Укажите неверный метод решения тригонометрических уравнений

Методы решения тригонометрических уравнений
методическая разработка по алгебре (11 класс) на тему

В работе рассматриваются различные способы решения тригонометрических уравнений

и основные ошибки, которые при этом допускаются. Материал можно использовать

при подготовке к ЕГЭ как наиболее подготовленными школьниками, так и учителями.

Скачать:

ВложениеРазмер
metody_resheniya_trigonometricheskih_uravneniy.doc425.5 КБ

Предварительный просмотр:

Методы решения тригонометрических уравнений, неравенств и систем.

Тригонометрическим уравнением называется равенство тригонометрических выражений, содержащих переменную только под знаком тригонометрических функций. Решить тригонометрическое уравнение – значит найти все его корни – все значения неизвестного, удовлетворяющие уравнению. Тригонометрические уравнения сводятся цепочкой равносильных преобразований, заменами и решениями алгебраических уравнений к простейшим тригонометрическим уравнениям. Уравнения sin x = х; tg 3x = х 2 +1 и т.д. не являются тригонометрическими и, как правило, решаются приближенно или графически. Может случится так, что уравнение не является тригонометрическим согласно определению, однако оно может быть сведено к тригонометрическому. Например, 2(х – 6) cos 2x = х – 6, (х – 6)(2 cos 2x – 1) = 0, откуда х = 6 или cos 2x = , х = + π n, nZ.

Выделим основные методы решения тригонометрических равнений

  1. Разложение на множители.
  2. Введение новой переменной:

а) сведение к квадратному;

б) универсальная подстановка;

в) введение вспомогательного аргумента.

3. Сведение к однородному уравнению.

4. Применение формул.

5. Использование свойств функций, входящих в уравнение:

а) обращение к условию равенства тригонометрических функций;

б) использование свойства ограниченности функции.

1.Уравнения, в которых все функции выражаются через одну тригонометрическую функцию от одного и того же аргумента.

Примеры: sin 2 x – cos x – 1 = 0,

tg 3x + 2 ctg 3x – 3 = 0.

Преобразованиями sin 2 x= 1 — cos 2 x и ctg 3x = эти уравнения приводятся к алгебраическим, решая которые получаем простейшие тригонометрические уравнения. Метод сведения к квадратному состоит в том, что, пользуясь изученными формулами, надо преобразовать уравнение к такому виду, чтобы какую-то функцию (например, sin x или cos x) или комбинацию функций обозначить через y, получив при этом квадратное уравнение относительно y.

2.Уравнения, решаемые разложением на множители.

Под разложением на множители понимается представление данного выражения в виде произведения нескольких множителей. Если в одной части уравнения стоит несколько множителей, а в другой – 0, то каждый множитель приравнивается к нулю. Таким образом, данное уравнение можно представить в виде совокупности более простых уравнений.

sin 4x — cos 2x = 0,

2 sin 2x cos 2x — cos 2x = 0,

cos 2x (2 sin 2x – 1) = 0,

cos 2x = 0 или 2 sin 2x – 1 = 0.

3.Уравнения однородные относительно sin x и cos x.

Примеры: 3 sin 2 x + 4 sin x cos x + cos 2 x =0,

2 sin 3 5x — 2 sin 2 5x cos 5x + sin 5x cos 2 5x – cos 3 x =0,

3 sin 7x — 2 cos 7x =0.

Если первый коэффициент не равен нулю, то разделив обе части уравнения на cos n x, получим уравнение n- степени, относительно tg. Решая полученное уравнение перейдем к простейшему. При делении уравнения на выражение, содержащее неизвестное, могут быть потеряны корни. Поэтому нужно проверить, не являются ли корни уравнения cos x =0 корнями данного уравнения. Если cos x =0, то из уравнений следует, что sin x = 0. Однако sin x и cos x не могут одновременно равняться нулю, так как они связаны равенством sin 2 x + cos 2 x = 1. Следовательно, при делении уравнения на cos n x, получаем уравнение, равносильное данному. В случае, если первый или последний коэффициент равен нулю, то имеет смысл вынести за скобки sin x или cos x. Решить уравнение приравняв к нулю каждый множитель.

4.Уравнения, сводящиеся к однородным.

Примеры: 3 sin 2 x — sin x cos x — 4cos 2 x =2,

sin 3 x + sin x cos 2 x – 2cos x =0.

Эти уравнения сводятся к однородным уравнениям следующим образом:

3 sin 2 x — sin x cos x — 4cos 2 x =2 (sin 2 x + cos 2 x),

sin 3 x + sin x cos 2 x – 2cos x(sin 2 x + cos 2 x) =0.

5. Уравнения, линейные относительно sin x и cos x

а sin x + в cos x = с, где а, в и с – любые действительные числа.

Если а=в=0, а с0, то уравнение теряет смысл;

Если а=в=с=0, то х – любое действительное число, то есть уравнение обращается в тождество.

Рассмотрим случай, когда а,в,с 0.

sin x + 4 cos x = 1,

3 sin 5x — 4 cos 5x = 2,

2 sin 3x + 5 cos 3x = 8.

Последнее уравнение не имеет решений, так как левая часть его не превосходит 7.

Уравнения, этого вида можно решить многими способами: с помощью универсальной подстановки, выразив sin x и cos x через tg ; сведением уравнения к однородному; введением вспомогательного аргумента и другими.

Рассмотрим последний из них.

Разделим обе части уравнения на .

Так как += 1, то найдется аргумент φ, при котором

Уравнение примет вид sin x cos φ + sin φ cos x = .

Используя формулу получим sin (x+ φ) = .

Следовательно решением уравнения будет х = (-1) n arcsin — arccos+ π n, nZ.

Решение этого уравнения существует при a 2 + b 2 c 2 .

6.Уравнения, сводящиеся к равенству одной тригонометрической функции от различных аргументов:

1) sin x = sin у, 2) cos x = cos у, 3) tg x = tg у.

При решении этих уравнений можно применить метод использования условий равенства одноименных тригонометрических функций. Равенство этих функций имеет место тогда и только тогда, когда, соответственно, x = (-1) n y + π n,

f(x) = π — g(x) + 2 π n

Примеры: cos 4x = sin 6х, сtg x = tg .

Первое уравнение с помощью формул приведения приводим к виду : sin(- 4x) = sin 6х, а второе – к виду tg (- x) = tg .

Решим уравнение tg 3x tg (5x + ) = 1.

Разделим обе части уравнения на tg 3x. Это допустимо, так как в данных условиях tg 3x не может равняться нулю:

tg (5x + ) = , tg (5x + ) = сtg 3x, tg (5x + ) = tg ( — 3x).

На основании условия равенства тангенсов двух углов имеем:

8х = + π n; х = + ; х = (6n + 1) , nZ.

При каждом значении х из этой совокупности каждая из частей уравнения tg (5x + ) = tg ( — 3x) существует.

Уравнения sin x = sin у и cos x = cos у можно решать и с применением формул, заменив разность функций произведением.

7. Выделение полного квадрата в тригонометрических уравнениях.

sin 4 x + cos 4 x = sin 2х,

cos 6 x + sin 6 х = cos 2x,

cos 6 x + sin 6 х + sin 4 x + cos 4 x = 1 — sin 2х.

Данный метод можно применить для уравнений, содержащих следующие выражения:

sin 4 x + cos 4 x, cos 6 x sin 6 х, sin 8 х cos 8 x.

Преобразуем первое выражение:

sin 4 x + cos 4 x = sin 4 x + 2 sin 2 x cos 2 x +cos 4 x — 2 sin 2 x cos 2 x = (sin 2 x + cos 2 x) 2 — 2= 1 — sin 2 2х .

Преобразуем второе выражение:

cos 6 x + sin 6 х = (cos 2 x + sin 2 х) ( sin 4 x — sin 2 x cos 2 x +cos 4 x) = 1 — sin 2 2х — sin 2 2х = 1 — sin 2 2х.

cos 6 x — sin 6 х = (cos 2 x — sin 2 х) ( sin 4 x + sin 2 x cos 2 x +cos 4 x) = cos 2x (1 — sin 2 2х + sin 2 2х) = cos 2x (1 — sin 2 2х).

Можно упростить эти выражения и с помощью формул понижения степени.

8. Уравнения вида f(sin х + cos x, sinх cosx) = 0, f(sin х — cos x, sinх cosx) = 0.

Решить такие уравнения можно заменой sin х + cos x = t или sin х — cos x = t.

sin х + cos x = 1 + sin 2х,

6 sinх cosx + 2 sin х = 2 + 2 cos x,

3 sin 3х = 1 + 3 cos 3x — sin 6х.

