4 9 — 2 = 20 9 — 2 = 2 9 ≠ 0 .

Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения.

Ответ: 2 3 .

Есть еще один вариант решения дробных рациональных уравнений p ( x ) q ( x ) = 0 . Вспомним, что это уравнение равносильно целому уравнению p ( x ) = 0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p ( x ) q ( x ) = 0 :

  • решаем уравнение p ( x ) = 0 ;
  • находим область допустимых значений переменной x ;
  • берем корни, которые лежат в области допустимых значений переменной x , в качестве искомых корней исходного дробного рационального уравнения.

Пример 7

Решите уравнение x 2 — 2 · x — 11 x 2 + 3 · x = 0 .

Решение

Для начала решим квадратное уравнение x 2 − 2 · x − 11 = 0 . Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D 1 = ( − 1 ) 2 − 1 · ( − 11 ) = 12 , и x = 1 ± 2 3 .

Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x 2 + 3 · x ≠ 0 . Это то же самое, что x · ( x + 3 ) ≠ 0 , откуда x ≠ 0 , x ≠ − 3 .

Теперь проверим, входят ли полученные на первом этапе решения корни x = 1 ± 2 3 в область допустимых значений переменной x . Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x = 1 ± 2 3 .

Ответ​​: x = 1 ± 2 3

Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x , а корни уравнения p ( x ) = 0 иррациональные. Например, 7 ± 4 · 26 9 . Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 127 1101 и − 31 59 . Это позволяет сэкономить время на проведении проверки условия q ( x ) ≠ 0 : намного проще исключить корни, которые не подходят, по ОДЗ.

В тех случаях, когда корни уравнения p ( x ) = 0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p ( x ) q ( x ) = 0 . Быстрее сразу находить корни целого уравнения p ( x ) = 0 , после чего проверять, выполняется ли для них условие q ( x ) ≠ 0 , а не находить ОДЗ, после чего решать уравнение p ( x ) = 0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Найдите корни уравнения ( 2 · x — 1 ) · ( x — 6 ) · ( x 2 — 5 · x + 14 ) · ( x + 1 ) x 5 — 15 · x 4 + 57 · x 3 — 13 · x 2 + 26 · x + 112 = 0 .

Решение

Начнем с рассмотрения целого уравнения ( 2 · x − 1 ) · ( x − 6 ) · ( x 2 − 5 · x + 14 ) · ( x + 1 ) = 0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2 · x − 1 = 0 , x − 6 = 0 , x 2 − 5 · x + 14 = 0 , x + 1 = 0 , из которых три линейных и одно квадратное. Находим корни: из первого уравнения x = 1 2 , из второго – x = 6 , из третьего – x = 7 , x = − 2 , из четвертого – x = − 1 .

Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.

По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение:

1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

( − 2 ) 5 − 15 · ( − 2 ) 4 + 57 · ( − 2 ) 3 − 13 · ( − 2 ) 2 + 26 · ( − 2 ) + 112 = − 720 ≠ 0 ;

( − 1 ) 5 − 15 · ( − 1 ) 4 + 57 · ( − 1 ) 3 − 13 · ( − 1 ) 2 + 26 · ( − 1 ) + 112 = 0 .

Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 1 2 , 6 и − 2 .

Ответ: 1 2 , 6 , — 2

Найдите корни дробного рационального уравнения 5 · x 2 — 7 · x — 1 · x — 2 x 2 + 5 · x — 14 = 0 .

Решение

Начнем работу с уравнением ( 5 · x 2 − 7 · x − 1 ) · ( x − 2 ) = 0 . Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5 · x 2 − 7 · x − 1 = 0 и x − 2 = 0 .

Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x = 7 ± 69 10 , а из второго x = 2 .

Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x . В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x 2 + 5 · x − 14 = 0 . Получаем: x ∈ — ∞ , — 7 ∪ — 7 , 2 ∪ 2 , + ∞ .

Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x .

Корни x = 7 ± 69 10 — принадлежат, поэтому, они являются корнями исходного уравнения, а x = 2 – не принадлежит, поэтому, это посторонний корень.

Ответ: x = 7 ± 69 10 .

Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p ( x ) q ( x ) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.

Решите дробное рациональное уравнение — 3 , 2 x 3 + 27 = 0 .

Решение

Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.

Ответ: нет корней.

Решите уравнение 0 x 4 + 5 · x 3 = 0 .

Решение

Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x .

Теперь определим ОДЗ. Оно будет включать все значения x , при которых x 4 + 5 · x 3 ≠ 0 . Решениями уравнения x 4 + 5 · x 3 = 0 являются 0 и − 5 , так как, это уравнение равносильно уравнению x 3 · ( x + 5 ) = 0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 = 0 и x + 5 = 0 , откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x , кроме x = 0 и x = − 5 .

Получается, что дробное рациональное уравнение 0 x 4 + 5 · x 3 = 0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и — 5 .

Ответ: — ∞ , — 5 ∪ ( — 5 , 0 ∪ 0 , + ∞

Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r ( x ) = s ( x ) , где r ( x ) и s ( x ) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p ( x ) q ( x ) = 0 .

Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r ( x ) = s ( x ) равносильно уравнение r ( x ) − s ( x ) = 0 . Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r ( x ) − s ( x ) = 0 в тождественную ему рациональную дробь вида p ( x ) q ( x ) .

Так мы переходим от исходного дробного рационального уравнения r ( x ) = s ( x ) к уравнению вида p ( x ) q ( x ) = 0 , решать которые мы уже научились.

Следует учитывать, что при проведении переходов от r ( x ) − s ( x ) = 0 к p ( x ) q ( x ) = 0 , а затем к p ( x ) = 0 мы можем не учесть расширения области допустимых значений переменной x .

Вполне реальна ситуация, когда исходное уравнение r ( x ) = s ( x ) и уравнение p ( x ) = 0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p ( x ) = 0 может дать нам корни, которые будут посторонними для r ( x ) = s ( x ) . В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов.

Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r ( x ) = s ( x ) :

  • переносим выражение из правой части с противоположным знаком и получаем справа нуль;
  • преобразуем исходное выражение в рациональную дробь p ( x ) q ( x ) , последовательно выполняя действия с дробями и многочленами;
  • решаем уравнение p ( x ) = 0 ;
  • выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение.

Визуально цепочка действий будет выглядеть следующим образом:

r ( x ) = s ( x ) → r ( x ) — s ( x ) = 0 → p ( x ) q ( x ) = 0 → p ( x ) = 0 → о т с е и в а н и е п о с т о р о н н и х к о р н е й

Решите дробное рациональное уравнение x x + 1 = 1 x + 1 .

Решение

Перейдем к уравнению x x + 1 — 1 x + 1 = 0 . Преобразуем дробное рациональное выражение в левой части уравнения к виду p ( x ) q ( x ) .

Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:

x x + 1 — 1 x — 1 = x · x — 1 · ( x + 1 ) — 1 · x · ( x + 1 ) x · ( x + 1 ) = = x 2 — x — 1 — x 2 — x x · ( x + 1 ) = — 2 · x — 1 x · ( x + 1 )

Для того, чтобы найти корни уравнения — 2 · x — 1 x · ( x + 1 ) = 0 , нам необходимо решить уравнение − 2 · x − 1 = 0 . Получаем один корень x = — 1 2 .

Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.

Подставим полученное значение в исходное уравнение. Получим — 1 2 — 1 2 + 1 = 1 — 1 2 + 1 . Мы пришли к верному числовому равенству − 1 = − 1 . Это значит, что x = − 1 2 является корнем исходного уравнения.

Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x . Это будет все множество чисел, за исключением − 1 и 0 (при x = − 1 и x = 0 обращаются в нуль знаменатели дробей). Полученный нами корень x = − 1 2 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения.

Ответ: − 1 2 .

Найдите корни уравнения x 1 x + 3 — 1 x = — 2 3 · x .

Решение

Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.

Перенесем выражение из правой части в левую с противоположным знаком: x 1 x + 3 — 1 x + 2 3 · x = 0

Проведем необходимые преобразования: x 1 x + 3 — 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x .

Приходим к уравнению x = 0 . Корень этого уравнения – нуль.

Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 0 1 0 + 3 — 1 0 = — 2 3 · 0 . Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет.

Ответ: нет корней.

Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.

Решите уравнение 7 + 1 3 + 1 2 + 1 5 — x 2 = 7 7 24

Решение

Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.

Отнимем от правой и левой частей 7 , получаем: 1 3 + 1 2 + 1 5 — x 2 = 7 24 .

Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3 + 1 2 + 1 5 — x 2 = 24 7 .

Вычтем из обеих частей 3 : 1 2 + 1 5 — x 2 = 3 7 . По аналогии 2 + 1 5 — x 2 = 7 3 , откуда 1 5 — x 2 = 1 3 , и дальше 5 — x 2 = 3 , x 2 = 2 , x = ± 2

Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.

Рациональные уравнения

Рациональное уравнение – это уравнение вида $f(x)=g(x)$, где $f(x)$ и $g(x)$ — рациональные выражения.

Рациональные выражения — это целые и дробные выражения, соединённые между собой знаками арифметических действий: деления, умножения, сложения или вычитания, возведения в целую степень и знаками последовательности этих выражений.

$<2>/+5x=7$ – рациональное уравнение

$3x+√x=7$ — иррациональное уравнение (содержит корень)

Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ);
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые обращают в ноль общий знаменатель.

Решить уравнение: $4x+1-<3>/=0$

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

3. решаем полученное уравнение

Решим вторым устным способом, т.к. $а+с=b$

4. исключаем те корни, при которых общий знаменатель равен нулю

В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

При решении уравнения с двумя дробями, можно использовать основное свойство пропорции.

Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

Воспользуемся основным свойством пропорции

Раскроем скобки и соберем все слагаемые в левой стороне

Решим данное квадратное уравнение первым устным способом, т.к. $a+b+c=0$

В первом пункте получилось, что при x = 0 уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.


источники:

http://zaochnik.com/spravochnik/matematika/systems/reshenie-tselyh-i-drobno-ratsionalnyh-uravnenij/

http://examer.ru/ege_po_matematike/teoriya/racionalnye_uravneniya