У показательных уравнений есть одз

Решение показательных уравнений через ОДЗ

Продолжаем изучать тему решение показательных уравнений. Иногда можно получить решение показательного уравнения с опорой только лишь на область допустимых значений (ОДЗ) переменной для этого уравнения. То есть, в некоторых случаях возможно решение показательных уравнений через ОДЗ. В этой статье мы разберем такие случаи. Здесь мы дадим соответствующую теорию, и рассмотрим примеры решения характерных показательных уравнений через ОДЗ.

Теория

Через ОДЗ решаются уравнения, область допустимых значений переменной для которых представляет собой пустое множество или конечный набор чисел. Например, через ОДЗ можно решить показательные уравнения и : область допустимых значений для первого из них является пустым множеством, а ОДЗ для второго уравнения является одним единственным числом 0 .

Метод решения уравнений через ОДЗ, в том числе и показательных, базируется на двух следующих моментах:

  • Если ОДЗ для уравнения есть пустое множество, то уравнение не имеет решений.
  • Если ОДЗ для уравнения состоит из нескольких чисел, то через проверку подстановкой выясняется, какие из этих чисел являются корнями, а какие – не являются.

Так показательное уравнение не имеет решений, так как ОДЗ для него есть пустое множество. Для показательного уравнения ОДЗ есть единственное число 0 , проверка подстановкой показывает, что это число является корнем уравнения, следовательно, нуль – это единственный корень уравнения.

За более полной информацией обращайтесь к общей статье решение уравнений через ОДЗ.

Примеры решения характерных показательных уравнений

Что представляет собой характерное показательное уравнение, которое решается через ОДЗ? Это уравнение, для решения которого не подходят другие более привычные методы решения показательных уравнений, и ОДЗ для которого является пустым множеством или множеством, состоящим из нескольких чисел. Вот пример такого уравнения . Давайте разберем его решение.

Решите показательное уравнение

Область допустимых значений (ОДЗ): теория, примеры, решения

Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1 : а , если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда следует полное определение

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Для примера рассмотрим выражение вида 1 x — y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид ( 0 , 1 , 2 ) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 — 1 + 2 = 1 1 = 1 . Отсюда видим, что ( 1 , 1 , 2 ) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 — 2 + 1 = 1 0 .

Что такое ОДЗ?

Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

Область ОДЗ – это множество значений, допустимых для данного выражения.

Рассмотрим на примере выражения.

Если имеем выражение вида 5 z — 3 , тогда ОДЗ имеет вид ( − ∞ , 3 ) ∪ ( 3 , + ∞ ) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

Если имеется выражения вида z x — y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.

Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f ( x ) .

Как найти ОДЗ? Примеры, решения

Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

Существуют выражения, где их вычисление невозможно:

  • если имеется деление на ноль;
  • извлечение корня из отрицательного числа;
  • наличие отрицательного целого показателя – только для положительных чисел;
  • вычисление логарифма отрицательного числа;
  • область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
  • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ — 1 ; 1 ] .

Все это говорит о том, как важно наличие ОДЗ.

Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Найти ОДЗ выражения 1 3 — x + 1 0 .

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅ .

Найти ОДЗ заданного выражения x + 2 · y + 3 — 5 · x .

Решение

Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

Определить ОДЗ выражения вида 1 x + 1 — 1 + log x + 8 ( x 2 + 3 ) .

Решение

По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 — 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

x + 1 — 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0 ) ∪ ( 0 , + ∞ ) .

Ответ: [ − 1 , 0 ) ∪ ( 0 , + ∞ )

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

  • могут не влиять на ОДЗ;
  • могут привести в расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения.

Если имеется x — 1 · x — 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства ( x − 1 ) · ( x − 3 ) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) . После преобразования x — 1 · x — 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x — 1 ≥ 0 , x — 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞ ) . Значит, ОДЗ полностью записывается так: ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) .

Нужно избегать преобразований, которые сужают ОДЗ.

Рассмотрим пример выражения x — 1 · x — 3 , когда х = — 1 . При подстановке получим, что — 1 — 1 · — 1 — 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x — 1 · x — 3 , тогда при вычислении получим, что 2 — 1 · 2 — 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится ( − ∞ 0 ) ∪ ( 0 , + ∞ ) . Причем при вычислении уже работаем со второй упрощенной дробью.