После преобразования и соответствующей замены эти уравнения сводятся к квадратным. В первом уравнении, сделав замену sin х + cos x = t, получим

sin 2 x + 2 sin x cos x +cos 2 x = t 2 , 1 + sin 2х = t 2 , sin 2х = 1 — t 2 . Уравнение примет вид t = 1 + 1 — t 2 .

9. Универсальная тригонометрическая подстановка tg = t.

Эта подстановка позволяет рационально выразить все тригонометрические функции через одну переменную.

sin х = ; cos x = ; tg x = .

Значит, если tg = t, то sin х = , cos x = , tg x = . Универсальная подстановка может привести к потере корней, так как tg не существует при = + π n, значит x π + 2 π n.

ctg + sin х + tg x = 1,

sin 2х + cos x = 2 — tg x.

Решим уравнение ctg = 2 — sin х.

Пусть tg = t, тогда sin х = , а так как tg ctg = 1, то ctg = .

Получим = 2 — , 2 t 3 – 3t 2 + 2t – 1= 0, (t — 1)(2t 2 – t + 1) = 0.

Уравнение 2t 2 – t + 1 = 0 не имеет решений, значит t – 1 = 0, t = 1.

Следовательно, tg = 1, x = + 2 π n, nZ. Убедимся, что x = π + 2 π n не является решением исходного уравнения.

10 . Метод использования свойства ограниченности функции.

Суть этого метода заключается в следующем: если функции f(х) и g(х) таковы, что для всех х выполняются неравенства f(х)а и g(х) в, и дано уравнение

f(х) + g(х) = а + в, то оно равносильно системе

3 sin 5 x + 2 cos 5 x = 5 ⇔

2 sin 2 2x + 1 = cos 5x ⇔

sin 9х + cos 3x = — 2 ⇔

Решим последнее уравнение sin — cos 6x = 2.

Так как и , то имеем систему: ; ;

Покажем общее решение на тригонометрической окружности. Решение первого уравнения системы обозначим , а второго – точкой и найдем их общее решение.

Нужна ли проверка решения тригонометрического уравнения? На этот вопрос утвердительно ответить нельзя. Если тригонометрическое уравнение представляет собой целый многочлен относительно синуса и косинуса и если грамотно решать уравнение, то проверка может понадобится только для самоконтроля – для уверенности в правильности решения. Проверка, как правило, не нужна. Если следить в процессе решения уравнения за равносильностью перехода, то проверку решения можно не делать. Если же решать уравнение без учета равносильности перехода, то проверка обязательно нужна, особенно когда уравнение содержит тангенс, котангенс, дробные члены или тригонометрические функции от неизвестного, входящие под знак радикала. Не сделав в этом случае проверку, приходят к грубым ошибкам, к посторонним решениям. При решении уравнений, содержащих дробные члены, нужно следить за сокращением дробей, ссылаясь на основное свойство дроби. В этом случае мы избегаем посторонних корней и избавляем себя от проверки найденных решений.

Проблемы, возникающие при решении тригонометрических уравнений.

  1. Делим на g(х).
  2. Применяем опасные формулы.

1 сosx = sinx* sin,

Заменим левую часть уравнения по формуле 1 — сosx = 2sin 2 ,

а правую часть уравнения по формуле sinx = 2sin *cos , получим

2sin 2 = 2sin * сos *sin , разделим на 2 sin 2 обе части уравнения, получим 1 = сos , решая это уравнение, найдем корни = 2 π n, x = 4 π n, n Z.

Потеряли корни sin = 0, х = 2 π k, k Z.

Правильное решение: 2sin 2 (1 – сos ) = 0.

sin 2 = 0 или 1 – сos = 0

x = 2 π k, k ∈ Z. x = 4 π n, n ∈ Z.

Ответ: x = 2 π k, k ∈ Z, x = 4 π n, n ∈ Z.

2. Посторонние корни.

  1. Освобождаемся от знаменателя.
  2. Возводим в четную степень.

( sin4x – sin2x – сos3x + 2sinx — 1):(2sin2x — ) = 0.

Методы решения тригонометрических уравнений

Разделы: Математика

Составной частью ЕГЭ являются тригонометрические уравнения.

К сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. Успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.

Общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:

сos px = a;sin gx = b;tg kx = c;ctg tx = d.

