Упростить уравнение линии и определить вид линии

Приведение кривой второго порядка к каноническому виду

Пример №1 . Привести уравнение второго порядка к каноническому виду с помощью поворота и параллельного переноса осей координат. Построить кривую.

Пример №2 . Выполнив последовательно преобразования координат: поворот, а затем параллельный перенос координатных осей, преобразовать к каноническому виду уравнение кривой второго порядка и построить ее в исходной системе координат, а также найти параметры кривой.

Алгоритм перехода кривой второго порядка к каноническому виду

Пример №1 . 4y=-6-sqrt(4x-x 2 )
sqrt(4x-x 2 ) = -(4y+6)
Возведем в квадрат
4x-x 2 = (4y+6) 2
Раскрывая скобки, получаем:
16y 2 +48y + 36 +x 2 -4x = 0

Далее решается калькулятором. Если самостоятельно решать, то получим:
4x-x 2 = (4y+6) 2
-(x 2 — 4x) = 2(y+3/2) 2
-(x 2 — 4x + 4) = (y+3/2) 2
-(x — 2) 2 = (y+3/2) 2
(y+3/2) 2 + (x — 2) 2 = 0

Пример №2 . x=1-2/3 sqrt(y 2 -4y-5)
Здесь надо сначала привести к нормальному виду.
3/2(x-1)=sqrt(y 2 -4y-5)
Возводим в квадрат
9/4(x-1) 2 =y 2 -4y-5
9/4x 2 -9/4*2x+9/4-y 2 +4y+5=0
9/4x 2 -9/2x-y 2 +4y+29/4=0

Далее можно решать как с калькулятором, так и без него:
9/4(x-1) 2 =y 2 -4y-5
9/4(x-1) 2 =y 2 -4y+4-4-5
9/4(x-1) 2 =(y 2 -2)-9
9/4(x-1) 2 -(y 2 -2) = -9
-1/4(x-1) 2 +1/9(y 2 -2) = 1

Упрощение уравнений кривых 2-го порядка

Упрощение уравнений кривых 2-го порядка

  • Упрощение уравнения кривой 2-го порядка Н°1.Уравнение y = axh — \ — bx — <- c. в этом разделе описывается применение преобразований координат для упрощения уравнения 2-й строки. Давайте начнем с примера. Предположим, вы хотите найти линию, которая соответствует уравнению. у = 12л:+ 9.(!) объедините члены,

содержащие x, и перепишите это уравнение. вы добавите выражение в скобках с полным квадратом, вы получите: у = 3(х *-4х + 4)+ 9-12 Или то же самое у + 3 = 3(ок-2)’. (2) Это исходное уравнение (1), но только если группа членов отличается. Предположим, что здесь система координат переведена и начало

координат перемещено в точку 0 (p, q).Тогда старые координаты всех точек плоскости (x, y) представляются новыми координатами(xlt бьется по формуле). х = ХВ + р, г = г \ + Людмила Фирмаль

Теорема. соответствует параболе, полученной из параболы у = АХ *(7) Используйте параллельную передачу. Y、\ ыы З 4 * -/ −2 __ N л Дж 0 и C> 0 ( * ).И понятно, что это Λ1> 0.In дело в том, что если M = 0, то выражение (17) не является кривой, а соответствует точке, как в Примере (13), а неравенство 0 приводит к тому, что нет ничего, что соответствует выражению (17), например (12).Поэтому остается только возможность M> 0. Перепишите выражение (17) в следующий

формат •) Понятно, что это Еф 0.В противном случае выражение(11) будет иметь вид Ax * — * — Dx — * + ^ = 0 и будет соответствовать паре строк[подобно выражению(16)]. Рычание (15)]вообще никакого ответа «9 мая внимательно следите за процессом умозаключения. Но учтите, что вы не хотите запоминать выражение ru q, At. Do не загружайте ненужные детали в память. •* * ) В противном случае измените знак