При наличии логарифмов дело обстоит немного иначе.

Если имеется выражение вида ln x + ln ( x + 3 ) , его заменяют на ln ( x · ( x + 3 ) ) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с ( 0 , + ∞ ) до ( − ∞ , − 3 ) ∪ ( 0 , + ∞ ) . Поэтому для определения ОДЗ ln ( x · ( x + 3 ) ) необходимо производить вычисления на ОДЗ, то есть ( 0 , + ∞ ) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

У показательных уравнений есть одз

При решении задач данной темы нужно очень хорошо помнить все свойства степеней и математических корней (в частности квадратного корня), изученные ранее. Остановимся дополнительно на некоторых свойствах степенных и показательных функций, которые относятся к их области допустимых значений (ОДЗ). Рассмотрим функцию вида:

Такая функция, строго говоря, не является ни показательной ни степенной. Тем не менее на её примере можно хорошо продемонстрировать различные возможные варианты для ОДЗ. А таких варианта есть три:

  1. Если f(x) > 0, то в этом случае g(x) может принимать любые значения;
  2. Возможен случай когда f(x) = 0 при условии, что: g(x) > 0 – обратите внимание и запомните: ноль нельзя возводить в отрицательную степень (это равносильно делению на ноль), а ноль в нулевой степени не существует. Таким образом ноль может быть только в положительной степени, при этом ноль в любой положительной степени даёт ноль;
  3. Ну и наконец f(x) может принимать отрицательные значения при условии, что g(x) принимает целые значения. Таким образом, отрицательные числа можно возводить только в «целые» степени.

Остановимся подробнее на первом из этих свойств. Оно гласит, что положительные числа и функции можно возводить в любую степень. Существует и обратное требование: число или функция, которая возводится в рациональную степень должна быть неотрицательной. Таким образом, запись:

Означает, что выражение:

Но, опять таки, в случае равенства функции нолю всегда нужно отдельно убедиться, что степень была положительной, т.к. ноль можно возводить только в положительную степень. Поэтому в дальнейшем будем рассматривать показательные уравнения и неравенства только с положительными основаниями степеней.

Однако отметим важную особенность применения такого свойства. Дело в том, что если используется запись с обозначением математического корня, то подкоренное выражение не всегда должно быть неотрицательным. Нам известно, что под корнем нечетной степени может стоять и отрицательное выражение. Таким образом, в записи вида:

Подкоренное выражение может принимать любые значения. Но вот в казалось бы равнозначной записи следующего вида:

Подкоренное выражение опять должно быть неотрицательным:

Отметим также еще одно важное свойство появляющееся при применении обозначения математического корня. Итак, если используется запись со значком математического корня, то показатель степени этого корня может быть только целым числом, причем это число должно быть больше либо равно двум:

Рекомендации к решению показательных уравнений и систем

Рассмотрим показательные уравнения у которых основания всех степеней, это положительные числа не равные единице. В этом случае показатели степеней могут принимать все возможные значения, и при этом такие уравнения имеют смысл. В простейших случаях такие показательные уравнения алгебраическими преобразованиями можно свести к двум видам уравнений. Первый из них, это случай когда левую и правую часть уравнения можно свести к одинаковому основанию. В этом случае преобразованное уравнение будет выглядеть так:

А его решение ищется переходом к следующему рациональному уравнению:

Второй стандартный вид показательных уравнений это когда обе стороны уравнения можно привести к одинаковому показателю степени, но разным основаниям:

Единственным возможным решением такого уравнения является:

При решении показательных уравнений, которые нельзя свести к одному из представленных выше уравнений, также активно применяется метод замены переменных. Как обычно, применяя этот метод нужно помнить, что после введения замены уравнение должно упроститься и больше не содержать старой неизвестной. Также нужно не забывать выполнять обратную замену переменных.

