Удвоенное значение корня уравнения это

Биквадратные уравнения

теория по математике 📈 уравнения

Уравнение вида ax 4 +bx 2 +c=0, где а≠0 число, называется биквадратным уравнением (приставка «би» означает «двойной»). Для решения такого уравнения применяют метод введения новой переменной, чтобы получить квадратное уравнение, решение которого легко выполняется.

Рассмотрим на примерах решение таких уравнений.

Пример №1. Решить уравнение:

В данном уравнении заменим х 2 на переменную, например а (букву для замены можно брать любую): х 2 =а. Степень данного уравнения при этом понизится на 2, получаем квадратное уравнение:

Решаем данное уравнение, например, по теореме Виета. Тогда:

Методом подбора получаем корни квадратного уравнения 9 и 16. Проверяем, что действительно 9+16=25, 916=144. Теперь переходим к нахождению корней биквадратного уравнения, которое дано по условию. Мы заменяли х 2 на а, поэтому подставляем вместо а полученные значения – это 9 и 16:

Теперь находим корни каждого из этих неполных квадратных уравнений: х 2 =9, отсюда уравнение имеет два корня ±3; х 2 =16, отсюда имеет еще два корня ±4. Следовательно, данное биквадратное уравнение имеет четыре корня: 3, -3, 4, -4.

Пример №2. Решить уравнение:

Заменим на переменную у: х 2 =у. Получим уравнение:

Найдем его корни: у1=–1, у2=4. Подставим корни вместо у и получим уравнения: х 2 =–1; х 2 =4. Видим, что первое неполное квадратное уравнение не имеет корней, а корни второго уравнения – это ±2. Значит, данное биквадратное уравнение имеет корни ±2.

Пример №3. Решить уравнение:

Выполним замену переменной: х 2 =у. Решим уравнение:

Подбором корни найти невозможно, поэтому через дискриминант получаем, что корней нет, так как дискриминант будет отрицательный. Значит и данное биквадратное уравнение тоже не имеет корней.

Преобразование двойных радикалов

Алгоритм решения уравнений с двойными радикалами

Решаем уравнение вида $ \sqrt> = e, a \neq 0, b \neq 0, c \neq 0$.

Шаг 1. Если $e \ge 0$, возвести в квадрат левую и правую части.

Если $e \lt 0$, решений нет, $x \in \varnothing$, перейти на шаг 5.

Шаг 2. $ax+b \sqrt = e^2 \Rightarrow \sqrt = \frac$

Шаг 3. Возвести в квадрат левую и правую части

с условием, что правая часть неотрицательна:

Шаг 4. Решить полученное квадратное уравнение (см. главу 4 данного справочника)

и проверить для корней условие $\frac \ge 0$.

Шаг 5. Конец работы.

Преобразование выражений вида $ \sqrt> $

Справедлива следующая формула:

Примеры

Пример 1. Решите уравнения:

Возводим в квадрат: $1+\sqrt<2>+\sqrt = 4 \Rightarrow \sqrt<2+\sqrt> =3$

Возводим в квадрат: $2+\sqrt = 9 \Rightarrow \sqrt = 7$

Возводим в квадрат: x = 49

Возводим в квадрат: $x+2\sqrt = 1 ⟹ 2\sqrt = 1-x$

Замечаем, что по определению арифметического корня:

$$ <\left\< \begin x-1 \ge 0 \\ 1-x \ge 0 \end \right.> \Rightarrow <\left\< \begin x \ge 1 \\ x \le 1 \end \right.> \Rightarrow x = 1 $$

Единственное возможное решение x=1. Подставляем: $ \sqrt<1+2\sqrt<1-1>> ≡ 1$

Пример 2. Вычислите:

Исходное выражение: $A = \pm \sqrt<2>$.

Очевидно, что $\sqrt<9-\sqrt<17>> \lt \sqrt<9 + \sqrt<17>>$ и $A \lt 0$. Поэтому $A = — \sqrt<2>$.

