Угловое уравнение прямой на плоскости

Уравнение прямой, виды уравнения прямой на плоскости.

Эта статья является продолжением раздела прямая на плоскости. Здесь мы перейдем к алгебраическому описанию прямой линии с помощью уравнения прямой.

Материал данной статьи является ответом на вопросы: «Какое уравнение называют уравнением прямой и какой вид имеет уравнение прямой на плоскости»?

Навигация по странице.

Уравнение прямой на плоскости — определение.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и в ней задана прямая линия.

Прямая, как и любая другая геометрическая фигура, состоит из точек. В фиксированной прямоугольной системе координат каждая точка прямой имеет свои координаты – абсциссу и ординату. Так вот зависимость между абсциссой и ординатой каждой точки прямой в фиксированной системе координат, может быть задана уравнением, которое называют уравнением прямой на плоскости.

Другими словами, уравнение прямой на плоскости в прямоугольной системе координат Oxy есть некоторое уравнение с двумя переменными x и y , которое обращается в тождество при подстановке в него координат любой точки этой прямой.

Осталось разобраться с вопросом, какой вид имеет уравнение прямой на плоскости. Ответ на него содержится в следующем пункте статьи. Забегая вперед, отметим, что существуют различные формы записи уравнения прямой, что объясняется спецификой решаемых задач и способом задания прямой линии на плоскости. Итак, приступим к обзору основных видов уравнения прямой линии на плоскости.

Общее уравнение прямой.

Вид уравнения прямой в прямоугольной системе координат Oxy на плоскости задает следующая теорема.

Всякое уравнение первой степени с двумя переменными x и y вида , где А , В и С – некоторые действительные числа, причем А и В одновременно не равны нулю, задает прямую линию в прямоугольной системе координат Oxy на плоскости, и всякая прямая на плоскости задается уравнением вида .

Уравнение называется общим уравнением прямой на плоскости.

Поясним смысл теоремы.

Заданному уравнению вида соответствует прямая на плоскости в данной системе координат, а прямой линии на плоскости в данной системе координат соответствует уравнение прямой вида .

Посмотрите на чертеж.

С одной стороны можно сказать, что эта линия определяется общим уравнением прямой вида , так как координаты любой точки изображенной прямой удовлетворяют этому уравнению. С другой стороны, множество точек плоскости, определяемых уравнением , дают нам прямую линию, приведенную на чертеже.

Общее уравнение прямой называется полным, если все числа А , В и С отличны от нуля, в противном случае общее уравнение прямой называется неполным. Неполное уравнение прямой вида определяют прямую, проходящую через начало координат. При А=0 уравнение задает прямую, параллельную оси абсцисс Ox , а при В=0 – параллельную оси ординат Oy .

Таким образом, любую прямую на плоскости в заданной прямоугольной системе координат Oxy можно описать с помощью общего уравнения прямой при некотором наборе значений чисел А , В и С .

Нормальный вектор прямой, заданной общим уравнением прямой вида , имеет координаты .

Все уравнения прямых, которые приведены в следующих пунктах этой статьи, могут быть получены из общего уравнения прямой, а также могут быть обратно приведены к общему уравнению прямой.

Рекомендуем к дальнейшему изучению статью общее уравнение прямой. Там доказана теорема, сформулированная в начале этого пункта статьи, приведены графические иллюстрации, подробно разобраны решения примеров на составление общего уравнения прямой, показан переход от общего уравнения прямой к уравнениям другого вида и обратно, а также рассмотрены другие характерные задачи.

Уравнение прямой в отрезках.

Уравнение прямой вида , где a и b – некоторые действительные числа отличные от нуля, называется уравнением прямой в отрезках. Это название не случайно, так как абсолютные величины чисел а и b равны длинам отрезков, которые прямая отсекает на координатных осях Ox и Oy соответственно (отрезки отсчитываются от начала координат). Таким образом, уравнение прямой в отрезках позволяет легко строить эту прямую на чертеже. Для этого следует отметить в прямоугольной системе координат на плоскости точки с координатами и , и с помощью линейки соединить их прямой линией.

