Уменьшением энтропии сопровождается реакция уравнение которой

Энтропия. Энергия Гиббса

Понятие энтропии

Абсолютная энтропия веществ и изменение энтропии в процессах

Стандартная энтропия

Стандартная энтропия образования

Энергия Гиббса

Стандартная энергия Гиббса образования

Энтальпийный, энтропийный фактор и направление процесса

Примеры решения задач

Задачи для самостоятельного решения

Понятие энтропии

Энтропия S – функция состояния системы. Энтропия характеризует меру неупорядоченности (хаотичности) состояния системы. Единицами измерения энтропии являются Дж/(моль·К).

Абсолютная энтропия веществ и изменение энтропии в процессах

При абсолютном нуле температур (Т = 0 К) энтропия идеального кристалла любого чистого простого вещества или соединения равна нулю. Равенство нулю S при 0 К позволяет вычислить абсолютные величины энтропий веществ на основе экспериментальных данных о температурной зависимости теплоемкости.

Изменение энтропии в процессе выражается уравнением:

где S(прод.) и S(исх.) – соответственно абсолютные энтропии продуктов реакции и исходных веществ.

На качественном уровне знак S реакции можно оценить по изменению объема системы ΔV в результате процесса. Знак ΔV определяется по изменению количества вещества газообразных реагентов Δnг. Так, для реакции

(Δnг = 1) ΔV > 0, значит, ΔS > 0.

Стандартная энтропия

Величины энтропии принято относить к стандартному состоянию. Чаще всего значения S рассматриваются при Р = 101,325 кПа (1 атм) и температуре Т = 298,15 К (25 о С). Энтропия в этом случае обозначается S о 298 и называется стандартной энтропией при Т = 298,15 К. Следует подчеркнуть, что энтропия вещества S (S о ) увеличивается при повышении температуры.

Стандартная энтропия образования

Стандартная энтропия образования ΔS о f,298 (или ΔS о обр,298) – это изменение энтропии в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии.

Энергия Гиббса

Энергия Гиббса G – функция состояния системы. Энергия Гиббса равна:

Абсолютное значение энергии Гиббса определить невозможно, однако можно вычислить изменение δG в результате протекания процесса.

Критерий самопроизвольного протекания процесса: в системах, находящихся при Р, Т = const, самопроизвольно могут протекать только процессы, сопровождающиеся уменьшением энергии Гиббса (ΔG

Стандартная энергия Гиббса образования

Стандартная энергия Гиббса образования δG о f,298 (или δG о обр,298) – это изменение энергии Гиббса в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии, причем простые вещества пристутствуют в наиболее термодинамически устойчивых состояниях при данной температуре.

Для простых веществ, находящихся в термодинамически наиболее устойчивой форме, δG о f,298 = 0.

Энтальпийный, энтропийный фактор и направление процесса

Проанализируем уравнение ΔG о Т = ΔН о Т — ΔТS о Т. При низких температурах ТΔS о Т мало. Поэтому знак ΔG о Т определяется в основном значением ΔН о Т (энтальпийный фактор). При высоких температурах ТΔS о Т – большая величина, знак Δ G о Т определяется и энтропийным фактором. В зависимости от соотношения энтальпийного (ΔН о Т) и энтропийного (ТΔS о Т) факторов существует четыре варианта процессов.

      1. Если ΔН о Т о Т > 0, то ΔG о Т
      2. Если ΔН о Т > 0, ΔS о Т о Т > 0 всегда (процесс не протекает ни при какой температуре).
      3. Если ΔН о Т о Т о Т о /ΔS о (процесс идет при низкой температуре за счет энтальпийного фактора).
      4. Если ΔН о Т > 0, ΔS о Т > 0, то ΔG о Т ΔН о / ΔS о (процесс идет при высокой температуре за счет энтропийного фактора).

Примеры решения задач

Задача 1. Используя термодинамические справочные данные, вычислить при 298,15 К изменение энтропии в реакции:

Объяснить знак и величину ΔS о .