Отдельно остановимся на алгоритме решения очень распространённых однородных показательных уравнений. Однородные уравнения в общем случае имеют вид:

Здесь А, В и С – числа, не равные нулю, а f(x) и g(x) – некоторые показательные функции. Однородные уравнения решают так: разделим всё уравнение на g 2 (x) и получим:

Производим замену переменных:

И решаем квадратное уравнение:

Получив корни этого уравнения не забываем выполнить обратную замену, а также проверить итоговые корни на соответствие ОДЗ, если таковое имело место быть.

Иногда при решении показательных уравнений приходится также использовать графический метод. Данный метод состоит в том, чтобы как можно более точно построить на одной координатной плоскости графики функций, которые стоят в левой и правой частях уравнения, а затем найти координаты точек их пересечения по чертежу. Полученные таким образом корни обязательно нужно проверить подстановкой в первоначальное уравнение.

При решении систем показательных уравнений зачастую нужно стараться сначала в каждом из уравнений системы перейти от показательного уравнения к обычному рациональному. Для этого приводят каждое из показательных уравнений к одинаковому показателю степени или к одинаковому основанию и переходят к рациональным уравнениям как показано выше. Затем нужно решать систему рациональных уравнений одним из изученных ранее методов (обычно подстановкой). Если по такому алгоритму действовать не получается, то нужно пытаться применить сразу к системе показательных уравнений метод деления, замены переменных или ещё какой-нибудь метод.

Рекомендации к решению показательных неравенств

Простейшие показательные неравенства с положительными основаниями не равными единице решаются примерно также как и аналогичные уравнения. Сначала их нужно постараться привести к одинаковому основанию степени, т.е. получить неравенство вида:

После чего нужно перейти к рациональному неравенству, учитывая, что этот переход должен быть выполнен следующим образом: если основание степени больше единицы, то знак неравенства менять не нужно, а если основание степени меньше единицы, то нужно поменять знак неравенства на противоположный (это значит поменять «меньше» на «больше» или наоборот). При этом знаки минус на плюс, в обход ранее изученных правил нигде менять не нужно. Запишем математически то, что получим в результате выполнения такого перехода:

Далее необходимо решить стандартное рациональное неравенство с учетом всех тонкостей этой процедуры. Главное помнить, что знак неравенства меняется также и при делении всего неравенства на отрицательное число, либо на выражение принимающее на всей числовой оси отрицательные значения. В этом контексте, также полезно обратить внимание на очевидный факт: положительное число в любой степени остаётся положительным. А так как мы рассматриваем показательные неравенства только с положительными основаниями, то все степени в таких неравенствах всегда положительны.

Более сложные показательные неравенства могут также решаться с помощью замены переменных. Они также могут быть однородными, в этом случае в показательном неравенстве будет применяться стандартная для однородных уравнений замена, только с её помощью нужно будет решать неравенство.

Если показательное неравенство не может быть сведено к рациональному или решено с помощью замены, то в этом случае нужно применять обобщенный метод интервалов, который состоит в следующем:

  • Определите ОДЗ;
  • Преобразуйте неравенство так, чтобы в правой части был ноль (в левой части, если это возможно, приведите к общему знаменателю, разложите на множители и т.д.);
  • Найдите все корни числителя и знаменателя и нанесите их на числовую ось, причём, если неравенство нестрогое, закрасьте корни числителя, ну а корни знаменателя в любом случае оставьте выколотыми точками;
  • Найдите знак всего выражения на каждом из интервалов, подставляя в преобразованное неравенство число из данного интервала. При этом уже больше нельзя никаким образом чередовать знаки переходя через точки на оси. Определять знак выражения на каждом интервале нужно именно подстановкой значения из интервала в это выражение, и так для каждого интервала. Больше никак нельзя (в этом то и состоит, по большому счету, отличие обобщенного метода интервалов от обычного);
  • Найдите пересечение ОДЗ и удовлетворяющих неравенству промежутков, при этом не потеряйте отдельные точки, удовлетворяющие неравенству (корни числителя в нестрогих неравенствах), и не забудьте исключить из ответа все корни знаменателя во всех неравенствах.


источники:

http://zaochnik.com/spravochnik/matematika/vyrazhenija/oblast-dopustimyh-znachenij-odz/

http://testirovanie.by/materials/math/pokazatelnye/