Упругие волны виды волн уравнение волны

Упругие волны (механические волны).

Возмущения, распространяющиеся в пространстве, удаляясь от места их возникновения, называют волнами.

Упругие волны — это возмущения, распространяющиеся в твердой, жидкой и газообразной средах благодаря действию в них сил упругости.

Сами эти среды называют упругими. Возмущение упругой среды — это любое отклонение частиц этой среды от своего положения равновесия.

Возьмем, например, длинную веревку (или резиновую трубку) и прикрепим один из ее концов к стене. Туго натянув веревку, резким боковым движением руки создадим на ее незакрепленном конце кратковременное возмущение. Мы увидим, что это возмущение побежит вдоль веревки и, дойдя до стены, отразится назад.

Начальное возмущение среды, приводящее к появлению в ней волны, вызывается действием в ней какого-нибудь инородного тела, которое называют источником волны. Это может быть рука человека, ударившего по веревке, камешек, упавший в воду, и т. д. Если действие источника носит кратковременный характер, то в среде возникает так называемая одиночная волна. Если же источник волны совершает длительное колебательное движение, то волны в среде начинают идти одна за другой. Подобную картину можно увидеть, поместив над ванной с водой вибрирующую пластину, имеющую наконечник, опущенный в воду.

Необходимым условием возникновения упругой волны является появление в момент возникновения возмущения сил упругости, препятствующих этому возмущению. Эти силы стремятся сблизить соседние частицы среды, если они расходятся, и отдалить их, когда они сближаются. Действуя на все более удаленные от источника частицы среды, силы упругости начинают выводить их из положения равновесия. Постепенно все частицы среды одна за другой вовлекаются в колебательное движение. Распространение этих колебаний и проявляется в виде волны.

В любой упругой среде одновременно существуют два вида движения: колебания частиц среды и распространение возмущения. Волна, в которой частицы среды колеблются вдоль направления ее распространения, называется продольной, а волна, в которой частицы среды колеблются поперек направления ее распространения, называется поперечной.

Продольная волна.

Волна, в которой колебания происходят вдоль направления распространения волны, называется продольной.

В упругой продольной волне возмущения представляют собой сжатия и разрежения среды. Деформация сжатия сопровождается возникновением сил упругости в любой среде. Поэтому продольные волны могут распространяться во всех средах (и в жидких, и в твердых, и в газообразных).

Пример распространения продольной упругой волны изображен на рисунке а и б выше. По левому концу длинной пружины, подвешенной на нитях, ударяют рукой. От удара несколько витков сближа­ются, возникает сила упругости, под действием которой эти витки начинают расходиться. Про­должая движение по инерции, они будут продолжать расходиться, минуя положение равновесия и образуя в этом месте разрежение (рисунок б). При ритмичном воздействии витки на конце пружины будут то сближаться, то отходить друг от друга, т. е. колебаться возле своего положе­ния равновесия. Эти колебания постепенно передадутся от витка к витку вдоль всей пружины. По пружине распространятся сгущения и разрежения витков, или упругая волна.

Поперечная волна .

Волны, в которых колебания происходят перпендикулярно направлению их распространения, называются поперечными. В поперечной упругой волне возмущения представляют собой смещения (сдвиги) одних слоев среды относительно других.

Деформация сдвига приводит к появлению сил упругости только в твердых телах: сдвиг слоев в газах и жидкостях возникновением сил упругости не сопровождается. Поэтому поперечные волны могут распространяться только в твердых телах.

Плоская волна .

Плоская волна — это волна, у которой направление распространения одинаково во всех точках пространства.

В такой волне амплитуда не меняется со временем (по мере удаления от источника). Получить такую волну можно, если большую пластину, находящуюся в сплошной однородной упругой среде, заставить колебаться перпендикулярно плоскости. Тогда все точки среды, примыкающей к пластине, будут колебаться с одинаковыми амплитудами и одинаковыми фазами. Распространяться эти колебания будут в виде воли в направлении нормали к пластине, причем все частицы среды, лежащие в плоскостях, параллельных пластине, будут колебаться с одина­ковыми фазами.

Геометрическое место точек, в которых фаза колебаний имеет одно и то же значение, называ­ется волновой поверхностью, или фронтом волны.

С этой точки зрения плоской волне можно дать и следующее определение:

Волна называется плоской, если ее волновые поверхности представляют совокупность плоскостей, параллельных друг другу.

Линия, нормальная к волновой поверхности, называется лучом. Вдоль лучей происходит перенос энергии волны. Для плоских волн лучи — это параллельные прямые.

Уравнение плоской синусоидальной волны имеет вид:

где s — смещение колеблющейся точки, sm — амплитуда колебаний, ω — циклическая частота, t — время, х — текущая координата, v — скорость распространения колебаний или скорость волны, φ0 — начальная фаза колебаний.

Сферическая волна .

Сферической называется волна, волновые поверхности которой имеют вид концентрических сфер. Центр этих сфер называется центром волны.

Лучи в такой волне направлены вдоль радиусов, расходящихся от центра волны. На рисунке источником волны является пульсирующая сфера.

Амплитуда колебаний частиц в сферической волне обязательно убывает по мере удаления от источника. Энергия, излучаемая источником, равномерно распределяется по поверхности сферы, радиус которой непрерывно увеличивается по мере распространения волны. Уравнение сферической волны имеет вид:

.

В отличии от плоской волны, где sm = А — амплитуда волны постоянная величина, в сферической волне она убывает с расстоянием от центра волны.

Упругие волны виды волн уравнение волны

§1 Волны в упругой среде

Если колеблющееся тело (камертон, струна, мембрана и т.д.) находится в упругой среде, то оно приводит в колебательное движение соприкасающиеся с ним частицы среды, вследствие чего в прилегающих к этому телу элементах среды возникают периодические

деформации (например, сжатия и растяжения). При этих деформациях в среде появляются упругие силы, стремящиеся вернуть элементы среды к первоначальным состояниям равновесия; благодаря взаимодействию соседних элементов среды, упругие деформации будут передаваться от одних участков среды к другим, более удаленным от колеблющегося тела.

Таким образом, периодические деформации, вызванные в каком-нибудь месте упругой среды, будут распространяться в среде с некоторой скоростью, зависящей от ее физических свойств. При этом частицы среды совершают колебательное движение около положений равновесия. От одних участков среды к другим передается только состояние деформации.


Процесс распространения колебательного движения в среде называется волновым процессом или просто волной. В зависимости от характера возникающих при этом упругих деформаций различают продольные и поперечные волны. В продольных волнах частицы среды колеблются вдоль направления распространений колебаний. В поперечных волнах частицы среды колеблются перпендикулярно направлению распространения волны.


Жидкие и газообразные среды не имеют упругости сдвига, поэтому в них возбуждаются только продольные волны, распространяющиеся в виде чередующихся сжатий и разряжений. Волны, возбуждаемые на поверхности воды, являются поперечными, они обязаны своим существованием земному притяжению.

В твёрдых телах могут быть вызваны и продольные и поперечные волны.

Предположим, что точечный источник волны начал возбуждать в среде колебания в момент времени t = 0; по истечению времени t это колебание распространится по различным направлениям на расстояние r = vit , где vi — скорость волны в данном направлении. Поверхность, до которой доходит колебание в некоторый момент времени, называется фронтом волны. Форма фронта волна определяется конфигурацией источника колебаний и свойствами среды. В однородных средах скорость распространения волна везде одинакова. Среда называется изотропной, если эта скорость одинакова по всем направлениям. Фронт волна от точечного источника колебаний в однородной и изотропной среде имеет вид сферы; такие волны называются сферическими.

В неоднородной и не изотропной (анизотропной) среде, а также от неточечных источников колебаний фронт волны имеет сложную форму. Если фронт волны представляет собой плоскость и эта форма сохраняется по мере распространения колебаний в среде, то волну называют плоской.

Поверхности волны, точки которых колеблются в одинаковых фазах, называются волновыми или фазовыми поверхностями.

График, показывающий распределение в среде колеблющейся величины в данный момент времени, называют формой волны.

§2 Уравнение плоской волны

Уравнение волны позволяет найти смещение от положения равновесия колеблющейся точки с координатами (х, у, z ) в момент времен t .

Пусть колебания точек, лежащих в плоскости х = 0 происходят по закона косинуса

Найдем вид колебания точек в плоскости, соответствующей произвольному значению х. Для того, чтобы пройти путь от х = 0 до этой плоскости волне требуется время v – скорость, распространения волны, следовательно, колебания частиц, лежащих в плоскости х, будут отставать по времени на τ от колебаний частиц в плоскости х = 0, т.е, будут иметь вид

— уравнение падающей, бегущей волны.

(уравнение волны, распространявшейся в направлении оси X).

S — смещение точки от положения равновесия в плоскости, находящейся на расстоянии х от источника колебаний;

А — амплитуда волны;

φ0 — начальная фаза.’

Для одной волны можно выбрать х и t так, чтобы φ0 =0.

Для нескольких волн это не удаётся.

Если волна распространяется в сторону убывания координаты х, то колебания в плоскости х начнутся раньше на , чем в плоскости х = 0. Тогда уравнение отраженной волны запишется в виде

— уравнение отраженной волны.

§3. Понятие о фазовой скорости.

Связь между фазовой и групповой скоростями

  1. Зафиксируем какое-либо значение фазы, стоящей в уравнении бегущей волны

(1)

Из него следует связь между временем t и тем местом х, в котором фаза имеет зафиксированное значение . Вытекающее из него значение даёт скорость, с которой перемещается данное значение фазы. Продифференцировав (1), получим

k волновое число, λ — длина волны.

Таким образом, скорость v в уравнении распространяющейся волны является фазовой скоростью, т.е. она показывает, с какой скоростью распространяется фаза волны (скорость перемещения фазы).

Во всех реальных волновых процессах приходиться иметь дело с более сложными волнами, имеющими несинусоидальный характер. Такую сложную волну можно представить как сумму косинусоидальных или синусоидальных волн, или как группу таких волн. В реальных условиях наблюдается перемещение групп волн, каждая из которых отличается от другой по частоте. В каждый момент времена можно найти точку, в которой наблюдается максимум колебаний, возникающих в результате наложения этих волн. В этой точке фаза любой группы волн будет одинаковой. Эта точка называется центром группы волн. Положение центра группы волн со временем изменяется. Этой точке соответствует максимум энергии колеблющейся группы волн. Энергия колеблющейся группы волн переносится со скоростью, равной скорости перемещения центра группы волн. Эту скорость называют групповой скорстью. Она обозначается u .

  1. Связь между групповой и фазовой скоростями.

Чтобы найти эту связь воспользуемся тем, что в центре группы волн фазы всех волн одинаковы. Групповая скорость равна

I. Механика

Тестирование онлайн

Упругая волна

Если тело находится в упругой среде, то колебательное движение деформирует эту среду. Из-за взаимодействия соседних частиц среды деформация передается от одних участков к другим. Это и есть волна. Например, волна на озере, если бросить камень: камень вызывает деформацию, которая распространяется в упругой среде — воде.

Виды волн

Волны могут быть поперечными и продольными. Представим распространение волн с помощью модели, в которой частицы среды представлена в виде совокупности шариков и пружинок.

В продольных волнах шарики испытывают смещение вдоль цепочки, а пружинки растягиваются или сжимаются. В жидкостях или газах деформация такого рода сопровождается уплотнением или разрежением. Такие волны могут распространятся в любых средах — твердых, жидких и газообразных.

Если один или несколько шариков сместятся в направлении, перпендикулярном цепочке, то возникает деформация сдвига. В результате вдоль цепочки побежит поперечная волна. Поперечные волны могут существовать только в твердых телах.

Характеристики волны

Длина волны — это расстояние между двумя ближайшими горбами или впадинами поперечной волны, или расстояние между двумя ближайшими сгущениями или разрежениями продольной волны.

Скорость волны — это скорость распространения колебаний.

Скорость распространения волны и длина волны зависят от среды, в которой они распространяются. Наибольшая скорость распространения волн в твердых телах, наименьшая — в газах.

Волны в природе

Волны, наблюдаемые в природе, нередко переносят огромную энергию и являются причиной разрушений. Например, морские волны, а особенно цунами, обладают большой мощностью. Сейсмические волны распространяются в земной коре при землетрясениях или мощных взрывах.

При землетрясениях происходят сдвиги земной коры, достигающие 10-15м. Предотвратить землетрясение невозможно, но их можно предсказать при помощи специального прибора — сейсмографа. Основная часть прибора — маятник, начинающий колебаться при появлении сейсмических волн.


источники:

http://www.bog5.in.ua/lection/vibration_lect/lect5_vibr.html

http://fizmat.by/kursy/kolebanija_volny/uprugie