Для этого необходимо уметь применять тригонометрические формулы. Полезно знать и называть их “именами”:

1. Формулы двойного аргумента, тройного аргумента:

сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

sin 2x = 2 sin x cos x;

tg 2x = 2 tg x/1 – tg x;

ctg 2x = (ctg 2 x – 1)/2 ctg x;

sin 3x = 3 sin x – 4 sin 3 x;

cos 3x = 4 cos 3 x – 3 cos x;

tg 3x = (2 tg x – tg 3 x)/(1 – 3 tg 2 x);

ctg 3x = (ctg 3 x – 3ctg x)/(3ctg 2 x – 1);

2. Формулы половинного аргумента или понижения степени:

sin 2 x/2 = (1 – cos x)/2; сos 2 x/2 = (1 + cos x)/2;

tg 2 x = (1 – cos x)/(1 + cos x);

ctg 2 x = (1 + cos x)/(1 – cos x);

3. Введение вспомогательного аргумента:

рассмотрим на примере уравнения a sin x + b cos x = c а именно, определяя угол х из условий sin y = b/v(a 2 + b 2 ), cos y = a/v(a 2 + b 2 ), мы можем привести рассматриваемое уравнение к простейшему sin (x + y) = c/v(a 2 + b 2 ) решения которого выписываются без труда; тем самым определяются и решения исходного уравнения.

4. Формулы сложения и вычитания:

sin (a + b) = sin a cos b + cos a sin b;

sin (a – b) = sin a cos b – cos a sin b;

cos (a + b) = cos a cos b – sin a sin b;

cos (a – b) = cos a cos b + sin a sin b;

tg (a + b) = ( tg a + tg b)/(1 – tg a tg b);

tg (a – b) = ( tg a – tg b)/(1 + tg a tg b);

5. Универсальная тригонометрическая подстановка:

cos a = (1 – tg 2 (a/2))/(1 + (tg 2 (a/2));

tg a = 2 tg a/2/(1 – tg 2 (a/2));

6. Некоторые важные соотношения:

sin x + sin 2x + sin 3x +…+ sin mx = (cos (x/2) -cos (2m + 1)x)/(2 sin (x/2));

cos x + cos 2x + cos 3x +…+ cos mx = (sin (2m+ 1)x/2 – sin (x/2))/(2 sin (x/2));

7. Формулы преобразования суммы тригонометрических функций в произведение:

sin a + sin b = 2 sin(a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin(a + b)/2 sin (b – a)/2;

tg a + tg b = sin (a + b)/(cos a cos b);

tg a – tg b = sin (a – b)/(cos a cos b).

А также формулы приведения.

В процессе решения надо особенно внимательно следить за эквивалентностью уравнений, чтобы не допустить потери корней (например, при сокращении левой и правой частей уравнения на общий множитель), или приобретения лишних корней (например, при возведении обеих частей уравнения в квадрат). Кроме того, необходимо контролировать принадлежат ли получающие корни к ОДЗ рассматриваемого уравнения.

Во всех необходимых случаях (т.е. когда допускались неэквивалентные преобразования), нужно обязательно делать проверку. При решении уравнении необходимо научить учащихся сводить их к определенным видам, обычно начиная с легких уравнении.

Ознакомимся с методами решения уравнений:

1. Сведение к виду аx 2 + bx + c = 0

2. Однородность уравнений.

3. Разложение на множители.

4. Сведение к виду a 2 + b 2 + c 2 = 0

5. Замена переменных.

6. Сведение уравнения к уравнению с одной переменной.

7. Оценка левой и правой части.

8. Метод пристального взгляда.

9. Введение вспомогательного угла.

10. Метод “ Разделяй и властвуй ”.

1. Решить уравнение: sin x + cos 2 х = 1/4.

Решение: Решим методом сведения к квадратному уравнению. Выразим cos 2 х через sin 2 x

4 sin 2 x – 4 sin x – 3 = 0

sin x = -1/2, sin x = 3/2(не удовлетворяет условию х€[-1;1]),

т.е. х = (-1) к+1 arcsin 1/2 + k, k€z,

Ответ: (-1) к+1 /6 + k, k€z.