Для примера построим прямую линию, заданную уравнением в отрезках вида . Отмечаем точки и соединяем их.

Детальную информацию об этом виде уравнения прямой на плоскости Вы можете получить в статье уравнение прямой в отрезках.

Уравнение прямой с угловым коэффициентом.

Уравнение прямой вида , где x и y — переменные, а k и b – некоторые действительные числа, называется уравнением прямой с угловым коэффициентом ( k – угловой коэффициент). Уравнения прямой с угловым коэффициентом нам хорошо известны из курса алгебры средней школы. Такой вид уравнения прямой очень удобен для исследования, так как переменная y представляет собой явную функцию аргумента x.

Определение углового коэффициента прямой дается через определение угла наклона прямой к положительному направлению оси Ox .

Углом наклона прямой к положительному направлению оси абсцисс в данной прямоугольной декартовой системе координат Oxy называют угол , отсчитываемый от положительного направления оси Ох до данной прямой против хода часовой стрелки.

Если прямая параллельна оси абсцисс или совпадает с ней, то угол ее наклона считают равным нулю.

Угловой коэффициент прямой есть тангенс угла наклона этой прямой, то есть, .

Если прямая параллельна оси ординат, то угловой коэффициент обращается в бесконечность (в этом случае также говорят, что угловой коэффициент не существует). Другими словами, мы не можем написать уравнение прямой с угловым коэффициентом для прямой, параллельной оси Oy или совпадающей с ней.

Заметим, что прямая, определяемая уравнением , проходит через точку на оси ординат.

Таким образом, уравнение прямой с угловым коэффициентом определяет на плоскости прямую, проходящую через точку и образующую угол с положительным направлением оси абсцисс, причем .

В качестве примера изобразим прямую, определяемую уравнением вида . Эта прямая проходит через точку и имеет наклон радиан ( 60 градусов) к положительному направлению оси Ox . Ее угловой коэффициент равен .

Отметим, что уравнение касательной к графику функции в точке очень удобно искать именно в виде уравнения прямой с угловым коэффициентом.

Рекомендуем продолжить изучение этой темы в разделе уравнение прямой с угловым коэффициентом. Там представлена более подробная информация, приведены графические иллюстрации, детально разобраны решения характерных примеров и задач.

Каноническое уравнение прямой на плоскости.

Каноническое уравнение прямой на плоскости в прямоугольной декартовой системе координат Oxy имеет вид , где и – некоторые действительные числа, причем и одновременно не равны нулю.

Очевидно, что прямая линия, определяемая каноническим уравнением прямой, проходит через точку . В свою очередь числа и , стоящие в знаменателях дробей, представляют собой координаты направляющего вектора этой прямой. Таким образом, каноническое уравнение прямой в прямоугольной системе координат Oxy на плоскости соответствует прямой, проходящей через точку и имеющей направляющий вектор .

Для примера изобразим на плоскости прямую линию, соответствующую каноническому уравнению прямой вида . Очевидно, что точка принадлежит прямой, а вектор является направляющим вектором этой прямой.

Каноническое уравнение прямой вида используют даже тогда, когда одно из чисел или равно нулю. В этом случае запись считают условной (так как содержится ноль в знаменателе) и ее следует понимать как . Если , то каноническое уравнение принимает вид и определяет прямую, параллельную оси ординат (или совпадающую с ней). Если , то каноническое уравнение прямой принимает вид и определяет прямую, параллельную оси абсцисс (или совпадающую с ней).

Детальная информация об уравнении прямой в каноническом виде, а также подробные решения характерных примеров и задач собраны в статье каноническое уравнение прямой на плоскости.

Параметрические уравнения прямой на плоскости.

Параметрические уравнения прямой на плоскости имеют вид , где и – некоторые действительные числа, причем и одновременно не равны нулю, а — параметр, принимающий любые действительные значения.

Параметрические уравнения прямой устанавливают неявную зависимость между абсциссами и ординатами точек прямой линии с помощью параметра (отсюда и название этого вида уравнений прямой).

Пара чисел , которые вычисляются по параметрическим уравнениям прямой при некотором действительном значении параметра , представляет собой координаты некоторой точки прямой. К примеру, при имеем , то есть, точка с координатами лежит на прямой.

Следует отметить, что коэффициенты и при параметре в параметрических уравнениях прямой являются координатами направляющего вектора этой прямой.

Для примера приведем параметрические уравнения прямой вида . Эта прямая в прямоугольной системе координат Oxy на плоскости проходит через точку с координатами и имеет направляющий вектор .

В статье параметрические уравнения прямой на плоскости Вы можете ознакомиться с подробным решением примеров и задач по этой теме.

Нормальное уравнение прямой.

Если в общем уравнении прямой вида числа А , В и С таковы, что длина вектора равна единице, а , то это общее уравнение прямой называется нормальным уравнением прямой. Нормальное уравнение прямой определяет в прямоугольной системе координат Oxy прямую линию, нормальным вектором которой является вектор , причем эта прямая проходит на расстоянии от начала координат в направлении вектора .

Часто можно видеть другую форму записи нормального уравнения прямой: , где и — действительные числа, представляющие собой направляющие косинусы нормального вектора прямой единичной длины (то есть, и справедливо равенство ), а величина p () равна расстоянию от начала координат до прямой.

Для примера приведем общее уравнение прямой . Это общее уравнение прямой является нормальным уравнением прямой, так как и . Оно в прямоугольной системе координат Oxy на плоскости задает прямую линию, нормальный вектор которой имеет координаты , и эта прямая удаленна от начала координат на 3 единицы в направлении нормального вектора .

Отметим, что уравнение прямой в нормальном виде позволяет находить расстояние от точки до прямой на плоскости.

Если в общем уравнении прямой числа А , В и С таковы, что уравнение не является нормальным уравнением прямой, то его можно привести к нормальному виду. Об этом читайте в статье нормальное уравнение прямой.

Уравнение прямой

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

где k — угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами ( a , 0) и (0, b ), то она может быть найдена используя формулу уравнения прямой в отрезках

x+y= 1
ab

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки M( x 1, y 1) и N( x 2, y 2), такие что x 1 ≠ x 2 и y 1 ≠ y 2, то уравнение прямой можно найти, используя следующую формулу

x — x 1=y — y 1
x 2 — x 1y 2 — y 1

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0 y = m t + y 0

где N( x 0, y 0) — координаты точки лежащей на прямой, a = < l , m >— координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки N( x 0, y 0) лежащей на прямой и направляющего вектора a = ( l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0=y — y 0
lm

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x — 1 2 — 1 = y — 7 3 — 7

Упростив это уравнение получим каноническое уравнение прямой

Выразим y через x и получим уравнение прямой с угловым коэффициентом

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1 y = -4 t + 7

Решение. Так как M y — N y = 0, то невозможно записать уравнение прямой проходящей через две точки.

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки M( x 1, y 1, z 1) и N( x 2, y 2, z 2), такие что x 1 ≠ x 2, y 1 ≠ y 2 и z 1 ≠ z 2, то уравнение прямой можно найти используя следующую формулу

x — x 1=y — y 1=z — z 1
x 2 — x 1y 2 — y 1z 2 — z 1

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0
y = m t + y 0
z = n t + z 0

где ( x 0, y 0, z 0) — координаты точки лежащей на прямой, — координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки M( x 0, y 0, z 0) лежащей на прямой и направляющего вектора n = , то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0=y — y 0=z — z 0
lmn

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений

Уравнение прямой с угловым коэффициентом: теория, примеры, решение задач

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Угол наклона прямой и угловой коэффициент прямой

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.

Угол наклона прямой к оси О х , расположенный в декартовой системе координат О х у на плоскости, это угол, который отсчитывается от положительного направления О х к прямой против часовой стрелки.

Когда прямая параллельна О х или происходит совпадение в ней, угол наклона равен 0 . Тогда угол наклона заданной прямой α определен на промежутке [ 0 , π ) .

