Упражнения на простейшие тригонометрические уравнения

Упражнения на простейшие тригонометрические уравнения

1. Решить уравнение cos2x = 1/2.

Используем метод решения простейших тригонометрических уравнений и получаем:

2x = ±arccos(1/2) + 2πn = ±π/3 + 2πn (здесь и далее, n ∈ Z).

Откуда x = ±π/6 + πn.

Ответ: x = ±π/6 + πn.

2. Решить уравнение sin(3 — 2x) = -1/2.

Используем формулу из методов решений, имеем:

3 — 2x = (-1)n(arcsin(-1/2)) + πn = (-1)n(-π/6) + πn (здесь и далее n ∈ Z).

Делаем преобразование и получаем x = 3/2 + π/12(-1)n — πn/2.

Ответ: x = 3/2 + π/12(-1)n — πn/2.

3. Решить уравнение cos2x — 3sinx = 2.

Воспользуемся формулой удвоенного угла косинуса (cos2a = 1 — 2sin2a) и получим:

1 — 2sin2x — 3sinx = 2.

Воспользуемся методом замены, обозначим sinx = y. Уравнение примет вид:

Находим его корни: y1 = -1, y2 = -1/2.

Возвращаемся к исходной переменной и получаем совокупность sinx = -1 и sinx = -1/2.

Из первого получаем решение — x = -π/2 + 2πn, из второго — x = (-1)m(-π/6) + πm (m, n ∈ Z).

Ответ: x = -π/2 + 2πn или x = (-1)m(-π/6) + πm.

4. Решить уравнение 2tgx — 3ctgx = 1.

Так как ctgx = 1/tgx при x ≠ πn/2 (n ∈ Z) получаем уравнение

2tgx — 3/tgx = 1 или 2tg2x — tgx — 3 = 0.

Вводим новую переменную tgx = y и решаем квадратное уравнение 2y2 — y — 3 = 0 относительно y.

Оно имеет два решения y1 = 3/2, y2 = -1.

Возвращаемся к исходной переменной и решаем два уравнения:

tgx = 3/2, откуда x = arctg(3/2) + πn, n ∈ Z.

tgx = -1, откуда x = arctg(-1) + πm = -π/4 + πm, m ∈ Z.

Ответ: x = arctg(3/2) + πn или x = -π/4 + πm.

5. Решить уравнение 3cosx — sin2x = 1 — sin3x.

Сделаем следующее преобразование 3(cosx + sinx) = 1 + sin2x.

Замена cosx + sinx = t приведет к уравнению 3t = t2. Оно имеет корни t1 = 0, t2 = 3.

Берем первый корень, возвращаем замену и получаем cosx + sinx = 0, делим на cosx ≠ 0, откуда tgx = -1, x = -π/4 + πn (n ∈ Z).

Второй корень t2 дает уравнение cosx + sinx = 3. Это уравнение не имеет решений, т.к. и cosx, и cosx меньше равны 1, в сумме меньше равны 2.

Ответ: x = -π/4 + πn.

6. Решить уравнение cos2x + cos4x + cos6x = 0.

Проделаем следующие преобразования

(cos2x + cos6x) + cos4x = 0;

2cos4xcos2x + cos4x = 0;

cos 4 x (2 cos 2 x + 1) = 0.

Имеем два случая:

cos4x = 0, откуда 4x = π/2 + πn, x = π/8 + πn/4 (n ∈ Z).

2cos2x + 1 = 0 или cos2x = -1/2, откуда 2x = ±2π/3 + 2πm, x = ±π/3 + πm (m ∈ Z).

Ответ: x = π/8 + πn/4 или x = ±π/3 + πm.

7. Решить уравнение cos5x = cos2x.

Переносим в одну сторону и применяем формулу разницы косинусов:

sin (7 x /2) sin (3 x /2) = 0;

Откуда либо sin(7x/2) = 0, либо sin(3x/2) = 0.

Из первого: 7x/2 = πn или x = 2πn/7 (n ∈ Z).

Из второго: 3x/2 = πn или x = 2πm/3 (m ∈ Z).

Ответ: x = 2πn/7 или x = 2πm/3.

8. Решить уравнение sin3x — 2cos2xsinx = 0.

Для начала отметим, что можно вынести sinx за скобки:

sinx(sin2x — 2cos2x) = 0.

Уравнение распадается на два случая:

sinx = 0, откуда x = πn (n ∈ Z).

sin2x — 2cos2x = 0. Заметим, что данное уравнение однородное. Делим его на cos2x ≠ 0 и получаем:

Ответ: x = πn или x = ±arctg√2 + πm

9. Решить уравнение 4sin2x — 3sinxcosx + 5cos2x = 3.