2. Решить уравнение: 2 tg x cos x +1 = 2 cos x + tg x,

решим способом разложения на множители

2 tg x cos x – 2 cos x + 1 – tg x = 0,где х /2 + k, k€z,

2 cos x (tg x – 1) – (tg x – 1) = 0

(2 cos x – 1) (tg x – 1) = 0

2 cos x – 1 = 0 или tg x – 1 = 0

cos x = 1/2, tgx = 1,

т.е х = ± /3 + 2k, k€z, х = /4 + m, m€z.

Ответ: ± /3 + 2k, k€z, /4 + m, m€z.

3. Решить уравнение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0.

Решение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0 однородное уравнение 2 степени. Поскольку cos x = 0 не является корнем данного уравнения, разделим левую и правую часть на cos 2 х. В результате приходим к квадратному уравнению относительно tg x

tg x = 1 и tg x = 2,

откуда х = /4 + m, m€z,

х = arctg 2 + k, k€z.

Ответ: /4 + m, m€z, arctg 2 + k, k€z.

4. Решить уравнение: cos (10x + 12) + 42 sin (5x + 6) = 4.

Решение: Метод введения новой переменной

Пусть 5х + 6 = у, тогда cos 2у + 42 sin у = 4

1 – 2 sin 2 у + 42 sin у – 4 = 0

sin у = t, где t€[-1;1]

2t 2 – 42t + 3 = 0

t = 2/2 и t = 32/2 (не удовлетворяет условию t€[-1;1])

sin (5x + 6) = 2/2,

5x + 6 = (-1) к /4 + k, k€z,

х = (-1) к /20 – 6/5 + k/5, k€z.

Ответ: (-1) к ?/20 – 6/5 + ?k/5, k€z.

5. Решить уравнение: (sin х – cos у) 2 + 40х 2 = 0

Решение: Используем а 2 +в 2 +с 2 = 0, верно, если а = 0, в = 0, с = 0. Равенство возможно, если sin х – cos у = 0, и 40х = 0 отсюда:

х = 0, и sin 0 – cos у = 0, следовательно, х = 0, и cos у = 0, отсюда: х = 0, и у = /2 + k, k€z, также возможна запись (0; /2 + k) k€z.

Ответ: (0; /2 + k) k€z.

6. Решить уравнение: sin 2 х + cos 4 х – 2 sin х + 1 = 0

Решение: Преобразуем уравнение и применим метод “разделяй и властвуй”

(sin 2 х – 2 sin х +1) + cos 4 х = 0;

(sin х – 1) 2 + cos 4 х = 0; это возможно если

(sin х – 1) 2 = 0, и cos 4 х = 0, отсюда:

sin х – 1 = 0, и cos х = 0,

sin х = 1, и cos х = 0, следовательно

х = /2 + k, k€z

Ответ: /2 + k, k€z.

7. Решить уравнение: sin 5х + sin х = 2 + cos 2 х.

Решение: применим метод оценки левой и правой части и ограниченность функций cos и sin.

– 1 sin 5х 1, и -1 sin х 1

0 cos 2 х 1

0 + 2 2 + cos 2 х 1 + 2

2 2 + cos 2 х 3

sin 5х + sin х 2, и 2 + cos 2 х 2

-2 sin 5х + sin х 2, т.е.

sin 5х + sin х 2,

имеем левая часть 2, а правая часть 2,

равенство возможно если, они оба равны 2.

cos 2 х = 0, и sin 5х + sin х = 2, следовательно

х = /2 + k, k€z (обязательно проверить).

Ответ: /2 + k, k€z.

8. Решить уравнение: cos х + cos 2х + cos 3х+ cos 4х = 0.

Решение: Решим методом разложения на множители. Группируем слагаемые, расположенные в левой части, в пары.

(В данном случае любой способ группировки приводит к цели.) Используем формулу cos a+cos b=2 cos (a + b)/2 cos (a – b)/2.

2 cos 3/2х cos х/2 + 2 cos 7/2х cos х/2 = 0,

cos х/2 (cos 3/2х + cos 7/2х) = 0,

2 cos 5/2х cos х/2 cos х = 0,

Возникают три случая:

  1. cos х/2 = 0, х/2 = /2 + k, k€z, х = + 2k, k€z;
  2. cos 5/2х = 0, 5/2х = /2 + k, k€z, х = /5 + 2/5k, k€z;
  3. cos х = 0, х = /2 + k, k€z.

Ответ: + 2k, /5 + 2/5k, /2 + k, k€z.