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Стандартное обозначение буквой k . Из определения получим, что k = t g α . Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Посчитать угловой коэффициент прямой при угле наклона равном 120 ° .

Из условия имеем, что α = 120 ° . По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k = t g α = 120 = — 3 .

Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k > 0 , тогда угол прямой острый и находится по формуле α = a r c t g k . Если k 0 , тогда угол тупой, что дает право определить его по формуле α = π — a r c t g k .

Определить угол наклона заданной прямой к О х при угловом коэффициенте равном 3 .

Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к О х меньше 90 градусов. Вычисления производятся по формуле α = a r c t g k = a r c t g 3 .

Ответ: α = a r c t g 3 .

Найти угол наклона прямой к оси О х , если угловой коэффициент = — 1 3 .

Если принять за обозначение углового коэффициента букву k , тогда α является углом наклона к заданной прямой по положительному направлению О х . Отсюда k = — 1 3 0 , тогда необходимо применить формулу α = π — a r c t g k При подстановке получим выражение:

α = π — a r c t g — 1 3 = π — a r c t g 1 3 = π — π 6 = 5 π 6 .

Ответ: 5 π 6 .

Уравнение с угловым коэффициентом

Уравнение вида y = k · x + b , где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси О у .

Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y = k · x + b . В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М , M 1 ( x 1 , y 1 ) , в уравнение y = k · x + b , тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.

Задана прямая с угловым коэффициентом y = 1 3 x — 1 . Вычислить, принадлежат ли точки M 1 ( 3 , 0 ) и M 2 ( 2 , — 2 ) заданной прямой.

Необходимо подставить координаты точки M 1 ( 3 , 0 ) в заданное уравнение, тогда получим 0 = 1 3 · 3 — 1 ⇔ 0 = 0 . Равенство верно, значит точка принадлежит прямой.

Если подставим координаты точки M 2 ( 2 , — 2 ) , тогда получим неверное равенство вида — 2 = 1 3 · 2 — 1 ⇔ — 2 = — 1 3 . Можно сделать вывод, что точка М 2 не принадлежит прямой.

Ответ: М 1 принадлежит прямой, а М 2 нет.

Известно, что прямая определена уравнением y = k · x + b , проходящим через M 1 ( 0 , b ) , при подстановке получили равенство вида b = k · 0 + b ⇔ b = b . Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y = k · x + b на плоскости определяет прямую, которая проходит через точку 0 , b . Она образует угол α с положительным направлением оси О х , где k = t g α .

Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y = 3 · x — 1 . Получим, что прямая пройдет через точку с координатой 0 , — 1 с наклоном в α = a r c t g 3 = π 3 радиан по положительному направлению оси О х . Отсюда видно, что коэффициент равен 3 .

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M 1 ( x 1 , y 1 ) .

Равенство y 1 = k · x + b можно считать справедливым, так как прямая проходит через точку M 1 ( x 1 , y 1 ) . Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y — y 1 = k · ( x — x 1 ) . Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M 1 ( x 1 , y 1 ) .

Составьте уравнение прямой, проходящей через точку М 1 с координатами ( 4 , — 1 ) , с угловым коэффициентом равным — 2 .

Решение

По условию имеем, что x 1 = 4 , y 1 = — 1 , k = — 2 . Отсюда уравнение прямой запишется таким образом y — y 1 = k · ( x — x 1 ) ⇔ y — ( — 1 ) = — 2 · ( x — 4 ) ⇔ y = — 2 x + 7 .

Ответ: y = — 2 x + 7 .

Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М 1 с координатами ( 3 , 5 ) , параллельную прямой y = 2 x — 2 .

По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y = 2 x — 2 , отсюда следует, что k = 2 . Составляем уравнение с угловым коэффициентом и получаем:

y — y 1 = k · ( x — x 1 ) ⇔ y — 5 = 2 · ( x — 3 ) ⇔ y = 2 x — 1

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x — x 1 a x = y — y 1 a y . Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y = k · x + b ⇔ y — b = k · x ⇔ k · x k = y — b k ⇔ x 1 = y — b k .