Используем формулу преобразования двойных радикалов.

$$A = 9, B = 17 \Rightarrow C = A^2-B = 81-17 = 64 \Rightarrow \sqrt = 8$$

$$ A \gt 0: A = \sqrt <4>= 2 $$

Подставляем: $ \frac<4-2> <4>= \frac<1><2>$

Пример 3. Используя формулу преобразования двойных радикалов, упростите выражение:

$$ A = 2, B = 3 \Rightarrow C = A^2-B = 4-3 = 1 \Rightarrow \sqrt = 1 $$

$$ A = 7, B = 24 \Rightarrow C = A^2-B = 49-24 = 25 \Rightarrow \sqrt = 5 $$

$$ A = 11, B = 112 \Rightarrow C = A^2-B = 121-112 = 9 \Rightarrow \sqrt = 3 $$

$$ A = 9, B = 80 \Rightarrow C = A^2-B = 81-80 = 1 \Rightarrow \sqrt = 1 $$

$$ A = a, B = a^2-b^2 \Rightarrow C = A^2-B = a^2-(a^2-b^2 ) = b^2 \Rightarrow \sqrt = b $$

Пример 4. Докажите равенство индийского математика Бхаскара (1114-1185):

Возведём в квадрат левую и правую части равенства. Для квадрата суммы трёх выражений используем формулу из §26 справочника для 7 класса.

Выражения слева и справа тождественно равны.

Что и требовалось доказать.

Пример 5*. Упростите выражение (задача Ж.Бертрана (1822-1900)):

Используем результат из примера 3(а):

$$ (\sqrt<3>+1)^2 = 3+2\sqrt<3>+1 = 4+2\sqrt <3>= 2(2+\sqrt<3>) \Rightarrow 2+\sqrt <3>= \frac<(\sqrt<3>+1)^2> <2>$$

Удвоенное значение корня уравнения это

Нам уже известны формулы для решения квадратных уравнений. А что делать, если встретится уравнение более высокой степени ? Оказы вается, что для уравнений третьей и четвёртой степени есть формулы, позволяющие найти корни (но они редко используются на практике ввиду их громоздкости), а для уравнений пятой степени и выше доказано, что таких формул не существует. Таким образом, у нас не выйдет в общем случае решить уравнение третьей или более высокой степени. Но существует ряд приёмов, позволяющих решить некоторые специальные виды уравнений. К их рассмотрению мы сейчас и перейдём.

Решите уравнение: `x^3 +4x^2 — 2x-3=0`.

Заметим, что `x=1` является корнем уравнения (значение многочлена при `x=1` равно сумме коэффициентов многочлена). Тогда по теореме Безу многочлен `x^3 +4x^2 -2x -3` делится на многочлен `x-1`. Выполнив деление, получаем:

`x^3 +4x^2 -2x -3=0 hArr (x-1)(x^2 + 5x +3) =0 hArr`

Обычно кубические уравнения решают именно так: подбирают один корень, выполняют деление уголком, после чего остаётся решить только квадратное уравнение. А что делать, если у нас уравнение четвёртой степени? Тогда придётся подбирать корень два раза. После подбора первого корня и деления останется кубическое уравнение, у которого надо будет подобрать ещё один корень. Возникает вопрос. Что делать, если такие «простые» числа как `+-1`, `+-2` не являются корнями уравне ния? Неужели тогда надо перебирать всевозможные числа? Ответ на этот вопрос даёт следующее утверждение.

Если несократимая дробь `p//q` (`p` — целое, `q` — натуральное) является корнем многочлена с целыми коэффициентами , то сво бодный член делится на `p` , а старший коэффициент делится на `q`.

Пусть несократимая дробь `p//q` — корень многочлена (8). Это означает, что

`a_n (p/q)^n +a_(n-1)(p/q)^(n-1) + a_(n-2) (p/q)^(n-2)+ . «+a_2 (p/q)^2 +a_1(p/q)+0=0`.

Умножим обе части на `q^n`, получаем:

`a_n p^n + a_(n-1) p^(n-1) q+a_(n-2) p^(n-2) q^2 + . + a_2 p^2 q^(n-2) +a_1 pq^(n-1)+a_0q^n=0`.

Перенесём в правую часть, а из оставшихся слагаемых вынесем `p` за скобки:

Справа и слева в (14) записаны целые числа. Левая часть делится на `p=>` правая часть также делится на `p`. Числа `p` и `q` взаимно просты (т. к. дробь `p//q` несократимая), откуда следует, что `a_0 vdotsp`.

Аналогично доказывается, что `a_n vdotsq`. Теорема доказана.

Как правило, предлагаемые вам уравнения имеют целые корни, поэтому в большинстве задач используется следующее: если у многочлена с целыми коэффициентами есть целые корни, то они являются делителями свободного члена.