на обеих сторонах уравнения(17). Ич I_1 „LG +“ LG-1 Или,=(это、 Дроби положительные), в виде] ФЛ-П-21-1 * б% Это эллиптическое уравнение. Необходимо учитывать, когда А и С — это количество различных знаков. В противном случае, поскольку он изменяет знак с обеих сторон выражения (17), мы можем предположить, что O, C 0, C 0.Переписывание формулы (18) из Формулы (17) если вы поставите — = ^ = — b, он достигнет уравнения. О1-б * ’ То есть к гиперболическому уравнению. Теорема доказана. Замечание. 1) метод доказательства теоремы, примененный к определенному уравнению, фактически делает это уравнение каноническим. 2)из доказательства

теоремы ясно, что кривая, соответствующая уравнению*). Ах * + ТИЦ * ’\ — ДХ + ЕУ + Ф = 0、 Что это? а) LS = O парабола、 B) LS] > 0 эллипс、 в) преувеличение препарата (19) Где L обозначает совокупность всех остальных терминов. Понятно, что L не включает в себя 2-й член по отношению к xx. In в частности, L не включает продукт. запишем все члены формулы (19), включая x% Vy, отдельно. [- 2A sin 0 cos 0 + V (cos9 0-sin 90)+2Csin 0 cos 0] и позже 2sin

0 cos 0 = sin 20, cos90-sin9 0 = cos20、 Указанная группа членов может быть записана следующим образом [В COS 20-(л-с) грех 20] Xyyv Наша цель-выбрать такой угол 0, чтобы в Формуле (19) не было членов, содержащих произведение XYY. I cos 20-(Л-С) sin 20 = 0 (Л-с) грех 20 = потому что я 26、 Или наконец-то (21) Поскольку любое вещественное число действует как касательная к углу, всегда будет

существовать угол 0, удовлетворяющий соотношению (21) (для A, B, C).Но это также означает, что с помощью правильного вращения системы координат уравнение(10) всегда можно преобразовать в уравнение, не содержащее произведения координат. Замечание. 1) Если Λ= C, то уравнение (21) теряет свою meaning. In в этом случае он должен быть изменен на равенство (20). cos 20 = 0、 То есть cos 20 =

0 (ведь мы будем считать Bf 0).Однако это 20 = 90°, то есть 6 = 45°. Итак, при A = C нужно повернуть систему координат на 45°). 2) применяя метод доказательства теоремы к конкретному уравнению, мы можем сделать это уравнение каноническим. Однако существуют и более удобные методы для этой цели. Мы не будем

их рассматривать. (20 )) Или то же самое 3) по отношению к уравнению (10) возникают следующие критерии: кривая**) соответствует уравнению Топорик% + Ву + Су *-+ ДХ + ЕС + Ф = 0、 Я а) парабола при 4AC= B * t B) 4i4c> 5 *овал、 В) гипербола на 4 Это утверждение ничего не доказывает. в N°4.Образцы. Гипербола из-за асимптот. 1) рассмотрим уравнение 8x *-16 * + память+ 12y-4 =

0 Перепишите в форму 8С 1-2лг) + ЗСУ, — н > 0 = 4 Или дополните выражение в скобках до полного квадрата、 8 (f-2 * + 1)+ ЗСУ* + 4 >> + 4)= 24。 Отсюда (

!) ’. (y + 2) ’ 3 1 8 Перемещая начало координат в точку Oi (l, −2), мы делаем параллельный перенос системы. На новой оси уравнение линии имеет вид: 3 + 4- Он представляет собой эллипсоид с полу-оси Y3 и г-8.Этот трюк (новый! Обратите внимание,

что он находится на оси ординаты). 2) анализируйте более сложные примеры 4gv + 24hu + Tsu1-24kh-82u + 15 =0.(22) Начните с нахождения угла 0. Исчезновение произведения координат. Согласно (21) = Дж 482v = 4 ^ P = _T-123) Потому Что L = 4, B = 24, C = 11、 в pa 2tg6 О I A 2tg0 24 Итак, tgO — это 2-е уравнение^ _ q = — y или 12 tg90-7 tg 6-12 = 0. 4, 3.

Это уравнение удовлетворяет tg0 = -J и ТГ б= -. Неинтересно брать 0 из этих углов, потому что любой из этих углов удовлетворяет соотношению (23), но это все, что вам нужно. Возьмите по мере необходимости Угол 0 — это угол tg =0-.As [известно cos0 =± Так и в нашем случае cos0=:+=!(24)) И затем грех 0 = tg0cos0=± -^. (25) Выбор символов равенства (24) и, следовательно, (25) также свободен здесь. Конечно.、 Четыре если вы выберете tgO= -^, вы уже заявили,

что это гарантирует реализацию соотношения(23).Выберите Войти (24) cos 9 = 4. грех 0 = 4 ″» Формула преобразования координат при повороте системы на этот угол 0 принимает следующий вид: ДжейТи = а£л-4yLi у = у * У1. (26) Назначьте эти выражения выражению (22) в виде 4 >-y -1 bdg,-bu,+ 3 = 0.(27 )) Естественно, новое уравнение не включает в себя произведение. Выполните дальнейшие преобразования, как в предыдущем примере. То есть, напишите(27)

в виде: 4(>-4 * 1 + 4)-(y!+ 6y1 + 9)= 4 Или 1 4 Затем сделайте параллельный перенос системы и переместите начало координат в точку Oj (2, −3).Если вновь приобретенные оси обозначаются 0 \ X% и 0 ^ ur, то для xx = x2—2, yx = yb-3, а для оси 0 \ X^ уравнение прямой принимает вид: −1 т т т т Итак, эта линия является гиперболой

полуосей 1 и 2.Асимптотическая линия оси oijc| V имеет уравнение y1 =±2x%.Центром симметрии гиперболы является точка Oj. [В системе ohuh его координаты Xi = 2, yi =-3.So, согласно (26) системы Ohu, координаты точки 0\: = 3.6 и j»=-0.2. Чтобы нарисовать гиперболу на чертеже, сначала 3 4 поверните систему на угол cos0 = y, sin 6= -^ -. Этот угол находится в диапазоне от 0 до 90°и может быть легко настроен из тригонометрии известным способом. Если вы получаете

систему Ox / y / таким образом、 Найдите в нем точку Ot (2, −3) и постройте систему 77 Показаны характерные прямоугольники и асимптоты гиперболы(22), а также сама эта гипербола. 3) Рассмотрим другой пример, важный в теории. Нам нужно посмотреть на кривую. Ху = А. (28) Поскольку в этом уравнении A = C (=0), по замечаниям 1), система должна быть повернута на 45°.Для

значения этого угла, равного 0, форма выражения преобразования координат имеет вид Если вы подставите эти выражения в (28)、 Си-ильный = 2а、 (29) (28) И это равносторонняя гипербола (в af 0).Его асимптоты делят пополам углы между осями симметрии. Но ось симметрии гиперболы (29) является новой! Это координатная ось, поэтому асимптота-это старая координатная ось. Таким образом,

теорема 4 доказана. Ху = А Здесь afO соответствует равносторонней гиперболе и имеет осевые асимптоты координатных осей. Это первая гипербола、 Если 3-й, 2-й и 4-й координатные углы равны 0(рис.78 и 79).

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Уравнение линии — определение с примерами решения

Содержание:

Множества:

Под множеством X = <х, х\ х", . >понимается собрание (совокупность) некоторых элементов х, х\ х’\ . . Если х есть элемент множества X, то пишут х € X (читается: х принадлежит X); если у не является элементом множества X, то пишут у t X (читается: у не принадлежит множеству X).

Пример:

X — множество всех студентов в данной аудитории.

Пример:

Х = <1,2, 3, . >— множество натуральных чисел.

Удобно ввести понятие пустого множества

Пример:

Множество трехголовых людей пусто.

Множества X и X’ считаются равными, т. е. X = X’, если они состоят из одних и тех же элементов.

Определение: Множество У, состоящее из части элементов множества X или совпадающее с ним, называется подмножеством множества X; в этом случае пишут

Условились считать, что пустое множество есть подмножество любого множества.

Если множества изображать «логическими фигурами», то соотношению (1) соответствует рис. 10.

Если под символом V понимать «для любого», то соотношение (1) эквивалентно следующему:

где стрелка заменяет слово «следует».

Пример:

Пусть X — множество всех студентов первого курса, У — множество студенток первого курса. Очевидно,

Определение: Под объединением (суммой) двух множеств X и Y понимается множество X U У (U — знак объединения), состоящее из всех элементов, принадлежащих хотя бы одному из данных множеств, т. е. входящих или в X, или в У, или в X и в У одновременно (рис. 11).

Аналогично определяется объединение большего числа множеств. Так, под объединением X U У U Z трех множеств понимается множество всех элементов, принадлежащих хотя бы одному из множеств X, У, Z. Логически знак объединения множеств соответствует союзу «или» (соединительному).

Определение: Под пересечением (произведением) двух множеств X и У понимается множество знак пересечения), состоящее из всех элементов, принадлежащих как одному у так и другому множествам, т. е. входящих ив множество X, и в множество У (общая часть множеств) (рис. 11).

Таким образом, знак пересечения множеств логически соответствует союзу «и». Если множества X и У не имеют общих элементов, то их пересечение пусто:

Аналогично определяется пересечение большего числа множеств. Так, под пересечением трех множеств понимается множество всех элементов, принадлежащих одновременно множествам X, Y и Z.

Например: <1, 2, 3> <2, 3, 4>= = <2, 3>.

Определение: Для множеств X и У под их разностью Х\У понимается множество, содержащее все элементы множества X, не входящие в множество У (рис. 12).

Если У X, то множество Ус = Х\У называется дополнением множества У до множества X (рис. 13).

Очевидно, .

Например: <1, 2, 3>\ <2, 3, 4>= <1>.

Метод координат на плоскости

Раздел математики, занимающийся изучением свойств геометрических фигур с помощью алгебры, носит название аналитической геометрии, а использование для этой цели координат называется методом координат.

Выше мы применили метод координат для решения ряда важных, но частных задач. Теперь мы приступим к систематическому изложению того, как в аналитической геометрии решается общая задача, состоящая в исследовании методами математического анализа формы, расположения и свойств данной линии.

Пусть мы имеем некоторую линию на плоскости (рис. 14). Координаты х и у точки М, лежащей на этой линии, не могут быть вполне произвольными; они должны быть подчинены известным ограничениям, обусловленным геометрическими свойствами данной линии. Тот факт, что числа х и у являются координатами точки, лежащей на данной линии, аналитически записывается в виде некоторого уравнения. Это уравнение называется уравнением линии на плоскости.

Сущность метода координат на плоскости заключается в том, что всякой плоской линии сопоставляется ее уравнение1*, а затем свойства этой линии изучаются путем аналитического исследования соответствующего уравнения.

Линия как множество точек

Линия на плоскости обычно задается как множество точек, обладающих некоторыми геометрическими свойствами, исключительно им присущими.

Пример:

Окружность радиуса R (рис. 15) есть множество всех точек плоскости, удаленных на расстояние R от некоторой ее точки О (центр окружности).

Иными словами, на окружности расположены те и только те точки, расстояние которых от центра окружности равно ее радиусу.

Пример:

Биссектриса угла ABC (рис. 16) есть множество всех точек, лежащих внутри угла и равноудаленных от его сторон. Этим утверждается, что: 1) для каждой точки М, лежащей на биссектрисе BZ), длины перпендикуляров MP и MQ, опущенных соответственно на стороны ВА и ВС угла, равны между собой: MP = MQ, и 2) всякая точка, находящаяся внутри угла ABC и не лежащая на его биссектрисе, будет ближе к одной стороне угла, чем к другой.

Уравнение линии на плоскости

Сформулируем теперь точнее определение уравнения линии1* на плоскости.

Определение: Уравнением линии (уравнением кривой) на плоскости Оху называется уравнение, которому удовлетворяют координаты х и у каждой точки данной линии и не удовлетворяют координаты любой точки, не лежащей на этой линии.

Таким образом, для того чтобы установить, что данное уравнение является уравнением некоторой линии К, необходимо и достаточно: 1) доказать, что координаты .любой точки, лежащей на линии К у удовлетворяют этому уравнению, и 2) доказать, обратно, что если координаты некоторой точки удовлетворяют этому уравнению, то точка обязательно лежит на линии К.

Отсюда уже автоматически будет следовать, что: 1′) если координаты какой-нибудь точки не удовлетворяют данному уравнению, то точка эта не лежит на линии К, и 2′) если точка не лежит на линии К, то ее координаты не удовлетворяют данному уравнению.

Если точка М (*, у) передвигается по линии К, то ее координаты х и у, изменяясь, все время удовлетворяют уравнению этой кривой. Поэтому координаты точки М (х, у) называются текущими координатами точки линии К.

На плоскости Оху текущие координаты точки М данной кривой К обычно обозначаются через х и у, причем первая из них есть абсцисса точки М, а вторая — ее ордината. Однако, если это целесообразно, текущие координаты точки М можно обозначать.

Линию мы часто будем называть кривой независимо от того, прямолинейна она или не прямолинейна любыми буквами, например М (X, У) или М и т. п. Так, например, уравнения

где точки N (х, у) и N (X, У) расположены на плоскости Оху, представляют собой уравнение одной и той же прямой на этой плоскости.

Основное понятие аналитической геометрии — уравнение линии — поясним на ряде примеров.

Пример:

Составить уравнение окружности данного радиуса R с центром в начале координат.

Решение:

Возьмем на окружности (рис. 17) произвольную точку М (х, у) и соединим ее с центром О. По определению окружности имеем ОМ = R,

т. е. , откуда

Уравнение (1) связывает между собой координаты х и у каждой точки данной окружности. Обратно, если координаты точки М (х, у) удовлетворяют уравнению (1), то, очевидно, ОМ = R и, следовательно, эта точка лежит на нашей окружности. Таким образом, уравнение (1) представляет собой уравнение окружности радиуса R с центром в начале координат.

Пример:

Составить уравнения биссектрис координатных углов.

Решение:

Рассмотрим сначала биссектрису I и III координатных углов (рис. 18, а). Возьмем на ней произвольную точку М (х, у). Если точка М лежит в I квадранте, то абсцисса и ордината ее обе положительны и равны между собой (по свойству биссектрисы). Если же точка М (jc, у) лежит в III квадранте, то абсцисса и ордината будут обе отрицательны, а модули их равны, поэтому будут равны и координаты хм у этой точки. Следовательно, в обоих случаях имеем

Обратно, если координаты х и у какой-нибудь точки М (х, у) удовлетворяют уравнению (2), то эта точка, очевидно, лежит на биссектрисе

I и III координатных углов. Поэтому уравнение (2) представляет собой уравнение биссектрисы I и III координатных углов.

Рассмотрим теперь биссектрису II и IV координатных углов (рис. 18, б). Возьмем на ней произвольную точку N (х, у). В каком бы квадранте — II или IV — ни была расположена эта точка, координаты ее х и у равны по модулю и отличаются знаками.

Следовательно, в обоих случаях имеем

Обратно, если для какой-нибудь точки N (,х, у) выполнено уравнение (3), то эта точка, очевидно, лежит на биссектрисе II и IV координатных углов. Таким образом, уравнение (3) есть уравнение биссектрисы II и IV координатных углов.

Пример:

Составить уравнение прямой, параллельной оси ординат.

Решение:

Пусть прямая АВ || О у и пусть отрезок OA = а (рис. 19, а). Тогда для любой точки М (х, у) прямой АВ ее абсцисса х равна а:

Обратно, если абсцисса некоторой точки М (х, у) равна а, то эта точка лежит на прямой АВ.

Таким образом, уравнение (4) представляет собой уравнение прямой, параллельной оси Оу и отстоящей от нее на расстоянии, равном числовому значению а; при этом если прямая расположена справа от оси Оу, то а положительно; если же прямая расположена слева от оси Оу, то а отрицательно.

В частности, при а = 0 получаем уравнение оси ординат: х = 0.

Пример:

Составить уравнение прямой, параллельной оси абсцисс.

Решение:

Совершенно аналогично, если прямая CD || Ох и ОС = Ь (рис. 19, б), то ее уравнение будет

при этом если прямая CD расположена выше оси Оху то Ъ положительно, если же прямая CD расположена ниже оси Ох, то b отрицательно.

В частности, при b = 0 получаем уравнение оси абсцисс: у = 0.

Пример:

Найти линию, расстояние точек которой от точки В (12, 16) в два раза больше, чем от точки А (3, 4).

Решение:

Если М (х, у) — произвольная точка искомой линии, то согласно условию задачи имеем

Чтобы составить уравнение этой линии, надо выразить AM и ВМ через координаты х и у точки М. На основании формулы расстояния между двумя точками имеем

откуда, согласно соотношению (5),

Это и есть уравнение искомой линии.

Но в таком виде трудно судить, какую линию представляет это уравнение, поэтому упростим его. Возведя обе части в квадрат и раскрыв скобки, получим

или после несложных преобразований имеем равносильное уравнение

Сравнивая полученное уравнение с уравнением (1), мы видим, что искомая линия является окружностью радиуса 10 с центром в начале координат.

Построение линии по ее уравнению

Если переменные х и у связаны некоторым уравнением, то множество точек М (х, у), координаты которых удовлетворяют этому уравнению, представляет собой, вообще говоря, некоторую линию на плоскости (геометрический образ уравнения).

В частных случаях эта линия может вырождаться в одну или несколько точек. Возможны также случаи, когда уравнению не соответствует никакое множество точек.

соответствует единственная точка (1, 2), так как этому уравнению удовлетворяет единственная пара значений: х = 1 и у = 2.

не соответствует никакое множество точек, так как этому уравнению нельзя удовлетворить никакими действительными значениями x и у.

Зная уравнение линии, можно по точкам построить эту линию.

Пример:

Построить линию, выражаемую уравнением

(обычно говорят короче: построить линию у = х 2 ).

Решение:

Давая абсциссе х в уравнении (1) числовые значения и вычисляя соответствующие значения ординаты у, получим следующую таблицу:

Нанося соответствующие точки на плоскость, мы видим, что конфигурация этих точек определяет начертание некоторой линии; при этом чем гуще построена сеть точек, тем отчетливее выступает ее контур. Соединяя построенные точки линией, характер которой учитывает положение промежуточных точек1*, мы и получаем линию, определяемую данным уравнением (1) (рис. 20). Эта линия называется параболой.

Некоторые элементарные задачи с решением

Если известно уравнение линии, то легко могут быть решены простейшие задачи, связанные с расположением этой линии на плоскости.

Задача 1. Заданы уравнение линии К и координаты точки М (а, Ь). Определить, лежит точка М на линии К или нет.

Иными словами, требуется узнать, проходит линия К через точку М или не проходит.

На основании понятия уравнения линии получаем правило:

чтобы определить, лежит ли точка М на данной линии К, нужно в уравнение этой линии подставить координаты нашей точки. Если при этом уравнение удовлетворится (т. е. в результате подстановки получится тождество), то точка лежит на линии; в противном случае, если координаты точки не удовлетворяют уравнению линии, данная точка не лежит на линии.

Для того чтобы иметь возможность судить о положении промежуточных точек линии, мы должны предварительно изучить общие свойства уравнения этой линии (подробнее см. в гл. XI).

В частном случае линия проходит через начало координат тогда и только тогда, когда уравнение линии удовлетворяется при х = 0 и у — 0.

Пример:

Определить, лежат ли на ней точки М (-3, 4) и N (4, -2).

Решение:

Подставляя координаты точки М в уравнение (1), получаем тождество

Следовательно, точка М лежит на данной окружности.

Аналогично, подставляя координаты точки N в уравнение (1), будем иметь

Следовательно, точка N не лежит на данной окружности.

Задача 2. Найти точку пересечения двух линий, заданных своими уравнениями.

Точка пересечения одновременно находится как на первой линии, так и на второй. Следовательно, координаты этой точки удовлетворяют уравнениям обеих линий. Отсюда получаем правило:

чтобы найти координаты точки пересечения двух линий, достаточно совместно решить систему их уравнений.

Если эта система не имеет действительных решений, то линии не пересекаются.

Пример:

Найти точки пересечения параболы у = х2 и прямой у — 4.

Решение:

получаем две точки пересечения: А (-2, 4) и В (2, 4).

Задача 3. Найти точки пересечения данной линии с осями координат.

Эта задача является частным случаем задачи 2. Учитывая, что уравнение оси Ох есть у = 0, получаем правило: ‘

чтобы найти абсциссы точек пересечения данной линии с осью Ох, в уравнении этой линии нужно положить у = 0 и решить полученное уравнение относительно х.

Аналогично, так как уравнение оси Оу есть х — 0, то получаем правило:

чтобы найти ординаты точек пересечения данной линии с осью Оу, нужно в уравнении этой линии положить д: = 0 и решить полученное уравнение относительно у.

Пример:

Найти точки пересечения окружности с осями координат.

Решение:

Полагая у = 0 в уравнении (2), получаем х2= 1, т. е. х1 = -1 и х2 = 1. Отсюда находим две точки пересечения данной окружности с осью Ох (рис. 21): А (-1, 0) и В (1, 0).

Аналогично, полагая х = 0 в уравнении (2), получаем у2 = 1, т. е. ух = -1 и у2 = 1. Следовательно, имеются две точки пересечения данной окружности с осью Оу (рис. 21): С (0, -1) и D (0, 1).

Две основные задачи аналитической геометрии на плоскости

Резюмируя содержание этой главы, можно сказать, что всякой линии на плоскости соответствует некоторое уравнение между текущими координатами (х, у) точки этой линии. Наоборот, всякому уравнению между х и г/, где х и у — координаты точки на плоскости, соответствует, вообще говоря, некоторая линия, свойства которой вполне определяются данным уравнением.

Отсюда, естественно, возникают две основные задачи аналитической геометрии на плоскости.

Задача 1 .Дана линия, рассматриваемая как множество точек. Составить уравнение этой линии.

Задача 2. Дано уравнение некоторой линии. Изучить по этому уравнению ее геометрические свойства (форму и расположение).

Алгебраические линии

Определение: Линия называется линией (или кривой) n-го порядка(п = 1, 2. ), если она определяется уравнением п-й степени относительно текущих прямоугольных координат.

Такие линии называются алгебраическими. Например, линии

являются кривыми соответственно первого, второго и третьего порядков.

Общий вид кривых первого порядка есть

где коэффициенты А и Б не равны нулю одновременно, т. е. Как будет доказано ниже (см. гл. III), все кривые первого порядка — прямые линии.

Общий вид кривых второго порядка следующий:

где коэффициенты А, Б и С не равны нулю одновременно, т. е.

Заметим, что не всякому уравнению второго порядка соответствует действительная кривая. Например, уравнению не отвечает никакая кривая на плоскости Оху, так как, очевидно, нет действительных чисел х и z/, удовлетворяющих этому уравнению.

В следующих главах мы подробно изучим кривую первого порядка (прямую линию) и рассмотрим важнейшие представители кривых второго порядка (окружность, эллипс, гипербола, парабола).

Уравнение кривой n-го порядка может быть записано в следующем виде:

где хотя бы один из старших коэффициентов apqt т. е. таких, что p + q = п, отличен от нуля ( — знак суммирования).

Отметим важное свойство: порядок кривой (1) не зависит от выбора прямоугольной системы координат.

Действительно, выбирая другую систему прямоугольных координат О’х’уна основании формул перехода имеем

где — некоторые постоянные коэффициенты.

Отсюда уравнение кривой (1) в новых координатах О’х’у’ будет иметь вид

где п’ — порядок преобразованной кривой. Очевидно, что п’

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://lfirmal.com/uproshchenie-uravnenij-krivyh-2-go-poryadka/

http://www.evkova.org/uravnenie-linii