Указать корни уравнения принадлежащие отрезку

Как решать задание 13

О чем задача?

Задачи на решение тригонометрических уравнений, более сложных, чем в задании 5. В большинстве задач требуется не только решить уравнение, но и отобрать корни, принадлежащие определенному отрезку.

Как решать?

Шаг 1. Найдите область определения

Шаг 2. Приведите уравнение к виду простейших тригонометрических уравнений

Для того чтобы привести уравнение к виду простейших тригонометрических уравнений, применяйте следующие стандартные приемы:

Мы свели исходное уравнение к совокупности простейших тригонометрических уравнений [ cos x = − 1 , cos x = − 1 2 . \left[\begin \cos x = -1 <,>\\\cos x = -\frac<1> <2><.>\end\right. [ cos x = − 1 , cos x = − 2 1 ​ . ​

Шаг 3. Решите простейшие тригонометрические уравнения

О решении простейших тригонометрических уравнений читайте в отдельной статье .

Убедитесь, что найденные вами корни принадлежат области определения уравнения.

Остается решить уравнение cos x = − 1 2 \cos x =-\frac<1> <2>cos x = − 2 1 ​ .

Шаг 4. Выберите корни, принадлежащие отрезку, данному в условии

Корни, принадлежащие данному в условии отрезку, можно найти либо методом перебора, либо путем решения неравенства относительно k k k .

Найдем подходящие корни методом перебора. Для этого рассмотрим две серии корней по отдельности.

Отбор корней в тригонометрическом уравнение

В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.

а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]

Решим пункт а.

Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)

sqrt(2)cos^2x — cosx = 0

cosx(sqrt(2)cosx — 1) = 0

x1 = Pi/2 + Pin, n ∈ Z

sqrt(2)cosx — 1 = 0

x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z

x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z

Решим пункт б.

1) Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.

-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi

Сразу делим все на Pi

-7/2 меньше или равно 1/2 + n меньше или равно -2

-7/2 — 1/2 меньше или равно n меньше или равно -2 — 1/2

-4 меньше или равно n меньше или равно -5/2

Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2

Аналогично делаем еще два неравенства

-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8

Целых n в этом промежутке нет

-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8

Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.

Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4

2) Отбор корней с помощью тригонометрической окружности

Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.

Обойдем раз против часовой стрелки

Обойдем 2 раза против часовой стрелки

Обойдем 1 раз по часовой стрелки (значения будут отрицательные)

Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]

Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 — 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 — 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 — 4Pi = -7Pi/2, также подходит.

Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.

Сравнение двух методов.

Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.

Задания по теме «Тригонометрические уравнения»

Открытый банк заданий по теме тригонометрические уравнения. Задания C1 из ЕГЭ по математике (профильный уровень)

Задание №1179

Условие

а) Решите уравнение 2(\sin x-\cos x)=tgx-1.

б) Укажите корни этого уравнения, принадлежащие промежутку \left[ \frac<3\pi >2;\,3\pi \right].

Решение

а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 \sin x-2 \cos x-tg x=0. Учитывая, что \cos x \neq 0, слагаемое 2 \sin x можно заменить на 2 tg x \cos x, получим уравнение 1+2 tg x \cos x-2 \cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 \cos x)=0.

1) 1-tg x=0, tg x=1, x=\frac\pi 4+\pi n, n \in \mathbb Z;

2) 1-2 \cos x=0, \cos x=\frac12, x=\pm \frac\pi 3+2\pi n, n \in \mathbb Z.

б) С помощью числовой окружности отберём корни, принадлежащие промежутку \left[ \frac<3\pi >2;\, 3\pi \right].

x_1=\frac\pi 4+2\pi =\frac<9\pi >4,

x_2=\frac\pi 3+2\pi =\frac<7\pi >3,

x_3=-\frac\pi 3+2\pi =\frac<5\pi >3.

Ответ

а) \frac\pi 4+\pi n, \pm\frac\pi 3+2\pi n, n \in \mathbb Z;

б) \frac<5\pi >3, \frac<7\pi >3, \frac<9\pi >4.