а) `x^4+4x^3-102x^2-644x-539=0`; (15)

б) `6x^4-35x^3+28x^2+51x+10=0`. (16)

а) Попробуем найти целые корни уравнения. Пусть `p` — корень. Тогда `539vdotsp`; чтобы найти возможные значения `p`, разложим число `539` на простые множители:

Поэтому `p` может принимать значения:

Подстановкой убеждаемся, что `x=-1` является корнем уравнения. Разделим многочлен в левой части (15) уголком на `x+1` и получим:

Далее подбираем корни у получившегося многочлена третьей степени. Получаем `x=-7`, а после деления на `(x+7)` остаётся `(x+1)(x+7)(x^2-4x-77)=0`. Решая квадратное уравнение, находим окончательное разложение левой части на множители:

1) После того, как найден первый корень, лучше сначала выполнить деление уголком, и только потом приступать к поиску последующих корней. Тогда вычислений будет меньше.

2) В разложении многочлена на множители множитель `(x+7)` встретился дважды. Тогда говорят, что `(–7)` является корнем кратности два. Аналогично говорят о корнях кратности три, четыре и т. д.

б) Если уравнение имеет рациональный корень `x_0=p/q`, то `10vdotsp`, `6vdotsq`, т. е. `p in<+-1;+-2;+-5;+-10>`; `qin<1;2;3;6>`.Возможные варианты для `x_0`:

Начинаем перебирать числа из этого списка. Первым подходит число `x=5/2`. Делим многочлен в левой части (16) на `(2x-5)` и получаем

Заметим, что для получившегося кубического уравнения выбор рациональных корней заметно сузился, а именно, следующие числа могут быть корнями: `x_0=+-1,+-2,+-1/3,+-2/3`, причём мы уже знаем, что числа `+-1` и `+-2` корнями не являются (так как мы их подставляли раньше, и они не подошли). Находим, что `x=-2/3` — корень; делим `3x^3-10x^2-11x-2` на `3x+2` и получаем:

Решаем квадратное уравнение: `x^2-4x-1=0 iff x=2+-sqrt5`.

К сожалению, уравнения не всегда имеют рациональные корни. Тогда приходится прибегать к другим методам.

Разложите на множители:

а) `x^4+4=x^4+4x^2+4-4x^2=(x^2+2)^2-(2x)^2=`

Таким образом, сумму четвёртых степеней, в отличие от суммы квадратов, можно разложить на множители:

в) Вынесем `x^2` за скобки и сгруппируем:

Обозначим `x+2/x=t`. Тогда `x^2+4+4/x^2=t^2`, `x^2+4/x^2=t^2-4`, выражение в скобках принимает вид:

В итоге получаем:

Этот приём иногда используется для решения уравнений четвёртой степени; в частности, с его помощью решают возвратные уравнения (см. пример 12 е).

г)* Можно убедиться, что никакой из рассмотренных выше методов не помогает решить задачу, а именно: рациональных корней уравнение не имеет (числа `+-1` и `+-2` – не корни); вынесение числа `x^2` за скобки и группировка слагаемых приводит к выражению

Если здесь обозначить `4x-13/x=t`, то `x^2-2/x^2` через `t` рационально не выражается.

Прибегнем к методу неопределённых коэффициентов. Пусть

Попробуем подобрать коэффициенты `a`, `b`, `c`, `d` так, чтобы (17) обратилось в верное равенство. Для этого раскроем скобки в правой части и приведём подобные слагаемые:

Приравняем в (18) коэффициенты при одинаковых степенях в обеих частях уравнения. Получим систему уравнений:

Мы будем пытаться найти целочисленные решения системы (19). Найти все решения системы (19) не проще, чем решить исходную задачу, однако нахождение целочисленных решений – разумеется, если они есть – нам по силам.

Рассмотрим четвёртое уравнение. Возможны только два принципиально различных случая:

2) `b=2` и `d=-1`. Рассмотрим каждый из них. Подставляем значения `b` и `d` в первые три уравнения:

Из первого и третьего уравнений системы получаем `c=5/3`; `a=-17/3`, что не удовлетворяет второму уравнению, поэтому система решений не имеет; пара чисел `b=1` и `d=-2` не подходит.

Эта система имеет одно решение `a=-7`, `c=3`. Значит, числа `a=-7`, `b=2`, `c=3`, `d=-1` являются решением системы (19), поэтому

Далее каждый из квадратных трёхчленов можно разложить на множители.

Во многих ситуациях степень уравнения можно понизить с помощью замены переменных.