Заметим, что если бы в правой части был ноль, данное уравнение было бы однородным и мы знали как его решить. Проведем преобразование и сделаем его таковым:

sin2x — 3sinxcosx + 2cos2 + 3(sin2x + cos2x) = 3;

sin2x — 3sinxcosx + 2cos2x = 0.

А вот это уравнение является однородным, потому делим обе его части на sin2x ≠ 0 (ведь, если sinx = 0, то и cosx = 0, что одновременно невозможно).

1 — 3ctgx + 2ctg2x = 0;

2ctg2x — 3ctgx + 1 = 0.

Теперь мы можем использовать замену переменной, а именно ctgx = t и решать квадратное уравнение относительно t:

Уравнение имеет корни t1 = 1, t2 = 1/2.

Возвращаемся к неизвестному x и получаем

из t1: ctgx = 1, откуда x = π/4 + πn (n ∈ Z);

из t2: ctgx = 1/2, откуда x = arcctg(1/2) + πm (m ∈ Z).

Ответ: x = π/4 + πn или x = arcctg(1/2) + πm.

10. Решить уравнение sinx + tg(x/2) = 2.

Заметим, что числа π + 2πn (n ∈ Z) не являются корнями данного уравнения, потому можно воспользоваться универсальной заменой tg(x/2) = t. Тогда уравнение примет вид:

t3 — 2t2 + 3t — 2 = 0;

t2(t — 1) — (t2 — 3t + 2) = 0;

t2(t — 1) — (t — 2)(t — 1) = 0;

(t — 1)(t2 — t + 2) = 0;

Так как второй множитель всегда положителен, то решение одно t = 1. Возвращаясь к исходному неизвестному получаем:

x = π/2 + 2πn, n ∈ Z.

Ответ: x = π/2 + 2πn.

11. Решить уравнение 4sinx — 3cosx = 3.

Применим универсальную замену tg(x/2) = y. Отметим, что числа π + 2πn (n ∈ Z) являются корнями указанного уравнения, потому добавляем их к ответу.

Замена же приводит к следующему уравнению:

Делая преобразования получаем 8y = 6;

Возвращаемся к исходной переменной tg(x/2) = 3/4, откуда

x = 2arctg(3/4) + 2 π n (n ∈ Z).

Ответ : x = 2arctg(3/4) + 2 π n или x = π + 2 π n.

12. Решить уравнение sin3x cos8x = 1.

Используем формулу произведения синуса и косинуса:

(sin(3x + 8x) + sin(3x — 8x))/2 = 1;

sin11x — sin5x = 2.

Отметим, что |sin11x| ≤ 1 и |sin5x| ≤ 1, а потому левая часть может равняться 2 лишь в случае, когда sin11x = 1 и sin5x = -1.

Решая первое уравнение sin11x = 1 приходим к ответу x = π/22 + 2πn/11 (n ∈ Z).

Решая второе уравнение sin5x = -1 приходим к ответу x = -π/10 + 2πm/5 (m ∈ Z).

Найдем те случаи, когда оба условия выполняются, т.е.

π/22 + 2πn/11 = -π/10 + 2πm/5;

(4n + 1)π/22 = (4m — 1)π/10;

5n = 11m — 4 (n, m ∈ Z).

Данное уравнение называется диофантовым и имеет следующие решения: m = 4 + 5t, n = 8 + 11t (n, t, m ∈ Z).

Откуда x = -π/10 + 2πm/5 = -π/10 + 2π(4 + 5t)/5 = 3π/2 + 2πt (t ∈ Z).

Ответ: x = 3π/2 + 2πt.

13. Решить уравнение ctg2x = cos22x — 1.

Сделаем преобразование cos22x — 1 = -sin22x и получим:

Отметим, что ctg2x ≥ 0, а -sin22x ≤ 0. Равенство выполняется, когда ctg2x = 0 и sin22x = 0.

Первое уравнение ctg2x = 0 имеет решение x = π/2 + πn (n ∈ Z).

Второе уравнение sin22x = 0 имеет решение x = πm/2 (m ∈ Z).

Найдем общее решение:

n = 3 + 2t, m = 1 + t (m, n, t ∈ Z).

Откуда x = π m/2 = (1 + t) π /2 = 3 π /2 + π t (t ∈ Z).

Ответ: x = 3π/2 + πt.

14. Решить уравнение sin3x cos5x = 1.

Используем формулу произведения синуса и косинуса:

(sin8x — sin2x)/2 = 1;

sin8x — sin2x = 2.

Уравнение будет иметь решения лишь тогда, когда sin8x = 1, а sin2x = -1.