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Привести уравнение прямой с угловым коэффициентом y = — 3 x + 12 к каноническому виду.

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

y = — 3 x + 12 ⇔ — 3 x = y — 12 ⇔ — 3 x — 3 = y — 12 — 3 ⇔ x 1 = y — 12 — 3

Ответ: x 1 = y — 12 — 3 .

Общее уравнение прямой проще всего получить из y = k · x + b , но для этого необходимо произвести преобразования: y = k · x + b ⇔ k · x — y + b = 0 . Производится переход из общего уравнения прямой к уравнениям другого вида.

Дано уравнение прямой вида y = 1 7 x — 2 . Выяснить, является ли вектор с координатами a → = ( — 1 , 7 ) нормальным вектором прямой?

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

y = 1 7 x — 2 ⇔ 1 7 x — y — 2 = 0

Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n → = 1 7 , — 1 , отсюда 1 7 x — y — 2 = 0 . Понятно, что вектор a → = ( — 1 , 7 ) коллинеарен вектору n → = 1 7 , — 1 , так как имеем справедливое соотношение a → = — 7 · n → . Отсюда следует, что исходный вектор a → = — 1 , 7 — нормальный вектор прямой 1 7 x — y — 2 = 0 , значит, считается нормальным вектором для прямой y = 1 7 x — 2 .

Решим задачу обратную данной.

Необходимо перейти от общего вида уравнения A x + B y + C = 0 , где B ≠ 0 , к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим A x + B y + C = 0 ⇔ — A B · x — C B .

Результат и является уравннием с угловым коэффициентом, который равняется — A B .

Задано уравнение прямой вида 2 3 x — 4 y + 1 = 0 . Получить уравнение данной прямой с угловым коэффициентом.

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

2 3 x — 4 y + 1 = 0 ⇔ 4 y = 2 3 x + 1 ⇔ y = 1 4 · 2 3 x + 1 ⇔ y = 1 6 x + 1 4 .

Ответ: y = 1 6 x + 1 4 .

Аналогичным образом решается уравнение вида x a + y b = 1 , которое называют уравнение прямой в отрезках, или каноническое вида x — x 1 a x = y — y 1 a y . Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:

x a + y b = 1 ⇔ y b = 1 — x a ⇔ y = — b a · x + b .

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x · ( y — y 1 ) ⇔ ⇔ a x · y = a y · x — a y · x 1 + a x · y 1 ⇔ y = a y a x · x — a y a x · x 1 + y 1

Имеется прямая, заданная уравнением x 2 + y — 3 = 1 . Привести к виду уравнения с угловым коэффициентом.

Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на — 3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:

y — 3 = 1 — x 2 ⇔ — 3 · y — 3 = — 3 · 1 — x 2 ⇔ y = 3 2 x — 3 .

Ответ: y = 3 2 x — 3 .

Уравнение прямой вида x — 2 2 = y + 1 5 привести к виду с угловым коэффициентом.

Необходимо выражение x — 2 2 = y + 1 5 вычислить как пропорцию. Получим, что 5 · ( x — 2 ) = 2 · ( y + 1 ) . Теперь необходимо полностью его разрешить, для этого:

5 · ( x — 2 ) = 2 · ( y + 1 ) ⇔ 5 x — 10 = 2 y + 2 ⇔ 2 y = 5 x — 12 ⇔ y = 5 2 x

Ответ: y = 5 2 x — 6 .

Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x = λ y = — 1 + 2 · λ .

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

x = λ y = — 1 + 2 · λ ⇔ λ = x λ = y + 1 2 ⇔ x 1 = y + 1 2 .

Теперь необходимо разрешить данное равенство относительно y , чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:

x 1 = y + 1 2 ⇔ 2 · x = 1 · ( y + 1 ) ⇔ y = 2 x — 1

Отсюда следует, что угловой коэффициент прямой равен 2 . Это записывается как k = 2 .


источники:

http://ru.onlinemschool.com/math/library/analytic_geometry/line/

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/uravnenie-prjamoj-s-uglovym-koeffitsientom/