Решение. Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоNH3(г)O2(г)(г)H2O(ж)
S о 298,

Дж/(моль·К)

192,66205,04210,6469,95

В данной реакции ΔV o х.р.,298

Задача 2. Используя справочные термодинамические данные, рассчитать стандартную энтропию образования NH4NO3(к). Отличается ли стандартная энтропия образования NH4NO3(к) от стандартной энтропии этого соединения?

Решение. Стандартной энтропии образования NH4NO3 отвечает изменение энтропии в процессе:

Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоN2(г)H2(г)O2(г)NH4NO3(к)
S о 298,

Дж/(моль·К)

191,50130,52205,04151,04

Стандартная энтропия образования NH4NO3(к), равная — 609,06 Дж/(моль·К), отличается от стандартной энтропии нитрата аммония S о 298(NH4NO3(к)) = +151,04 Дж/(моль·К) и по величине, и по знаку. Следует помнить, что стандартные энтропии веществ S о 298 всегда больше нуля, в то время как величины ΔS 0 f,298, как правило, знакопеременны.

Задача 3. Изменение энергии Гиббса реакции:

равно δG о 298= –474,46 кДж. Не проводя термодинамические расчеты, определить, за счет какого фактора (энтальпийного или энтропийного) протекает эта реакция при 298 К и как будет влиять повышение температуры на протекание этой реакции.

Решение. Поскольку протекание рассматриваемой реакции сопровождается существенным уменьшением объема (из 67,2 л (н.у.) исходных веществ образуется 36 мл жидкой воды), изменение энтропии реакции ΔS о о 298 реакции меньше нуля, то она может протекать при температуре 298 К только за счет энтальпийного фактора. Повышение температуры уменьшает равновесный выход воды, поскольку ТΔS о

Задача 4. Используя справочные термодинамические данные, определить может ли при 298,15 К самопроизвольно протекать реакция:

Если реакция не будет самопроизвольно протекать при 298,15 К, оценить возможность ее протекания при более высоких температурах.

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоС4Н10(г)С2Н4(г)Н2(г)
ΔG о f,298× , кДж/моль— 17,1968,140
S о 298, Дж/(моль·К)310,12219,45130,52

ΔG о х.р.,298 > 0, следовательно, при Т = 298,15 К реакция самопроизвольно протекать не будет.

Поскольку ΔS о х.р.,298 > 0, то при температуре Т>ΔН о /ΔS о величина ΔG о х.р.,298 станет величиной отрицательной и процесс сможет протекать самопроизвольно.

Задача 5. Пользуясь справочными данными по ΔG о f,298 и S о 298, определите ΔH о 298 реакции:

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоN2O(г)H2(г)N2H4(г)H2O(ж)
ΔG о f,298, кДж/моль104,120159,10-237,23
S о 298, Дж/(моль·К)219,83130,52238,5069,95

ΔG о 298 = ΔН о 298 – ТΔS о 298. Подставляя в это уравнение величины ΔН о 298 и ТΔS о 298, получаем:

ΔН о 298 = –182,25× 10 3 + 298·(–302,94) = –272526,12 Дж = – 272,53 кДж.

Следует подчеркнуть, что поскольку ΔS о 298 выражена в Дж/(моль× К), то при проведении расчетов ΔG 0 298 необходимо также выразить в Дж или величину ΔS 0 298 представить в кДж/(мольK).

Задачи для самостоятельного решения

1. Используя справочные данные, определите стандартную энтропию образования ΔS о f,298 NaHCO3(к).

2. Выберите процесс, изменение энергии Гиббса которого соответствует стандартной энергии Гиббса образования NO2(г):

Энтропия и ее изменение при химических реакциях

Чтобы определить, протекает ли химическая реакция самопроизвольно, необходимо знать движущие силы самопроизвольных процессов.

Одной из движущих сил химической реакции является уменьшение энтальпии системы, т.е. экзотермический тепловой эффект реакции. Опыт показывает, что большинство самопроизвольных процессов являются экзотермическими, т.е. сопровождаются выделением теплоты (ΔН 0, т.е. эндотермические, которые, тем не менее, протекают самопроизвольно, например, растворение некоторых солей (КСl, NН4Сl и др.) в воде.

Следовательно, имеется и другая движущая сила самопроизвольных процессов, не связанная с энтальпией. Это стремление частиц (молекул, ионов, атомов) к хаотическому движению, а системы — к переходу из более упорядоченного состояния к менее упорядоченному.

Тенденцию к неупорядоченности характеризует величина, которую называют энтропия. Итак, энтропия — термодинамическая функция, которая является мерой неупорядоченности в системе.

В качестве примера рассмотрим систему из двух газов, не реагирующих между собой, например, аргона и гелия, которые разделены перегородкой и находятся при одинаковой температуре и давлении.

Удалим перегородку, не изменяя энергетического запаса системы. Назовем это (исходное) состояние системы состоянием 1.

Несмотря на одинаковые давления газов, начнется процесс смешения и через некоторое время молекулы гелия и аргона будут равномерно распределены по всему объему системы. Новое (конечное) состояние системы назовем состоянием 2.

Опыт и теоретические расчеты показывают, что два газа, не разделенные перегородкой, всегда смешиваются, вероятность состояния 1 ничтожно мала. Состояние 2 равномерного распределения обоих газов является наиболее вероятным. Точно также при растворении сахара в воде наиболее вероятным будет состояние равномерного распределения молекул сахара в воде, а исходное состояние (отдельно сахар, отдельно вода) является наименее вероятным. Движущей силой смешения газов или растворения сахара является тенденция перехода в наиболее вероятное состояние.

Энтропия S — логарифмическое выражение вероятности состояния системы. S = k·lnW,

где k — постоянная Больцмана, равная отношению молярной газовой постоянной R к числу Авогадро NА: k = R/NА = 1,38·10 —23 Дж/К.

W— термодинамическая вероятность состояния системы, равная числу микросостояний, при помощи которых осуществляется данное макросостояние.

Это соотношение называется формулой Больцмана. Формула Больцмана позволяет теоретически рассчитать энтропию системы по числу возможных ее микросостояний. Такие расчеты хорошо согласуются с экспериментально определенными величинами.

Как и все термодинамические функции, энтропия является аддитивной функцией, т. ее величина пропорциональна размерам системы (массе, объему). Общепринятая размерность энтропии: Дж/моль·К.

Энтропия вещества в стандартном состоянии называется стандартной энтропией S 0 и приводится в справочниках.

В отличие от других термодинамических функций, можно определить не только изменение, но и абсолютное значение энтропии. Это вытекает из высказанного в 1911 г Максом Планком постулата, согласно которому:

При абсолютном нуле энтропия идеального кристалла равна нулю.

Этот постулат получил название третьего закона термодинамики.

Число микросостояний кристаллических веществ при температуре 0 К невелико. W0 ≈ 1. Подставив это значение в выражение S = k·lnW, получаем S0 = 0

По мере повышения температуры растет скорость различных видов движений частиц, т.е. число их микросостояний. Соответственно растет термодинамическая вероятность и энтропия вещества. При переходе вещества из твердого состояния в жидкое значительно увеличивается неупорядоченность и возрастает энтропия (ΔSПЛ). Особенно резко возрастает энтропия вещества при его переходе из жидкого состояния в газообразное (ΔSКИП).

Так, для воды: S 0 КР = 45,99, S 0 Ж = 70,08 и S 0 ГАЗ = 188,7 Дж/моль·К.

Вследствие высоких значений энтропий газов, последние называют »носителями энтропии».

Энтропия простых веществ является периодической функцией порядкового номера элемента. Увеличение числа атомов в молекуле приводит к увеличению энтропии. Например:

S 0 (О) = 161, S 0 (О2) = 205 и S 0 (О3) = 298,8 Дж/моль·К.

Итак, энтропия возрастает с увеличением движения частиц: при нагревании, испарении, плавлении, расширении газов, при увеличении размеров молекул вещества. Процессы, связанные с упорядочением системы: охлаждение, конденсация, кристаллизация, сжатие, уменьшение объема газов в реакции и т.д. — ведут к уменьшению энтропии.

Изменение энтропии в ходе химической реакции можно оценить без расчета, если в ходе реакции изменяется объём газов. Например:

Наука выделяет в особый класс изолированные системы. В них можно прогнозировать направление самопроизвольного протекания процесса только по изменению энтропии, используя второй закон термодинамики, который гласит: в изолированных системах самопроизвольно протекают только такие процессы, которые сопровождаются возрастанием энтропии (ΔS > 0).

Однако реальные системы, в которых протекают химические реакции, не бывают изолированные, так как они всегда обмениваются энергией (или энергией и веществом) с окружающей средой. Для этих систем, т.е. закрытых или открытых, ни изменение энтропии, ни изменение энтальпии по отдельности не может служить критерием самопроизвольности процесса.

Уменьшением энтропии сопровождается реакция уравнение которой

Некоторые формулировки второго закона термодинамики

1. Каждая система, предоставленная сама себе, изменяется в среднем в направлении состояния с максимальной вероятностью (Г. Льюис).

2. Состояние с максимальной энтропией является наиболее устойчивым состоянием для изолированной системы (Э. Ферми).

3. При протекании любого реального процесса невозможно обеспечить средства возвращения каждой из участвующих в нем систем в ее исходное состояние (Г. Льюис).

4. Каждый физический или химический процесс в природе протекает таким образом, чтобы увеличивалась сумма энтропии всех тел, которые принимают участие в этом процессе (М. Планк).

5. Невозможна самопроизвольная передача теплоты от более холодного к более горячему телу.

6. Получение информации представляет собой уменьшение энтропии (Г. Льюис).

7. Энтропия-это стрелка времени* (А. Эддингтон).

Изменения энтропии в химических реакциях

Энтропия одного моля вещества в его стандартном состоянии при соответствующей температуре называется стандартной молярной энтропией. Стандартная молярная энтропия обозначается символом S» и имеет размерность ДжК-1 моль-1. В табл. 5.12 указаны стандартные молярные энтропии ряда элементов и соединений при температуре 25°С. Отметим, что стандартная молярная энтропия газов, как правило, имеет намного большие значения по сравнению с энтропией твердых тел. Энтропия любого фиксированного количества вещества увеличивается в такой последовательности:

Твердое вещество= Жидкость= Газ

Стандартные молярные энтропии иногда называют абсолютными энтропиями. Они не являются изменениями энтропии, сопровождающими образование соединения из входящих в него свободных элементов. Следует также отметить, что стандартные молярные энтропии свободных элементов (в виде простых веществ) не равны нулю.

Третий закон термодинамике утверждает, что энтропия идеального ионного кристалла при температуре абсолютного нуля (О К) равна нулю.

Таблица 5.12. Стандартные молярные энтропии S°(298 К) (Дж/(К моль) )

Изменение стандартной молярной энтропии в химической реакции определяется уравнением

Следует обратить внимание на то, что изменение энтропии в рассмотренном примере оказывается отрицательным. Этого можно было ожидать, если учесть, что, согласно уравнению рассматриваемой реакции, суммарное количество газообразных реагентов равно 1,5 моль, а суммарное количество газообразных продуктов-только 1 моль. Таким образом, в результате реакции происходит уменьшение общего количества газов. Вместе с тем нам известно, что реакции горения принадлежат к числу экзотермических реакций. Следовательно, результатом их протекания является рассеяние энергии, а это заставляет ожидать возрастания энтропии, а не ее уменьшения. Далее, следует учесть, что горение газообразного водорода при 25°С, вызванное первоначальным инициированием, протекает затем самопроизвольно и с большой интенсивностью. Но разве не должно в таком случае изменение энтропии в данной реакции быть положительным, как того требует второй закон термодинамики? Оказывается — нет или по крайней мере не обязательно должно. Второй закон термодинамики требует, чтобы в результате самопроизвольного процесса возрастала суммарная энтропия системы и ее окружения. Вычисленное выше изменение энтропии характеризует только рассматриваемую химическую систему, состоящую из реагентов и продуктов, которые принимают участие в горении газообразного водорода при 25°С. А как же вычислить изменение энтропии для окружения этой системы?


источники:

http://poisk-ru.ru/s35392t18.html

http://www.himikatus.ru/art/ch-act/0246.php