Первое уравнение sin8x = 1 имеет решения x = π/16 + πn/4 (n ∈ Z) (*).

Второе уравнение sin2x = -1 имеет решения x = -π/4 + πm (m ∈ Z) (**).

Найдем решения, удовлетворяющие оба случая:

π/16 + πn/4 = -π/4 + πm;

Левая часть уравнения делится на 4, правая — нет. Потому данное уравнение не имеет решения в целых числах. А значит и общих решений у (*) и (**) нет.

Тема урока: «Решение простейших тригонометрических уравнений». 10-й класс

Разделы: Математика

Класс: 10

Тип занятия: изучение нового материала.

Цели урока:

  • Дидактическая: ввести понятия простейших тригонометрических уравнений, формул их корней; закрепить умение находить значения обратных тригонометрических функций
  • Развивающая: формировать умение анализировать, искать аналоги и различные варианты решения.
  • Воспитательная: воспитывать внимательность, уверенность; активность, наблюдательность; стремление в взаимовыручке, умение работать в группе и самостоятельно.

Форма проведения: работа в группах, индивидуальная, самостоятельная.

Формы контроля: текущий.

Оборудование: презентация «Простейшие тригонометрические уравнения», проектор, экран; доска, цветной мел; листы отчета работы в группах; карточки-тесты, индивидуальные задания на карточках; листы.

В результате изучения новой темы студенты должны:

  • знать: понятия простейших тригонометрических уравнений и формулы их корней; частные случаи простейших тригонометрических уравнений;
  • уметь: применять формулы корней уравнений при решении упражнений; находить значения обратных тригонометрических функций на единичной окружности.

План проведения занятия:

  1. Организационный момент
  2. Проверка знаний, воспроизведение и коррекция опорных знаний.
    • Тест с выбором ответа (по 2 вариантам)
  3. Мотивационный момент
  4. Изучение нового материала
  5. Первичное применение приобретенных знаний
    • Работа под руководством преподавателя
    • Работа в группах
  6. Рефлексия
    • Самостоятельная работа студентов
  7. Итог занятия
  8. Задание на дом

Структура занятия

1. Организационный момент

2. Проверка знаний, воспроизведение и коррекция опорных знаний.

Тест с выбором ответа по 2 вариантам на карточках. (Приложение)

3. Мотивационный момент

– обоснование необходимости изучения данной темы, сообщение темы
– вовлечение студентов в процесс постановки целей и задач занятия (Приложение \ Презентация, слайды № 1-2)

4. Изучение нового материала

Определение Простейшие тригонометрические уравнения – уравнения вида Sinx = a, Cosx = a, tgx = a, ctgx = a.

Решить простейшее тригонометрическое уравнение – значит найти множество всех значений аргумента, при котором данная тригонометрическая функция принимает значение а.

Рассмотрим решения данных уравнений

Т.к. функция у = Cosxимеет смысл при , то рассмотрим основные случаи решения данного уравнения.

Рассмотрим ещё несколько случаев решения данного уравнения, при решении которых используется единичная окружность.

(разбираем решение на доске).

Уравнение Sinx = a

Т.к. функция у = Sinxтакже имеет смысл при , то аналогично рассмотрим основные случаи решения данного уравнения.

при .

Рассмотрим также несколько случаев решения данного уравнения, при решении которых используется единичная окружность.

1) (разбираем решение на доске).

2) (разбираем решение по презентации)

Уравнение tgx = a (вспомнить линиюtgxна окружности!)

.

Т.о.

Уравнение ctgx = a

Аналогично рассматривается

(разбираем решение на доске).

5. Первичное применение приобретенных знаний

Работа под руководством преподавателя

№ 1. Решить уравнения:

а)
б)

Работа в группах

Разделяю студентов на группы, выдаю листы отчета работы в группах
№ 2. Решить уравнения (Приложение \ Презентация – слайд № 14)
Далее проводим проверку и разбор решения по ответам на экране (Приложение \ Презентация, слайд № 15)

6. Рефлексия

Самостоятельная работа студентов

Проводится в трех вариантах + Работа по индивидуальным заданиям – карточкам
Задания по вариантам – Приложение \ Презентация, слайд № 16)
Задания по карточкам – Приложение
Проверка и оценивание самостоятельной работы и оценок по карточкам проводится во время записи домашнего задания студентами

7. Итог урока

Во фронтальной беседе повторить основные моменты нового материала. Подведение итогов, выставление оценок.

8. Задание на дом:

а) теория – учебник Н.В. Богомолова «Математика» (п. 39), конспект

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)


источники:

http://urok.1sept.ru/articles/636877

http://ya-znau.ru/znaniya/zn/280