Обратим внимание на то, что второй случай включает в себя первый. (Если во втором случае взять к = 4 + 5, то получим + 2n). Поэтому нельзя сказать, что правильнее, но во всяком случае “культурнее и красивее” будет выглядеть ответ: х1 = /5 + 2/5k, х2 = /2 + k, k€z. (Вновь типичная ситуация, приводящая к различным формам записи ответа). Первый ответ также верен.

Рассмотренное уравнение иллюстрирует весьма типичную схему решения – разложение уравнения на множители за счёт попарной группировки и использования формул:

sin a + sin b = 2 sin (a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin (a + b)/2 sin (b – a)/2.

Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений весьма специфична и обычно оказывается более сложной, чем это имело место для уравнений алгебраических. Приведём решения уравнений, иллюстрирующие типичные случаи появления лишних (посторонних) корней и методы “борьбы” с ними.

Лишние корни могут появиться вследствие того, что в процессе решения произошло расширение области определения уравнений. Приведём примеры.

9. Решить уравнение: (sin 4х – sin 2х – cos 3х + 2sin х -1)/(2sin 2х – 3) = 0.

Решение: Приравняем нулю числитель (при этом происходит расширение области определения уравнения – добавляются значения х, обращающие в нуль знаменатель) и постараемся разложить его на множители. Имеем:

2 cos 3х sin х – cos 3х + 2sin х – 1 = 0,

(cos 3х + 1) (2 sin х – 1) = 0.

Получаем два уравнения:

cos 3х + 1 = 0, х = /3 + 2/3k.

Посмотрим, какие k нам подходят. Прежде всего, заметим, что левая часть нашего уравнения представляет собой периодическую функцию с периодом 2. Следовательно, достаточно найти решение уравнения, удовлетворяющее условию 0 х 8 х – cos 5 х = 1.

Решение этого уравнения основывается на следующем простом соображении: если 0 t убывает с ростом t.

Значит, sin 8 х sin 2 х, – cos 5 х cos 2 х;

Сложив почленно эти неравенства, будем иметь:

sin 8 х – cos 5 х sin 2 х + cos 2 х = 1.

Следовательно, левая часть данного уравнения равна единице тогда и только тогда, когда выполняются два равенства:

sin 8 х = sin 2 х, cos 5 х = cos 2 х,

т.е. sin х может принимать значения -1, 0

Ответ: /2 + k, + 2k, k€z.

Для полноты картины рассмотрим ещё пример.

12. Решить уравнение: 4 cos 2 х – 4 cos 2 3х cos х + cos 2 3х = 0.

Решение: Будем рассматривать левую часть данного уравнения как квадратный трёхчлен относительно cos х.

Пусть D – дискриминант этого трёхчлена:

1/4 D = 4 (cos 4 3х – cos 2 3х).

Из неравенства D 0 следует cos 2 3х 0 или cos 2 3х 1.

Значит, возникают две возможности: cos 3х = 0 и cos 3х = ± 1.

Если cos 3х = 0, то из уравнения следует, что и cos х = 0, откуда х = /2 + k.

Эти значения х удовлетворяют уравнению.

Если cos 3х = 1, то из уравнения cos х = 1/2 находим х = ± /3 + 2k. Эти значения также удовлетворяют уравнению.

Ответ: /2 + k, /3 + 2k, k€z.

13. Решить уравнение: sin 4 x + cos 4 x = 7/2 sin x cos x.

Решение: Преобразуем выражение sin 4 x + cos 4 x,выделив полный квадрат: sin 4 x + cos 4 x = sin 4 x + 2 sin 2 х cos 2 х + cos 4 x – 2 sin 2 х cos 2 х = (sin 2 х + cos 2 х) 2 – 2 sin 2 х cos 2 х, откуда sin 4 x + cos 4 x = 1 – 1/2 sin 2 2х. Пользуясь полученной формулой, запишем уравнение в виде

1-1/2 sin 2 2х = 7/4 sin 2х.

обозначив sin 2х = t, -1 t 1,

получим квадратное уравнение 2t 2 + 7t – 4 = 0,

решая которое, находим t1 = 1/2, t2 = – 4

уравнение sin 2х = 1/2

2х = (- 1) к /6 + k, k€z, х = (- 1) к //12 + k /2, k€z .

уравнение sin 2х = – 4 решений не имеет.

Ответ: (- 1) к //12 + k /2, k€z .

14. Решить уравнение: sin 9х + sin х = 2.

Решение: Решим уравнение методом оценки. Поскольку при всех значениях а выполнено неравенство sin а1,то исходное уравнение равносильно sin х = 1 и sin 9х =1,откуда получаем х = /2 + 2k, k€z и х = /18 + 2n, n€z.

Решением будут те значения х, при которых выполнено и первое, и второе уравнение. Поэтому из полученных ответов следует отобрать только х = /2 + 2k, k€z.

Ответ: /2 + 2k, k€z.

15. Решить уравнение: 2 cos x = 1 – 2 cos 2 x – v3 sin 2х.

Решение: воспользуемся формулой:

сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

и перепишем уравнение в виде

2 cos x = – cos 2х – 3 sin 2х.

Применим к правой части процедуру введения дополнительного аргумента. Получим уравнение:

2 cos x = – 2 (1/2 cos 2х + 3/2 sin 2х),

которое можно записать в виде

2 cos x = – 2 (cos а cos 2х + sin а sin 2х),

где очевидно, а = /3. Преобразуя правую часть полученного уравнения с помощью формулы:

cos (a – b) = cos a cos b + sin a sin b;

приходим к уравнению

2 cos x = – 2 cos (2х – /3),

cos x + cos (2х – /3) = 0.

Последнее уравнение легко решить, преобразовав сумму косинусов в произведение по формуле:

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2,

cos x + cos (2х – /3) = 2 cos (3х/2 – /6) cos (/6 – х/2) = 0

Это уравнение расщепляется на два уравнения

cos (3х/2 – /6) = 0, и

cos (/6 – х/2) = 0,

решение которых уже не представляет сколь нибудь значительных трудностей.

Ответ: 2/9(2 + 3n), 2/3(2 + 3 k), n, k€z.

16. При каких значениях параметра а, уравнение а sin x – 4 cos x = 5, имеет решения?

Решение: преобразуем левую часть уравнения, используя формулу введения дополнительного аргумента:

а sin x – 4 cos x = (а 2 + 16) sin (x – y), где y определяется из условий sin y = – 4/(а 2 + 16), и cos y = а /(а 2 + 16).

Но значение y нас не интересует. Поэтому данное уравнение перепишем в виде

(а 2 + 16) sin (x – y) = 5,

sin (x – y) = 5/(а 2 + 16), это уравнение имеет решение при условии 5/(а 2 + 16) 1.

Решим это неравенство:

5/(а 2 + 16) 1, обе части умножим на (а 2 + 16):

5 (а 2 + 16),

(а 2 + 16) 5,

а 2 + 16 25,

а 2 9, или

а 3, следовательно

а € (-;-3] U [3; ).

Ответ: (-;-3] U [3; ).

17. При каких значениях параметра а, уравнение 2 sin 2 x + 3 cos (x +2 а) = 5, имеет решения?

Решение: поскольку 0 sin 2 x 1, и -1 cos (x +2а) 1 левая часть уравнения может равняться 5 тогда и только тогда, когда одновременно выполняются равенства sin 2 x = 1, и cos (x +2 а) = 1.

Это означает, что исходное уравнение равносильно системе уравнений sin 2 x = 1, и cos (x +2 а) = 1.

sin x = – 1, sin x = 1, cos (x +2 а) = 1;

х = /2 + n, n€z, и x +2 а = 2 к, к€z;

х = /2 + n, и x = – 2 а + 2 к;

/2 + n = – 2 а + 2 к;

2 а = 2 к – /2 – n;

а = к – /4 – n/2;

а = – /4 + /2 (2к – n);

а = – /4 + m/2, m€z.

Ответ: – /4 + m/2, где m€z.

Рассмотренные выше примеры лишь иллюстрируют несколько общих рекомендаций, которые полезно учитывать при решении тригонометрических уравнений. Из приведённых примеров видно, что дать общий рецепт в каждом конкретном случае невозможно.

Ежегодно варианты экзаменационных материалов ЕГЭ содержат от 4-х до 6-ти различных задач по тригонометрии. Поэтому параллельно с повторением теоретического материала значительное время должно быть отведено решению конкретных задач, в том числе и тригонометрических уравнений. А умение можно выработать, только получив практические навыки в решении достаточного числа тригонометрических уравнений.

Укажите неверный метод решения тригонометрических уравнений

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:


источники:

http://urok.1sept.ru/articles/537151

http://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij