Уравнение баланса для первичной обмотки трансформатора

Учебные материалы

Однофазный трансформатор имеет замкнутый ферромагнитный сердечник, на который намотаны первичная и вторичная обмотки с числом витков W1 и W2.

Для уменьшения вихревых токов ферромагнитный сердечник набирается из отдельных пластин электротехнической трансформаторной стали толщиной 0,35 или 0,5 мм.

На схеме трансформатора приняты условно положительные направления всех величин, характеризующих электромагнитные процессы в трансформаторе, исходя из предпосылки, что первичная обмотка трансформатора является приемником электрической энергии, а вторичная обмотка является источником.

Работа трансформатора основана на законе электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в сердечнике (магнитопроводе) переменный магнитный поток. Замыкаясь в сердечнике, этот поток сцепляется с первичной и вторичной обмотками и индуцирует в них ЭДС, пропорциональные числу витков W:

В первичной обмотке ЭДС самоиндукции

во вторичной обмотке ЭДС взаимоиндукции

При подключении нагрузки Zн к выводам вторичной обмотки трансформатора под действием ЭДС в обмотке потечет ток I2, а на выводах установится напряжение U2.

Обмотку трансформатора, подключенную к сети с более высоким напряжением, называют обмоткой высшего напряжения (ВН). Обмотку, подключенную к сети меньшего напряжения, называют обмоткой низшего напряжения (НН).

Коэффициентом трансформации К трансформатора называют отношение ЭДС обмотки ВН (числа витков Wвн) к ЭДС обмотки НН (числа витков Wнн):

Трансформаторы обладают свойством обратимости, то есть один и тот же трансформатор можно использовать в качестве повышающего и понижающего.

Трансформатор – это аппарат переменного тока и на постоянном токе не работает, так как протекающий по первичной обмотке постоянный ток будет создавать постоянный магнитный поток. В соответствии с законом электромагнитной индукции поток должен изменяться как по величине, так и по направлению.

В режиме нагрузки трансформатора первичный и вторичный токи I1, I2 кроме основного магнитного потока Фо, создают магнитные потоки рассеяния Ф σ 1 и Ф σ 2 , влиянием которых обусловлено существование индуктивных сопротивлений первичной и вторичной обмоток трансформатора Х1 и Х2.

Активное и полное сопротивления первичной обмотки трансформатора обозначаются R1 и Z1, а вторичной -R2 и Z2.

Работа трансформатора в общем случае описывается системой уравнений:

где I0 – ток холостого хода.

Уравнение (1) и (2) представляют собой уравнения равновесия ЭДС первичной и вторичной обмоток, уравнение (3) представляет собой уравнение равновесия намагничивающих сил (I ⋅ W) трансформатора. Намагничивающая (магнитодвижущая) сила это произведение тока на число витков обмотки.

Выполнив преобразования в уравнении (3) получим:

Из уравнения (4) следует, что ток I1 первичной обмотки трансформатора можно рассматривать состоящим из двух составляющих: одна составляющая I0 определяет, основной магнитный поток Ф0, а вторая составляющая

компенсирует размагничивающее действие тока I2 вторичной обмотки. Из сказанного следует, что магнитный поток в трансформаторе не зависит от тока нагрузки и пропорционален приложенному напряжению.

Если пренебречь током холостого хода I0 (составляет несколько процентов I1) трансформатора, протекающего по первичной обмотке (при разомкнутой вторичной обмотке), то можно считать токи, в обмотках трансформатора обратно пропорциональными числам витков.

Возможны следующие режимы работы трансформатора:

  1. режим холостого хода;
  2. режим короткого замыкания (аварийный режим и опыт короткого замыкания);
  3. режим нагрузки.

В режиме холостого хода трансформатор работает при разомкнутой вторичной обмотке.

При этом существуют следующие соотношения:

Мощность холостого хода Р0, потребляемая трансформатором из сети, определяется в основном потерями в стали Рс сердечника.

P0 ≈ Pc (составляет 1-2% номинальной мощности)

Потери в стали складываются из потерь на перемагничивание ферромагнитного материала сердечника и потерь на вихревые токи, которые наводятся в сердечнике в соответствии с законом электромагнитной индукции. Для уменьшения потерь на вихревые токи сердечник изготавливают из тонких пластин (0,3-0,5 мм), изолированных друг от друга.

Опыт холостого хода трансформатора проводится для определения коэффициента трансформации К и мощности электрических потерь в стали сердечника.

Опыт короткого замыкания трансформатора проводится для определения мощности электрических потерь в обмотках трансформатора (потерь в меди Рм). При проведении опыта короткого замыкания вторичная обмотка трансформатора замыкается накоротко, при этом к первичной обмотке подводится пониженное напряжение U, составляющее 5-10% от номинального. Во время проведения опыта контролируют токи в обмотках трансформатора и прекращают опыт, когда токи в обмотках достигнут номинальных значений.

В паспортные данные трансформатора заносится ток холостого хода в процентах от номинального значения, мощность потерь в обмотках и напряжение в опыте короткого замыкания, выраженное в процентах от номинального.

Режимом нагрузки трансформатора называется такой режим его работы, когда вторичная обмотка подключена на сопротивление нагрузки Zн.

Мощность Р1, потребляемая трансформатором из сети в режиме нагрузки определяется по формуле:

где Р2 — мощность нагрузки;

ΣР – суммарные потери трансформатора (в стали и меди).

Коэффициент полезного действия трансформатора

имеет максимальное значение при равенстве потерь в проводах обмоток и потерь в стали сердечника

Трансформатор конструируется так, чтобы η max имел место при наиболее вероятной нагрузке составляющей (0,5 – 0,75) Р2 ном..

У работающего под нагрузкой трансформатора напряжение вторичной U2 отличается от напряжения холостого хода U20 на величину падения напряжения на полном сопротивлении его вторичной обмотки

которая называется изменением напряжения трансформатора

Для трансформаторов, выпускаемых промышленностью, величина Δ U составляет 6-8 % от U2 ном. (вторичного номинального напряжения). Полезно знать, что по напряжению короткого замыкания U, полученного в опыте короткого замыкания, можно судить об отклонении напряжения вторичной обмотки трансформатора от его номинального значения при номинальном токе (нагрузке).

Изменение напряжения в трансформаторе зависит не только от значений токов первичной и вторичной обмоток I1 и I2, но и от рода нагрузки (активной, индуктивной или емкостной).

Внешняя характеристика трансформатора это зависимость напряжения U2 вторичной обмотки от протекающего по ней тока I2, U2=f(I2).

Рис. 13. Внешняя характеристика трансформатора

Векторную диаграмму трансформатора строят на основании уравнений равновесия ЭДС первичной и вторичной обмоток и уравнения равновесия намагничивающих сил трансформатора (уравнения 1, 2, 3).

Уважаемые студенты!
Специалисты нашего сайта готовы оказать помощь в учёбе по разным предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Реферат: Трансформаторы: уравнение обмотки, рабочие режимы, холостой ход, конструкция, магнитные материалы, электрические провода и изоляция

“Белорусский государственный университет информатики и радиоэлектроники”

Кафедра защиты информации

«Трансформаторы: уравнение обмотки, рабочие режимы, холостой ход, конструкция, магнитные материалы, электрические провода и изоляция»

Формула трансформатора. ЭДС. Уравнение равновесия для первичной обмотки

Рисунок 1 — Трансформатор

Считаем, вторичная обмотка разомкнута (нет нагрузки). На первичную действует U1 (t). В цепи возникает ток:

Изменяющийся во времени магнитный поток приводит к возникновению ЭДС

=> = -W1 * = e10 (t) (3)

=>-W1 *= e10 (t): (4)

Пока не будет уравновешено, этот процесс будет продолжаться. Приведенная зависимость электрических и магнитных процессов соответствует линейному режиму работы магнитопровода. В реальных трансформаторах такой режим является лишь приближением к реальности. В реальных трансформаторах необходимо считаться с неравенством «0» падения напряжения на сопротивлении проводов. В первичной обмотке трансформатора при i10 падение напряжения = r1 *i10 . В установившемся режиме для цепи первичной обмотки трансформатора справедливо уравнение равновесия:

Этому уравнению можно поставит в соответствие:

(7)

Рассмотрим режим, соответствующий отсутствию тока во вторичной обмотке. В этом случае все магнитные процессы определяются только электрическими процессами в первичной обмотке => e20 (t) – в режиме ХХ.

(8)

(9)

n – коэффициент трансформации.

Т.к. U1 (t) – синусоидально, то и отклик в виде ЭДС, и падение напряжения, и Ф10 также изменются по гармоническому закону.

=-W1 Ф10 m (2πf)cos(ωt)=

E10 = E10m / (13)

Формула трансформатора ЭДС

Режим ХХ трансформатора

Режим ХХ трансформатора рассмотрим на практическом режиме отключения нагрузки. В этом режиме путем проведения специальных измерений (опыт ХХ) могут быть оценены важные технико-эксплуатационные параметры трансформатора. Анализ режима ХХ позволяет выявить основные физические процессы в трансформаторе, знание которых важно для других режимов.

Рисунок 2 – Электрическая схема трансформатора

В режиме ХХ трансформатор подключается под номинальное напряжение, то напряжение, при котором предусматривается работа трансформатора:

(19)

Для дальнейшего рассмотрения и составления электрической модели трансформатора удобно ЭДС E10 S за счет рассеяния трактовать как падение напряжения на чисто реактивном сопротивлении индуктивности рассеяния в цепи первичной обмотки jI10 X0 .Тогда:

(20)

Для построения векторной диаграммы за точку отправления возьмем направление вектора магнитного потока

Рисунок 3 – Пример векторной диаграммы

При действии в магнитном проводнике переменного магнитного потока совершается работа по перемагничиванию реального магнитного материала (явление гистерезиса) и расходуется энергия на нагревание сердечника, возникающее в нем из-за появления вихревых токов (токов Фуко). В этой связи I10 xx имеет две составляющих:

— активную (отражает потери на гистерезис и вихревые токи)

— составляющую в виде тока намагничивания Iμ , которую создает основной магнитный поток.

Пользуясь представленным выше уравнением (20) и поясняющей его векторной диаграммой трансформатора на ХХ (Рисунок 3), можно поставить в соответствие следующую его схему замещения (эквивалентную схему, электрическую модель трансформатора).

Рисунок 4 – Эквивалентная схема замещения трансформатора

Приведенная эквивалентная схема является строгим электрическим аналогом реального трансформатора, если должным образом определены величины сопротивлений:

Эта схема позволяет производить все электрические расчеты токов, U, P, углов запаздывания и т.д.

Рабочий режим трансформатора: уравнение равновесия намагничивающих сил (УРНС)

В рабочем режиме трансформатор подключен под полное номинальное напряжение.

Рисунок 5 – Электрическая схема трансформатора

Совокупный магнитный поток и совокупная магнитная сила определяется как результат взаимодействия Ф1 и Ф2 и F1 и F2 .

(21)

(22)

Можно убедиться, что при любом рабочем режиме суммарная намагничивающая сила первичной и вторичной обмотки должна быть точно такой же как и в режиме ХХ. В таком случае, для рабочего режима трансформатора справедливо следующее уравнение равновесия намагничивающих сил (УРНС):

Удобно найти из этого уравнения значение I1 , выраженное через I2 , и являющееся техническим параметром трансформатора I10 (ток ХХ).

УРНС позволяет наметить Т-образную схему замещения трансформаторов.

Рис 7 – Т-образная схема замещения трансформатора

Физические процессы в трансформаторе в рабочем режиме наглядно поясняет векторная диаграмма, соответствующая УРНС, которое удобно записать в форме:

Рисунок 8 – Векторная диаграмма работы трансформатора

Рабочий режим трансформатора: эквивалентная схема

При формировании эквивалентной схемы необходимо обеспечить ее преемственность в схеме замещения трансформатора для ХХ. Кроме того, поиск схемы замещения будем осуществлять с учетом выявленной ранее возможности построения Т-образной эквивалентной схемы трансформатора.

Рисунок 9 – Эквивалентная схема трансформатора в рабочем режиме

Эквивалентную схему можно построить, пользуясь следующими уравнениями:

(уравнение электрического воздействия) (28)

(29)

Рабочий режим трансформатора: векторная диаграмма при нагрузке индуктивного характера

Рисунок 10 — Векторная диаграмма при нагрузке индуктивного характера

отстает от на 90

отстает от его задающего тока на угол запаздывания α. Ток отстает от создающей его ЭДС =.

переносим параллельно вверх к для построения . Переносим вверх, получаем —. -вектор параллельный . Повернем его на 90 получаем j.

Рабочий режим трансформатора: векторная диаграмма при емкостном характере нагрузки

Рисунок 11 — Векторная диаграмма при емкостном характере нагрузки

Изменится , он не отстает от , а идет впереди.

Элементы схемы замещения трансформатора оценивают по данным измерений, выполняемым при проведении специально организованных опытов ХХ и КЗ.

Опыт холостого хода

Рисунок 12 – Схема проведения опыта ХХ

(30)

==n (31)

-потери в стали.

Рисунок 13 — Эквивалентная схема трансформатора на ХХ.

= (32)

== (33)

= (34)

= (35)

= (36)

= (37)

(38)

В отличие от ХХ нельзя проводить при номинальном входном напряжении т.к. КЗ – аварийный режим.

При проведении опыта КЗ:

Рисунок 14 – Схема проведения опыта КЗ

(примерно 1-3%)

На входе действует малое напряжение , то мала и ЭДС (противо-ЭДС), уравновешивающей его, а значит, мал и магнитный поток, ее создающий.

При малом потоке потерями в стали можно пренебречь.

(потери в меди) (39)

(40)

(41)

(42)

(43)

(44)

Опыт КЗ существенно дополняет опыт ХХ, и вместе они дают возможность экономично, с требуемой точностью оценит параметры эквивалентной схемы транзистора.

Конструкция, магнитные материалы, электрические провода и изоляци я

Основными элементами конструкции трансформаторов являются сердечник (магнитопровод) и обмотки: К элементам конструкции относятся также конструктивные детали, служащие для крепления сердечника и установки трансформаторов в блоках аппаратуры.

Сердечники трансформаторов изготавливают из высоколегированных горячекатаных и повыщеннолегированйых холоднокатаных сталей.

Марки электротехнических сталей, их магнитные свойства и удельные потери энергий определяет ГОCT 9925—61. При частоте тока сети 50 Гц для сердечников используют стали марок Э41, Э42, Э43 и Э310, Э320, Э33О при толщине стальных листов или ленты 0,5 и 0,35 мм. При повышенных частотах (400 Гц и выше) используют стали марок Э44, 345, Э46, Э47, 348, Э340 и Э370 с толщиной пластин или ленты 0,2; 0,15; 0,1; 0,08 и 0,05 мм.

По конструктивному выполнению сердечники трансформаторов подразделяются на три основных типа: стержневые, броневые и тороидальные. Соответственно и трансформаторы в зависимости от конструкции сердечника подразделяются на три указанных выше типа.

Сердечники мощных трансформаторов набираются из отдельных прямоугольных пластин трансформаторной стали. Сердечники трансформаторов малых мощностей выполняют либо наборными из штампованных пластин, либо ленточными. Пластины трансформаторной стали изолируются друг от друга лаком или окисной пленкой, т. е. «окалиной», для уменьшения потерь на вихревые токи. Сердечник стержневого трансформатора имеет два стержня, на которых располагаются обмотки. На каждом стержне сердечника помещается половина витков первичной и половина витков вторичной обмоток. Половины каждой обмотки соединяются между собой последовательно так, чтобы намагничивающие силы этих половин обмоток совпадали по направлению. Стержневые сердечники применяются для трансформаторов различной мощности.

Основными достоинствами стержневого трансформатора являются: большая поверхность охлаждения обмотки; малая индуктивность рассеяния вследствие размещения половинного числа витков на каждой катушке и меньшей толщины намотки; меньший расход обмоточного провода, чем у броневого трансформатора, так как уменьшение намотки вызывает уменьшение средней длины витка обмотки; значительно меньшая, чем в броневом трансформаторе, чувствительность к внешним магнитным полям, так как знаки ЭДС помех, наводимых в обеих катушках трансформатора, противоположны и взаимно уничтожаются.

Рисунок 15 – Конструкция трансформаторов: а и б — пластинчатые стержневой и броневой; в и г — ленточные стержневой и броневой; д — тороидальный

В трансформаторе броневого типа первичная и вторичная обмотки помещаются на среднем стержне сердечника. Таким образом, в этом трансформаторе обмотки частично охватываются (бронируются) ярмом. Броневыми наиболее часто выолняются трансформаторы малой мощности. Броневой трансформатор обладает рядом конструктивных достоинств: наличием только одной катушки с обмотками вместо двух при стержневом сердечнике; более высоким коэффициентом заполнения окна сердечника обмоточным проводом; частичной защитой обмотки ярмом сердечника от механических повреждений.

Сердечники маломощных стержневых и броневых трансформаторов выполняются соответственно из П-образных и Ш-образных пластин трансформаторной стали, а также из ленточных сердечников подковообразной формы. В некоторых случаях пластинчатые сердечники трансформаторов делают с уширенным ярмом для уменьшения намагничивающего тока. При этом сечение ярма делают у стержневого трансформатора больше сечения стержня, а у броневого — больше ПОЛОВИНЫ сечения стержня.

Пластинчатые магнитопроводы трансформаторов собираются встык или внахлест. При сборе встык все пластины сердечника составляются вместе, располагаясь одинаково, и сердечник состоит из двух частей, которые затем скрепляются вместе. Сборка внахлест позволяет уменьшить магнитное сопротивление, но усложняет монтаж и демонтаж трансформатора. При сборке внахлест пластины чередуются так, чтобы у соседних пластин разрезы были с разных сторон сердечника. После сборки магнитопровода его стягивают болтами или шпильками.

Стержневые и броневые магнитопроводы из ленточных сердечников собирают встык. Для получения возможно меньшего магнитного сопротивления в местах стыка сердечников их торцевые оверхности шлифуют.

Обмотки и другие токоведущие части трансформатора изолируют. Изоляция должна обеспечивать надежную работу трансформатора в условиях его эксплуатации при значительных колебаниях температуры нагрева. В зависимости от нагревостойкости изоляционные материалы разделяются на семь классов (ГОСТ 8865-70) со следующими предельно допустимыми температурами: класс Y-90°С, A-105°С, E (AB)-120°С, B-130°С, F (BC)-155°С, H (CB)-180°С, и класс С – более 180°С.

Изоляция обмоток должна выдерживать длительное воздействие переменного электрического поля, имеющегося в трансформаторе, и кратковременные перенапряжения, возникающие в условиях эксплуатации трансформатора.

1. Иванов-Цыганов А.И. Электротехнические устройства радиосистем: Учебник. — Изд. 3-е, перераб. и доп.-Мн: Высшая школа, 200

2. Алексеев О.В., Китаев В.Е., Шихин А.Я. Электрические устройства/Под ред. А.Я.Шихина: Учебник. – М.: Энергоиздат, 200– 336 с.

3. Березин О.К., Костиков В.Г., Шахнов В.А. источники электропитания радиоэлектронной аппаратуры. – М.: Три Л, 2000. – 400 с.

4. Шустов М.А. Практическая схемотехника. Источники питания и стабилизаторы. Кн. 2. – М.: Альтекс а, 2002. –191 с.

Уравнения напряжений трансформатора

Согласно закону Кирхгофа, для первичной обмотки трансформатора можно записать уравнение:

(2.32)

где ЭДС первичной обмотки и ЭДС рассеяния:

; (2.33)

При переходе к комплексной форме получаем:

, (2.34)

где ЭДС рассеяния:

. (2.35)

Тогда получаем уравнение напряжений:

, (2.36)

где z1 – полное сопротивление первичной обмотки.

, (2.37)

где ЭДС вторичной обмотки и ЭДС рассеяния вторичной обмотки:

, (2.38)

При переходе к комплексной форме получаем:

, (2.39)

где ЭДС рассеяния:

, (2.40)

Тогда получаем уравнение напряжений:

, (2.41)

где z2 – полное сопротивление вторичной обмотки.

В дифференциальной форме уравнения напряжений (считаем, что магнитная проницаемость стали постоянна):

. (2.42)

Здесь L1 и L2 – полные индуктивности первичной и вторичной обмоток, соответствующие всему сцепленному с данной обмоткой потоку.

М12 = М21 = М – взаимоиндуктивность первичной и вторичной обмоток.

При переходе к комплексной форме получаем:

(2.43)

Дата добавления: 2014-12-09 ; просмотров: 1645 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://www.bestreferat.ru/referat-168934.html

http://helpiks.org/1-50567.html

Название: Трансформаторы: уравнение обмотки, рабочие режимы, холостой ход, конструкция, магнитные материалы, электрические провода и изоляция
Раздел: Рефераты по коммуникации и связи
Тип: реферат Добавлен 21:54:56 08 февраля 2009 Похожие работы
Просмотров: 1206 Комментариев: 19 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать