Укажите все значения к при которых уравнение

Укажите все значения k, при которых уравнение kx² — 100x + k = 0 имеет один корень?

Алгебра | 10 — 11 классы

Укажите все значения k, при которых уравнение kx² — 100x + k = 0 имеет один корень.

Квадратноеуравнение имеет один корень, если D = 0⇒

D = b² — 4ac = 100² — 4 * k * k = 10000 — 4k²

Найдите такое значение a, при котором уравнение ax = 114 имеет корень 6?

Найдите такое значение a, при котором уравнение ax = 114 имеет корень 6.

При каких значениях параметра a уравнение (ax² + 8x + 8) / (x — 1) = 0 имеет ровно один корень?

При каких значениях параметра a уравнение (ax² + 8x + 8) / (x — 1) = 0 имеет ровно один корень?

Для каждого значениях параметра а укажите соответствующий корень уравнения.

При каких значениях а уравнение имеет хотя бы один корень?

При каких значениях а уравнение имеет хотя бы один корень.

Укажите все значения b, при которых уравнение 9x ^ 2 + bx + 1 = 0 имеет один корень?

Укажите все значения b, при которых уравнение 9x ^ 2 + bx + 1 = 0 имеет один корень.

Решите, умоляю?

1)Найдите корень уравнения : 7x ^ 2 = 1, 12.

Если уравнение имеет более одного корня, укажите меньший из них.

2)Найдите корень уравнения : — 4x ^ 2 = — 9.

Если уравнение имеет более одного корня, укажите меньший из них.

3)Найдите корень уравнения : x ^ 2 — 45x = 0.

Если уравнение имеет более одного корня, укажите их сумму.

4)Найдите корень уравнения : 4x ^ 2 + 96x = 0.

Если уравнение имеет более одного корня, укажите меньший из них.

5)Найдите корень уравнения : 5x ^ 2 + 91x = 0.

Если уравнение имеет более одного корня, укажите меньший из них.

Найди значение а при которых уравнение ах ^ 2 — 7х + 2 = 0 имеет один корень?

Найди значение а при которых уравнение ах ^ 2 — 7х + 2 = 0 имеет один корень.

СРОЧНО?

Дано уравнение ax = 4.

Найти значение а, при котором а)уравнение не имеет корней б)уравнение имеет отрицательный корень в)уравнение имеет корень больше 1 но, меньше 2.

Найдите все значения а, при каждом из которых уравнение ax + имеет единственный корень?

Найдите все значения а, при каждом из которых уравнение ax + имеет единственный корень.

Укажите все значение х при которых имеет смысл выражение квадратный корень из 4 — 10х?

Укажите все значение х при которых имеет смысл выражение квадратный корень из 4 — 10х.

Найдите все значения а при которых уравнение 9 — 4x = 12a имеет отрицательный корень?

Найдите все значения а при которых уравнение 9 — 4x = 12a имеет отрицательный корень.

На этой странице сайта вы найдете ответы на вопрос Укажите все значения k, при которых уравнение kx² — 100x + k = 0 имеет один корень?, относящийся к категории Алгебра. Сложность вопроса соответствует базовым знаниям учеников 10 — 11 классов. Для получения дополнительной информации найдите другие вопросы, относящимися к данной тематике, с помощью поисковой системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям. Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы помогут найти нужную информацию.

«Методы решения задач с параметрами»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

МКОУ «Лодейнопольская средняя общеобразовательная школа № 68»

Выступление на заседании МО

Методы решения задач

Прокушева Наталья Геннадьевна

г. Лодейное Поле

Задачи с параметрами

Задачи с параметрами относятся к наиболее сложным из задач, предлагающихся как на Едином государственном экзамене, так и на дополнительных конкурсных экзаменах в ВУЗы.

Они играют важную роль в формировании логического мышления и математической культуры. Затруднения, возникающие при их решении связаны с тем, что каждая задача с параметрами представляет собой целый класс обычных задач, для каждой из которых должно быть получено решение.

Если в уравнении (неравенстве) некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение (неравенство) параметрическим.

Как правило, неизвестные обозначаются последними буквами латинского алфавита: x , y , z , …, а параметры – первыми: a , b , c , …

Решить уравнение (неравенство) с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они. Два уравнения (неравенства), содержащие одни и те же параметры, называются равносильными, если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения (неравенства) является решением второго и наоборот.

Естественно, такой небольшой класс задач многим не позволяет усвоить главное: параметр, будучи фиксированным, но неизвестным числом, имеет как бы двойственную природу. Во-первых, предполагаемая известность позволяет «общаться» с параметром как с числом, а во-вторых, – степень свободы общения ограничивается его неизвестностью. Так, деление на выражение, содержащее параметр, извлечение корня четной степени из подобных выражений требуют предварительных исследований. Как правило, результаты этих исследований влияют и на решение, и на ответ.

Как начинать решать такие задачи? Не надо бояться задач с параметрами. Прежде всего, надо сделать то, что делается при решении любого уравнения или неравенства- привести заданное уравнение ( неравенство) к более простому виду, если это возможно: разложить рациональное выражение на множители, разложить тригонометрический многочлен на множители, избавиться от модулей, логарифмов, и т.д.. затем необходимо внимательно еще и еще прочитать задание.

При решении задач, содержащих параметр, встречаются задачи, которые условно можно разделить на два большие класса. В первый класс можно отнести задачи, в которых надо решить неравенство или уравнение при всех возможных значениях параметра. Ко второму классу отнесем задания, в которых надо найти не все возможные решения, а лишь те из них, которые удовлетворяют некоторым дополнительным условиям.

Наиболее понятный для школьников способ решения таких задач состоит в том, что сначала находят все решения, а затем отбирают те, которые удовлетворяют дополнительным условиям. Но это удается не всегда. Встречаются большое количество задач, в которых найти все множество решений невозможно, да нас об этом и не просят. Поэтому приходится искать способ решить поставленную задачу, не имея в распоряжении всего множества решений данного уравнения или неравенства, например, поискать свойства входящих в уравнение функций, которые позволят судить о существовании некоторого множества решений.

Основные типы задач с параметрами

Тип 1. Уравнения, неравенства, их системы и совокупности, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству.

Этот тип задач является базовым при овладении темой «Задачи с параметрами», поскольку вложенный труд предопределяет успех и при решении задач всех других основных типов.

Тип 2. Уравнения, неравенства, их системы и совокупности, для которых требуется определить количество решений в зависимости от значения параметра (параметров).

Обращаем внимание на то, что при решении задач данного типа нет необходимости ни решать заданные уравнения, неравенства, их системы и совокупности и т. д., ни приводить эти решения; такая лишняя в большинстве случаев работа является тактической ошибкой, приводящей к неоправданным затратам времени. Однако не стоит абсолютизировать сказанное, так как иногда прямое решение в соответствии с типом 1 является единственным разумным путем получения ответа при решении задачи типа 2.

Тип 3. Уравнения, неравенства, их системы и совокупности, для которых требуется найти все те значения параметра, при которых указанные уравнения, неравенства, их системы и совокупности имеют заданное число решений (в частности, не имеют или имеют бесконечное множество решений).

Легко увидеть, что задачи типа 3 в каком-то смысле обратны задачам типа 2.

Тип 4. Уравнения, неравенства, их системы и совокупности, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых:

1) уравнение выполняется для любого значения переменной из заданного промежутка;
2) множество решений первого уравнения является подмножеством множества решений второго уравнения и т. д.

Комментарий. Многообразие задач с параметром охватывает весь курс школьной математики (и алгебры, и геометрии), но подавляющая часть из них на выпускных и вступительных экзаменах относится к одному из четырех перечисленных типов, которые по этой причине названы основными.

Наиболее массовый класс задач с параметром — задачи с одной неизвестной и одним параметром. Следующий пункт указывает основные способы решения задач именно этого класса.

Основные методы решения задач с параметром

Способ I (аналитический). Это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Иногда говорят, что это способ силового, в хорошем смысле «наглого» решения.

Комментарий. По мнению авторов, аналитический способ решения задач с параметром есть самый трудный способ, требующий высокой грамотности и наибольших усилий по овладению им.

Способ II (графический). В зависимости от задачи (с переменной x и параметром a) рассматриваются графики или в координатной плоскости (x; y), или в координатной плоскости (x; a).

Комментарий. Исключительная наглядность и красота графического способа решения задач с параметром настолько увлекает изучающих тему «Задачи с параметром», что они начинают игнорировать другие способы решения, забывая общеизвестный факт: для любого класса задач их авторы могут сформулировать такую, которая блестяще решается данным способом и с колоссальными трудностями остальными способами. Поэтому на начальной стадии изучения опасно начинать с графических приемов решения задач с параметром.

Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными и выбирается та переменная, относительно которой аналитическое решение признается более простым. После естественных упрощений возвращаемся к исходному смыслу переменных x и a и заканчиваем решение.

Перейдем теперь к демонстрации указанных способов решения задач с параметром.

1. Линейные уравнения и неравенства с параметрами

Линейная функция: – уравнение прямой с угловым коэффициентом . Угловой коэффициент равен тангенсу угла наклона прямой к положительному направлению оси .

Линейные уравнения с параметрами вида

Если , уравнение имеет единственное решение.

Если , то уравнение не имеет решений, когда , и уравнение имеет бесконечно много решений, когда .

Решение показательных уравнений с параметрами

Разделы: Математика

Цели урока: Учащиеся должны знать способы решений уравнений вида – показательная функция и уметь применять при решении задач.

Ход урока.

Для первой группы учащихся выдавались следующие задания.

Для каждого значения a решить уравнения:

Задания для второй группы учащихся.

Указать число решений в зависимости от параметра а.

Третья группа решает уравнения, сводящиеся к квадратным.

Задание 1. Решить уравнение p · 4 x – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Задание 2. При каких a уравнение 9 x + (2a + 4) · 3 x + 8a + 1 = 0 имеет единственное решение.

Задание 3. Указать число решений уравнения 49 x + 2p · 7 x + p 2 – 1 = 0 в зависимости от параметра p.

Задание 4. При каких значениях p уравнение 4 x – (5p – 3) · 2 x + 4p 2 – 3p = 0 имеет единственное решение.

Выступление первой группы – решение показательных уравнений вида

Докладывает лидер первой группы и привлекает к своему докладу участников этой группы. То есть диалог идёт ученик – ученик.

Решение исходного уравнения сводится к решению линейного уравнения с параметрами kx = b.

Если k = 0, b = 0, то 0 · x = 0, – любое действительное число.

Если k = 0, b ≠ 0, то 0 · x = b – нет решений.

Если k ≠ 0, то , один корень.

Задание 1. Решить уравнение .

Докладчик решает у доски с комментариями, остальные записывают в тетрадях.

Значит уравнение (1) можно представить в виде (a – 1)(a + 4)x = (a – 1)(a – 1)(a – 3).

Исследуем полученное уравнение:

Ответ:

На этом выступление первой группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 1.

Выступление второй группы – решение уравнений вида

Докладывает лидер второй группы и привлекает к обсуждению этого вопроса всех учащихся. Исходное уравнение равносильно уравнению ax 2 + bx + c1 = c0, или ax 2 + bx + c = 0.

Далее идёт диалог ученик–ученик.

  1. Какое уравнение получили? – Это уравнение степени не выше второй.
  2. При a = 0, bx + c = 0, получили линейное уравнение, которое может иметь одно решение, не иметь корней, или иметь бесконечное множество решений.
  3. При a ≠ 0, ax 2 + bx + c = 0, квадратное уравнение.
  4. От чего зависит число решений квадратного уравнения? – Число решений квадратного уравнения зависит от дискриминанта. Если D = 0 то квадратное уравнение имеет одно решение. Если D > 0, то два решения. Если D 2 + 2(a + 3)x + a + 2 = 0.

Ответ:

На этом выступление второй группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 2.

Выступление третьей группы – решение уравнений вида af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Слово предоставляется выступающему от третьей группы. Он докладывает, что их группа решала уравнения вида: (1) af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Исходное уравнение (1) равносильно

Далее докладчик задаёт вопросы, а учащиеся отвечают на них.

При каких условиях уравнение (1) имеет один корень?

  1. При a = 0 уравнение (2) становится линейным, значит может иметь только один корень, и он должен быть положительным.
  2. Если D = 0, уравнение (2) имеет один корень, и он должен быть положительным.
  3. Если D > 0, уравнение (2) имеет два корня, но они должны быть различных знаков.
  4. Если D > 0, уравнение (2) имеет два корня, но один из низ нуль. А второй положительный.

При каких условиях уравнение (1) имеет два корня?

Исходное уравнение имеет два корня, если уравнение (2) имеет два корня и оба они положительны.

При каких условиях уравнение (1) не имеет корней?

    Если Dx – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Ответим на вопрос: При каких значениях p уравнение (1) имеет один корень?

  • Если одно решение. Обсуждается вопрос какие ещё могли быть варианты при t = 0 – нет решений, при t 0.

Уравнение будет иметь единственное решение при условии. Что дискриминант уравнения (2) есть число положительное, но корни при этом имеют различные знаки. Эти условия достигаются с помощью теоремы Виета. Чтобы корни квадратного трёхчлена были действительными и имели различные знаки, необходимо и достаточно выполнение соотношений.

Итак, уравнение (1) имеет единственное решение при p ≤ 0, p = 4.

Теперь остаётся ответить на вопрос. При каких условиях исходное уравнение (2) имеет два решения? Это возможно, если уравнение (2) имеет два корня и оба они положительны. По теореме Виета для того, чтобы корни квадратного трёхчлена были действительными и при этом оба были положительными, необходимо и достаточно выполнение соотношений.

Исходное уравнение имеет два корня при 0 0, то уравнение (2) имеет корни, но они оба отрицательны.

Итак, D 4. При p > 4 – нет решений. Второе условие равносильно следующим соотношениям.

Значит уравнение (1) не имеет решений при p > 4.

Ответ:

  1. При p = 4, p ≤ 0 одно решение.
  2. При 0 4 нет решений.

На этом выступление третьей группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 3.

Домашнее задание.

Задание 1. Найти все значения параметра a, при которых уравнение (a – 3) · 4 x – 8 · 6 x + (a +3) 9 x = 0 не имеет корней.

Задание 2.Указать число решений уравнения p · 2 x + 2 –x – 5 = 0 в зависимости от параметра p.

Задание 3. Выяснить при каких значениях a уравнение . имеет решения, найти эти решения.

Задание 4. Найти все значения p при которых уравнение (p – 1) · 4 x – 4 · 2 x + (p + 2) = 0 имеет хотя бы одно решение.

Задание 5. Указать число решений уравнения a · 12 |x| = 2 – 12 |x| в зависимости от параметра a.


источники:

http://infourok.ru/metody_resheniya_zadach_s_parametrami-398722.htm

http://urok.1sept.ru/articles/518184