Укажите промежуток которому принадлежит уравнение log

Методическая разработка урока по теме «Логарифмические уравнения»

Разделы: Математика

Цели урока:

  • Повторение основных приемов преобразования и методов решения логарифмических уравнений; акцентирование внимания учащихся на возможных ошибках в решении логарифмических уравнений.
  • Расширение знаний темы “Логарифмические уравнения” посредством знакомства с уравнениями, содержащими знак модуля.
  • Развитие познавательных способностей посредством содержания и формы проведения урока, развития вариативного мышления, развития общеучебных навыков, работа с книгой, с компьютером.
  • Развитие коммуникативных навыков, развитие монологической речи, умение критически мыслить, отстаивать свою точку зрения.
  1. Организация на урок /5 минут/.
  2. Повторение теоретического материала по теме “ Равносильные уравнения. Решение логарифмических уравнений”:
    а) устная работа (просмотр презентаций, обсуждение теоретических вопросов) / 7–8 минут/;
    б) диктант с последующей проверкой /5–7 минут/.
  3. Работа учащихся с карточками (нахождение ошибок) (самостоятельно), обсуждение решений уравнений /10-12 минут/.
  4. Совместная работа учащихся и учителя (решение уравнений в тетрадях и у доски) /10 минут/.
  5. Подготовка к экзаменам:
    а) разбор уравнений, решения которых заранее подготовлены учителем для просмотра через плазменный экран и решаемого учеником /15 минут/;
    б) самостоятельная работа учащихся (по карточкам разного уровня сложности) /20минут/.
  6. Итог урока, выставление оценок /2 минуты/.

I этап урока — организационный

Учитель сообщает учащимся тему урока, цель и добавляет, что во время урока они будут пользоваться раздаточным материалом, находящимся на партах.

II. Повторение теоретического материала по теме: “ Равносильные уравнения. Решение логарифмических уравнений”

Для того, чтобы решать логарифмические уравнения, следует повторить необходимые для этого теоретические сведения:

Выступление I ученика

Приложение 1 показ слайдов демонстрационной презентации с четкими формулировками:

  • слайд №1-определение равносильных уравнений;
  • слайд № 2 – определение уравнения следствия;
  • слайд № 3 – область допустимых значений уравнения
  • слайд №4- что понимают под логарифмическим уравнением;

Диктант (с последующей взаимопроверкой)

Возможные ответы: “+”-да , “-” — нет

Вариант 1Вариант 2
Верно ли утверждение:Верно ли утверждение:
Если 4 х =7, то х=log47

Если log525=x, то х=2Если 5 х =3, то х=log35

Если log381=x, то х=4Равносильны ли уравнения:Равносильны ли уравнения:lgx 2 =6 и 2 lgx=6

lgxlg5=3 и lg(x+5)=3

lg=1 и lgx-lg(3+x)=1lgx 2 =5 и 2 lg¦x¦=5

lgx+lg(x 3 -1)= 2 и lg(x(x 3 -1))=2

=2 и lgx-lg4=2Ответы: + — + — — +Ответы: — — + + + —

Выступление II ученика

Приложение2 показ слайдов демонстрационной презентации с основными видами логарифмических уравнений:

  • слайд №1–;
  • слайд №2 – ;
  • слайд №3 – в уравнении логарифмы с разными основаниями;
  • слайд №4– ;
  • слайд №5– метод введения новой переменной.

1. Укажите промежуток, которому принадлежит больший корень уравнения ln(х — 5) 2 = 0.

2. Найдите произведение корней уравнения 1- lg(x 2 +1) = 0.

3. Укажите промежуток, которому принадлежат корни уравнения log0,5(x — 9) = 1 + log0,55.

4. Укажите промежуток, которому принадлежит корень уравнения log4(x — 5) = log255.

Задание1234
Номер ответа4212

III. Работа учащихся с карточками. Объяснение ошибок

Учащимся на отдельных листах предлагаются уравнения с решениями, содержащими ошибки. Необходимо обнаружить эти ошибки, объяснить их и выполнить решение предложенных уравнений правильно (допускается решение уравнения иным способом после обнаружения ошибки в приведенном варианте решения).

Обсуждение решения уравнений

В задаче 1 для преобразования выражения использовалось тождество = logba (а > 0, b > 0, р 0, b 1), однако не было учтено, что для данного выражения операция возведения во вторую степень является последней, и поэтому проводимые преобразования должны выглядеть иначе:

= () 2 = (-log2 x) 2 = log2 2 х.

В задаче 2 при преобразовании выражения log3 (x + 4) 2 пропущен знак модуля.

В задаче 3 преобразование дроби к разности выражений log3(2x + l)-log3x приводит к сужению множества значений, однако ошибка заключается в отсутствии условия корректности преобразования, в ходе которого произошло взаимное уничтожение слагаемого, содержащего переменную –log3х.

В задаче 4 при преобразовании основания логарифма был поставлен знак модуля, однако, поскольку показатель степеней нечетный, то такое преобразование привело к расширению множества решений (-2 — посторонний корень для исходного уравнения).

В решении задачи 5 нарушено условие монотонности соответствующей функции (если f— монотонная функция и а ЄDf, bЄ Df, то f (a) = f(b) а = b) .

IV. Решение уравнений

Этот этап урока может быть организован различно: учащиеся выполняют самостоятельно решение уравнений с последующей проверкой, кто-то из учащихся показывает решение на доске и пр.

V. Подготовка к экзаменам

а) разбор решения уравнений

Приложение 3) показ слайдов демонстрационной презентации с решениями уравнений:

слайд №1- решение уравнения

слайд № 2- найдите абсциссы всех точек пересечения графиков функций и

слайд № 3- решение уравнения |log2х — 1| = (4 — 8x) (log2x — 1).

б) самостоятельная работа учащихся (каждый из учащихся может сам проверить свой уровень подготовки к ЕГЭ по данной теме. Ученикам предлагается тест, содержащий задания трех уровней сложности).

1. Решите уравнение log3(x+2)=3

2. Укажите промежуток, которому принадлежит корень уравнения log12(x+3)= log12(6-5x)

3. Найдите сумму корней уравнения — 5log4x+2=0

Часть 3

5. Найдите произведение корней уравнения

1.Решите уравнение log11(2x+1)=2

2. Укажите промежуток, которому принадлежит корень уравнения –log5(4-х)= log152-1

3. Найдите сумму корней уравнения

2) ;

3) ;

4)

4. Напишите целые корни уравненияlogx7=2,5

Решите уравнение 3)+3

1. Решите уравнение log0,5(2x-0,75)=2

2. Укажите промежуток, которому принадлежит корень уравнения

1) (-4;2); 2) (-2, 0); 3) (0;0,5); 4) (0,5;4)

3. Решите уравнение log3х+14-32=0 (Если уравнение имеет более одного корня, то в бланке ответов запишите произведение всех его корней)

4. Найдите наибольший корень уравнения log3¦х+2¦+9= log3(х+2) 4

5. Решите уравнение

задания12345
Вариант 1312161
Вариант 231249-2
Вариант 3428125-1

Проверка выполнения тестов на оценку. Анализ выполнения тестов.

VI. Подведение итогов урока

Учитель еще раз обращает внимание на те типы уравнений и теоретические факты, которые вспоминали на уроке, рекомендует выучить их. Отмечает наиболее успешную работу на уроке отдельных учащихся, при необходимости выставляет отметки. Каждый из учащихся проверил свой уровень подготовки к ЕГЭ по теме “Логарифмические уравнения” и делает для себя соответствующие выводы.

Решите уравнение (1—6).

1. + = 3.

3. log2 (x 2 + 10х + 25) = 2.

4.=0,5

Алгебра и начала математического анализа. 10 класс

Корни логарифмических уравнений

Каждому уравнению поставьте в соответствие его корень:

Корни логарифмических уравнений
  1. Выделите корни уравнения $\log_<\frac<1><2>><(x^<2>+4x-5)>=-4$
Корни логарифмических уравнений
Нули функции

Найдите нули функций

1) $y=\log_<2><(2x+5)>$ Ответ: x = ___

Корни логарифмических уравнений

Установите соответствие между уравнением и его корнями:

Корни логарифмических уравнений

Зачеркните числа, которые не являются корнями уравнения $\log_<2><(3^<5x-3>+1)>=2$

  1. 0
  2. 0,5
  3. 0,8
  4. 1
Логарифмическая функция

Решите уравнения и соберите мозаику:

Произведение логарифмических функций

Выделите верный ответ.

Решите уравнение. Если уравнение имеет более одного корня, то в ответе укажите их сумму $lg(x^2−3)⋅lgx=0$

Область определения логарифмической функции

Укажите промежуток, содержащий корень уравнения $\log_<0,1><9>-\log_<0,1><(x-3)>=\log_<0,1><3>$

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение логарифмических уравнений.

Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение. Программа для решения логарифмического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> ln(b) или log(b) или log(e,b) — натуральный логарифм числа b
log(10,b) — десятичный логарифм числа b
log(a,b) — логарифм b по основанию a

Введите логарифмическое уравнение
Решить уравнение

Немного теории.

Логарифмическая функция. Логарифмы

Задача 1. Найти положительный корень уравнения x 4 = 81
По определению арифметического корня имеем \( x = \sqrt[4] <81>= 3 \)

Задача 2. Решить уравнение 3 x = 81
Запишем данное уравнение так: 3 x = 3 4 , откуда x = 4

В задаче 1 неизвестным является основание степени, а в задаче 2 — показатель степени. Способ решения задачи 2 состоял в том, что левую и правую части уравнения удалось представить в виде степени с одним и тем же основанием 3. Но уже, например, уравнение 3 x = 80 таким способом решить не удаётся. Однако это уравнение имеет корень. Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.
Уравнение a x = b, где a > 0, \( a \neq 1 \), b > 0, имеет единственный корень. Этот корень называют логарифмом числа b no основанию a и обозначают logab
Например, корнем уравнения 3 x = 81 является число 4, т.е. log381 = 4.

Определение. Логарифмом положительного числа b по основанию a, где a > 0, \( a \neq 1 \), называется показатель степени, в которую надо возвести число a, чтобы получить b

log77 = 1, так как 7 1 = 7

Определение логарифма можно записать так:

Действие нахождения логарифма числа называют логарифмированием.
Действие нахождения числа по его логарифму называют потенцированием.

Вычислить log64128
Обозначим log64128 = х. По определению логарифма 64 x = 128. Так как 64 = 2 6 , 128 = 2 7 , то 2 6x = 2 7 , откуда 6x = 7, х = 7/6.
Ответ log64128 = 7/6

Вычислить \( 3^ <-2\log_3 5>\)
Используя свойства степени и основное логарифмическое тождество, находим

Решить уравнение log3(1-x) = 2
По определению логарифма 3 2 = 1 — x, откуда x = -8

Свойства логарифмов

При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются различные свойства логарифмов. Рассмотрим основные из них.

Пусть а > 0, \( a \neq 1 \), b > 0, c > 0, r — любое действительное число. Тогда справедливы формулы:

Десятичные и натуральные логарифмы

Для логарифмов чисел составлены специальные таблицы (таблицы логарифмов). Логарифмы вычисляют также с помощью микрокалькулятора. И в том и в другом случае находятся только десятичные или натуральные логарифмы.

Определение. Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут
lg b вместо log10b

Определение. Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное число, приближённо равное 2,7. При этом пишут ln b вместо logeb

Иррациональное число e играет важную роль в математике и её приложениях. Число e можно представить как сумму:
$$ e = 1 + \frac<1> <1>+ \frac<1> <1 \cdot 2>+ \frac<1> <1 \cdot 2 \cdot 3>+ \dots + \frac<1> <1 \cdot 2 \cdot 3 \cdot \dots \cdot n>+ \dots $$

Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить логарифмы чисел по любому основанию.
Для этого используется формула замены основания логарифма:

Следствия из формулы замены основания логарифма.
При c = 10 и c = e получаются формулы перехода к десятичным и натуральным логарифмам:
$$ \log_a b = \frac<\lg b> <\lg a>, \;\; \log_a b = \frac<\ln b> <\ln a>$$

Логарифмическая функция, её свойства и график

В математике и её приложениях часто встречается логарифмическая функция
y = logax
где а — заданное число, a > 0, \( a \neq 1 \)

Логарифмическая функция обладает свойствами:
1) Область определения логарифмической функции — множество всех положительных чисел.

2) Множество значений логарифмической функции — множество всех действительных чисел.

3) Логарифмическая функция не является ограниченной.

4) Логарифмическая функция y = logax является возрастающей на промежутке \( (0; +\infty) \), если a > 1,
и убывающей, если 0 1, то функция y = logax принимает положительные значения при х > 1,
отрицательные при 0 1.

Ось Oy является вертикальной асимптотой графика функции y = logax

Отметим, что график любой логарифмической функции y = logax проходит через точку (1; 0).
При решении уравнений часто используется следующая теорема:

Логарифмическая функция y = logax и показательная функция y = a x , где a > 0, \( a \neq 1 \), взаимно обратны.

Логарифмические уравнения

Решить уравнение log2(x+1) + log2(x+3) = 3
Предположим, что х — такое число, при котором равенство является верным, т.е. х — корень уравнения. Тогда по свойству логарифма верно равенство
log2((x+1)(x+3)) = 3
Из этого равенства по определению логарифма получаем
(x+1)(x+3) = 8
х 2 + 4х + 3 = 8, т.е. х 2 + 4x — 5 = 0, откуда x1 = 1, х2 = -5
Так как квадратное уравнение является следствием исходного уравнения, то необходима проверка.
Проверим, являются ли числа 1 и -5 корнями исходного уравнения.
Подставляя в левую часть исходного уравнения х = 1, получаем
log2(1+1) + log2(1+3) = log22 + log24 = 1 + 2 = 3, т.е. х = 1 — корень уравнения.
При х = -5 числа х + 1 и х + 3 отрицательны, и поэтому левая часть уравнения не имеет смысла, т.е. х = -5 не является корнем этого уравнения.
Ответ x = 1

Решить уравнение lg(2x 2 — 4x + 12) = lg x + lg(x+3)
По свойству логарифмов
lg(2x 2 — 4x + 12) = lg(x 2 + 3x)
откуда
2x 2 — 4x + 12 = x 2 + 3x
x 2 — 7x + 12 = 0
x1 = 3, х2 = 4
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 3, х2 = 4

Решить уравнение log4(2x — 1) • log4x = 2 log4(2x — 1)
Преобразуем данное уравнение:
log4(2x — 1) • log4x — 2 log4(2x — 1) = 0
log4(2х — 1) • (log4 x — 2) = 0
Приравнивая каждый из множителей левой части уравнения к нулю, получаем:
1) log4 (2х — 1) = 0, откуда 2х — 1 = 1, х1 = 1
2) log4 х — 2 = 0, откуда log4 = 2, х2 = 16
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 1, х2 = 16


источники:

http://resh.edu.ru/subject/lesson/4732/train/

http://www.math-solution.ru/math-task/logarithmic-equality