Задание №1178

Условие

а) Решите уравнение (2\sin ^24x-3\cos 4x)\cdot \sqrt =0.

б) Укажите корни этого уравнения, принадлежащие промежутку \left( 0;\,\frac<3\pi >2\right] ;

Решение

а) ОДЗ: \begin tgx\geqslant 0\\x\neq \frac\pi 2+\pi k,k \in \mathbb Z. \end

Исходное уравнение на ОДЗ равносильно совокупности уравнений

\left[\!\!\begin 2 \sin ^2 4x-3 \cos 4x=0,\\tg x=0. \end\right.

Решим первое уравнение. Для этого сделаем замену \cos 4x=t, t \in [-1; 1]. Тогда \sin^24x=1-t^2. Получим:

t_1=\frac12, t_2=-2, t_2\notin [-1; 1].

4x=\pm \frac\pi 3+2\pi n,

x=\pm \frac\pi <12>+\frac<\pi n>2, n \in \mathbb Z.

Решим второе уравнение.

tg x=0,\, x=\pi k, k \in \mathbb Z.

При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.

Получим: x=\pi k, k \in \mathbb Z; x=\frac\pi <12>+\pi n, n \in \mathbb Z; x=\frac<5\pi ><12>+\pi m, m \in \mathbb Z.

б) Найдём корни, принадлежащие промежутку \left( 0;\,\frac<3\pi >2\right].

Ответ

а) \pi k, k \in \mathbb Z; \frac\pi <12>+\pi n, n \in \mathbb Z; \frac<5\pi ><12>+\pi m, m \in \mathbb Z.

Задание №1177

Условие

а) Решите уравнение: \cos ^2x+\cos ^2\frac\pi 6=\cos ^22x+\sin ^2\frac\pi 3;

б) Укажите все корни, принадлежащие промежутку \left( \frac<7\pi >2;\,\frac<9\pi >2\right].

Решение

а) Так как \sin \frac\pi 3=\cos \frac\pi 6, то \sin ^2\frac\pi 3=\cos ^2\frac\pi 6, значит, заданное уравнение равносильно уравнению \cos^2x=\cos ^22x, которое, в свою очередь, равносильно уравнению \cos^2x-\cos ^2 2x=0.

Но \cos ^2x-\cos ^22x= (\cos x-\cos 2x)\cdot (\cos x+\cos 2x) и

\cos 2x=2 \cos ^2 x-1, поэтому уравнение примет вид

(\cos x-(2 \cos ^2 x-1))\,\cdot (\cos x+(2 \cos ^2 x-1))=0,

(2 \cos ^2 x-\cos x-1)\,\cdot (2 \cos ^2 x+\cos x-1)=0.

Тогда либо 2 \cos ^2 x-\cos x-1=0, либо 2 \cos ^2 x+\cos x-1=0.

Решая первое уравнение как квадратное уравнение относительно \cos x, получаем:

(\cos x)_<1,2>=\frac<1\pm\sqrt 9>4=\frac<1\pm3>4. Поэтому либо \cos x=1, либо \cos x=-\frac12. Если \cos x=1, то x=2k\pi , k \in \mathbb Z. Если \cos x=-\frac12, то x=\pm \frac<2\pi >3+2s\pi , s \in \mathbb Z.

Аналогично, решая второе уравнение, получаем либо \cos x=-1, либо \cos x=\frac12. Если \cos x=-1, то корни x=\pi +2m\pi , m \in \mathbb Z. Если \cos x=\frac12, то x=\pm \frac\pi 3+2n\pi , n \in \mathbb Z.

Объединим полученные решения:

x=m\pi , m \in \mathbb Z; x=\pm \frac\pi 3 +s\pi , s \in \mathbb Z.

б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

Получим: x_1 =\frac<11\pi >3, x_2=4\pi , x_3 =\frac<13\pi >3.

Ответ

а) m\pi, m \in \mathbb Z; \pm \frac\pi 3 +s\pi , s \in \mathbb Z;

б) \frac<11\pi >3, 4\pi , \frac<13\pi >3.

Задание №1176

Условие

а) Решите уравнение 10\cos ^2\frac x2=\frac<11+5ctg\left( \dfrac<3\pi >2-x\right) ><1+tgx>.

б) Укажите корни этого уравнения, принадлежащие интервалу \left( -2\pi ; -\frac<3\pi >2\right).

Решение

а) 1. Согласно формуле приведения, ctg\left( \frac<3\pi >2-x\right) =tgx. Областью определения уравнения будут такие значения x , что \cos x \neq 0 и tg x \neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 \cos ^2 \frac x2=1+\cos x. Получим уравнение: 5(1+\cos x) =\frac<11+5tgx><1+tgx>.

Заметим, что \frac<11+5tgx><1+tgx>= \frac<5(1+tgx)+6><1+tgx>= 5+\frac<6><1+tgx>, поэтому уравнение принимает вид: 5+5 \cos x=5 +\frac<6><1+tgx>. Отсюда \cos x =\frac<\dfrac65><1+tgx>, \cos x+\sin x =\frac65.

2. Преобразуем \sin x+\cos x по формуле приведения и формуле суммы косинусов: \sin x=\cos \left(\frac\pi 2-x\right), \cos x+\sin x= \cos x+\cos \left(\frac\pi 2-x\right)= 2\cos \frac\pi 4\cos \left(x-\frac\pi 4\right)= \sqrt 2\cos \left( x-\frac\pi 4\right) = \frac65.

Отсюда \cos \left(x-\frac\pi 4\right) =\frac<3\sqrt 2>5. Значит, x-\frac\pi 4= arc\cos \frac<3\sqrt 2>5+2\pi k, k \in \mathbb Z,

или x-\frac\pi 4= -arc\cos \frac<3\sqrt 2>5+2\pi t, t \in \mathbb Z.

Поэтому x=\frac\pi 4+arc\cos \frac<3\sqrt 2>5+2\pi k,k \in \mathbb Z,

или x =\frac\pi 4-arc\cos \frac<3\sqrt 2>5+2\pi t,t \in \mathbb Z.

Найденные значения x принадлежат области определения.

б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=\frac\pi 4+arccos \frac<3\sqrt 2>5 и b=\frac\pi 4-arccos \frac<3\sqrt 2>5.

1. Докажем вспомогательное неравенство:

Заметим также, что \left( \frac<3\sqrt 2>5\right) ^2=\frac<18> <25>значит \frac<3\sqrt 2>5

2. Из неравенств (1) по свойству арккосинуса получаем:

Отсюда \frac\pi 4+0

Аналогично, -\frac\pi 4

0=\frac\pi 4-\frac\pi 4 \frac\pi 4

При k=-1 и t=-1 получаем корни уравнения a-2\pi и b-2\pi.

\Bigg( a-2\pi =-\frac74\pi +arccos \frac<3\sqrt 2>5,\, b-2\pi =-\frac74\pi -arccos \frac<3\sqrt 2>5\Bigg). При этом -2\pi

-2\pi Значит, эти корни принадлежат заданному промежутку \left( -2\pi , -\frac<3\pi >2\right).

При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

Действительно, если k\geqslant 1 и t\geqslant 1, то корни больше 2\pi. Если k\leqslant -2 и t\leqslant -2, то корни меньше -\frac<7\pi >2.

Ответ

а) \frac\pi4\pm arccos\frac<3\sqrt2>5+2\pi k, k\in\mathbb Z;

б) -\frac<7\pi>4\pm arccos\frac<3\sqrt2>5.

Задание №1175

Условие

а) Решите уравнение \sin \left( \frac\pi 2+x\right) =\sin (-2x).

б) Найдите все корни этого уравнения, принадлежащие промежутку [0; \pi ];

Решение

а) Преобразуем уравнение:

\cos x+2 \sin x \cos x=0,

x =\frac\pi 2+\pi n, n \in \mathbb Z;

x=(-1)^\cdot \frac\pi 6+\pi k, k \in \mathbb Z.

б) Корни, принадлежащие отрезку [0; \pi ], найдём с помощью единичной окружности.

Указанному промежутку принадлежит единственное число \frac\pi 2.

Ответ

а) \frac\pi 2+\pi n, n \in \mathbb Z; (-1)^\cdot \frac\pi 6+\pi k, k \in \mathbb Z;

б) \frac\pi 2.

Задание №1174

Условие

б) Найдите все корни этого уравнения, принадлежащие отрезку \left[ -\frac<3\pi ><2>; -\frac<\pi >2 \right].

Решение

а) Найдём ОДЗ уравнения: \cos 2x \neq -1, \cos (\pi +x) \neq -1; Отсюда ОДЗ: x \neq \frac \pi 2+\pi k,

k \in \mathbb Z, x \neq 2\pi n, n \in \mathbb Z. Заметим, что при \sin x=1, x=\frac \pi 2+2\pi k, k \in \mathbb Z.

Полученное множество значений x не входит в ОДЗ.

Значит, \sin x \neq 1.

Разделим обе части уравнения на множитель (\sin x-1), отличный от нуля. Получим уравнение \frac 1<1+\cos 2x>=\frac 1<1+\cos (\pi +x)>, или уравнение 1+\cos 2x=1+\cos (\pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 \cos ^2 x=1-\cos x. Это уравнение с помощью замены \cos x=t, где -1 \leqslant t \leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=\frac12. Возвращаясь к переменной x , получим \cos x = \frac12 или \cos x=-1, откуда x=\frac \pi 3+2\pi m, m \in \mathbb Z, x=-\frac \pi 3+2\pi n, n \in \mathbb Z, x=\pi +2\pi k, k \in \mathbb Z.

б) Решим неравенства

1) -\frac<3\pi >2 \leqslant \frac<\pi >3+2\pi m \leqslant -\frac \pi 2 ,

2) -\frac<3\pi >2 \leqslant -\frac \pi 3+2\pi n \leqslant -\frac \pi

3) -\frac<3\pi >2 \leqslant \pi+2\pi k \leqslant -\frac \pi 2 , m, n, k \in \mathbb Z.

1) -\frac<3\pi >2 \leqslant \frac<\pi >3+2\pi m \leqslant -\frac \pi 2 , -\frac32 \leqslant \frac13+2m \leqslant -\frac12 -\frac<11>6 \leqslant 2m \leqslant -\frac56 , -\frac<11> <12>\leqslant m \leqslant -\frac5<12>.

Нет целых чисел, принадлежащих промежутку \left [-\frac<11><12>;-\frac5<12>\right] .

2) -\frac <3\pi>2 \leqslant -\frac<\pi >3+2\pi n \leqslant -\frac<\pi ><2>, -\frac32 \leqslant -\frac13 +2n \leqslant -\frac12 , -\frac76 \leqslant 2n \leqslant -\frac1<6>, -\frac7 <12>\leqslant n \leqslant -\frac1<12>.

Нет целых чисел, принадлежащих промежутку \left[ -\frac7 <12>; -\frac1 <12>\right].

3) -\frac<3\pi >2 \leqslant \pi +2\pi k\leqslant -\frac<\pi >2, -\frac32 \leqslant 1+2k\leqslant -\frac12, -\frac52 \leqslant 2k \leqslant -\frac32, -\frac54 \leqslant k \leqslant -\frac34.

Этому неравенству удовлетворяет k=-1, тогда x=-\pi.

Ответ

а) \frac \pi 3+2\pi m; -\frac \pi 3+2\pi n; \pi +2\pi k, m, n, k \in \mathbb Z;


источники:

http://reshimvse.com/article.php?id=100

http://academyege.ru/theme/trigonometricheskie-uravneniya-3.html