Уравнение бернулли для идеальной жидкости презентация

Презентация по физике на тему: «Закон Бернулли»

Закон (уравнение) Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости.

Скачать:

ВложениеРазмер
prezentatsiya_zakon_bernulli_gallyamova.ppsx397.63 КБ
Предварительный просмотр:

Подписи к слайдам:

Презентация по физике на тему: «Закон Бернулли» Ученицы 10 класса ГБОУ СОШ № 1465 Галлямовой Алины Учитель: Круглова Лариса Юрьевна 2013 г.

Как известно, неподвижная жидкость в сосуде, согласно закону Паскаля, передает внешнее давление ко всем точкам жидкости без изменения. Но когда жидкость течет без трения по трубе переменной толщины, давление в разных местах трубы неодинаково. Оказывается, в узких местах трубы давление жидкости меньше, чем в широких. В узких местах трубы высота столбика жидкости меньше, чем в широких. Это значит, что в этих узких местах давление меньше. Смотри рисунок 1 Рисунок 1

Скорость жидкости и сечение трубы. Предположим, что жидкость течет по горизонтальной трубе, сечение которой в разных местах различное. Выделим мысленно несколько сечений в трубе, площади которых обозначим S 1 , S 2 , S 3 . За какой-то промежуток времени t через каждое из этих сечений должна пройти жидкость одного и того же объема. Вся жидкость, которая за время t походит через первое сечение, должна за это же время пройти второе сечение и третье сечение. Заметим, что мы считаем, что жидкость данной массы повсюду имеет один объем, что она не может сжиматься (несжимаема). Но как жидкость, протекающая через первое сечение, может «успеть» за то же время протечь через значительно меньшее сечение S 2 ? Очевидно, что для этого при прохождении узких частей трубы скорость движения жидкости должна быть больше, чем при прохождении широких.

Уравнение неразрывности струи. Рассмотрим стационарный (скорость в данной точке не изменяется со временем) поток идеальной (нет внутреннего трения) несжимаемой жидкости. В этом случае выполняется закон сохранения массы. Пусть за время t через сечение трубы S 1 проходит жидкость массой m 1

Тогда через сечение S 2 за тоже время проходит жидкость массой m 2 : Так как m 1 =m 2 , то или Где сечение трубы меньше, там скорость жидкости больше, и наоборот (если S 1 > S 2 , то v 1 < v 2 ).

Скорость и давление. Так как при переходе жидкости из широкого участка в узкий скорость течения увеличивается, то это значит, что где-то на границе между узким и широким участком трубы жидкость получает ускорение. А по второму закону Ньютона для этого на этой границе должна действовать сила. Этой силой может быть только разность между силами давления в широком и узком участках трубы. В широком участке трубы давление должно быть больше, чем в узком. Этот вывод следует из закона сохранения энергии. Если в узких местах трубы увеличивается скорость жидкости, то увеличивается и ее кинетическая энергия. А так как мы условились, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. Но это не потенциальная энергия mgh , потому что труба горизонтальная и высота h везде одинакова. Значит, остается только потенциальная энергия, связанная с силой упругости. Сила давления жидкости – это и есть сила упругости сжатой жидкости. В широкой части трубы жидкость несколько сильнее сжата, чем в узкой. Правда, мы только что говорили, что жидкость считается несжимаемой. Но это значит, что жидкость не настолько сжата, чтобы сколько-нибудь заметно изменился ее объем.

Очень малое сжатие, вызывающее появление силы упругости, неизбежно. Оно и уменьшается в узких частях трубы. В этом и состоит закон (принцип), открытый в 1738 г. петербургским академиком Даниилом Бернулли: Давление в жидкости, текущей в трубе , больше в тех частях, где скорость ее движения меньше, и наоборот, в тех частях, где скорость больше, давление меньше. Закон Бернулли относится не только к жидкости, но и к газу, если газ не сжимается на столько, чтобы изменился его объем. В узких частях труб скорость течения жидкости велика, а давление мало. Можно подобрать такое маленькое сечение трубы, что давление в потоке будет меньше атмосферного.

Примеры: Если взять полоску бумаги и дуть вдоль ее поверхности, то полоска поднимется вверх. Давление газа над полоской меньше давления снизу. Если сильно дуть через соломинку над легким шариком от пинг-понга то это приведет к такому уменьшению давления сверху, что давление на шарик снизу должно будет поддерживать его висящим в воздухе.

Уравнение Бернулли для идеальной жидкости

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Уравнение Бернулли Презентацию подготовил учитель физики МАОУ СОШ № 17 г. Тобольска Усманов Шамиль Нуруллович

Раздел механики, изучающий движение жидкостей и газов, называется гидро- и аэродинамикой В общем случае движения жидкости нужно учитывать наличие сил внутреннего трения и вязкости. Вязкостью называется свойство жидкости оказывать сопротивление относительному перемещению своих частей.

В каком сечении трубы скорость жидкости наибольшая? В самом узком сечении трубы.

Линии тока – это линии, проведенные так, что касательные к ним совпадают по направлению со скоростями частиц жидкости в соответствующих точках пространства. Часть жидкости, ограниченную линиями тока, называют трубкой тока жидкости. S2 S1 Там, где скорость больше, линии тока расположены гуще.

Если во всех точках пространства скорости элементов жидкости не меняются со временем, то движение жидкости называется стационарным. Картина линий тока при стационарном течении остаётся неизменной

Уравнение неразрывности Масса жидкости, протекающей через поперечное сечение: В стационарном потоке масса одна и та же для любого поперечного сечения:

Жидкость, вязкостью и сжимаемостью которой можно пренебречь, называют идеальной жидкостью. При движении идеальной жидкости не происходит превращения механической энергии во внутреннюю, т.е. механическая энергия жидкости сохраняется.

В каком месте трубы давление больше?

Чем больше сечение трубы, тем меньше скорость течения жидкости и больше давление.

Даниил Бернулли (1700—1782) швейцарский математик Закон Бернулли: Величина Остается постоянной вдоль линии тока.

Сумма давления и плотностей кинетический и потенциальной энергий при стационарном течении идеальной жидкости остаётся постоянной для любого сечения потока. — Плотность потенциальной энергии (Дж/м3) — Плотность кинетической энергии (Дж/м3)

Если труба горизонтальна, то h1=h2: С увеличение скорости давление в жидкости, текущей по горизонтальной трубе уменьшается.

Движение жидкости, при котором отдельные слои ее скользят друг относительно друга, не перемешиваясь, называется ламинарным (слоистым) течением. Движение жидкости, сопровождающееся перемешиванием ее различных слоев с образованием завихрений, называется турбулентным (вихревым).

Re – число Рейнольдса v – скорость течения d — диаметр трубы

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 956 человек из 80 регионов

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • Курс добавлен 23.11.2021
  • Сейчас обучается 51 человек из 29 регионов

Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 33 человека из 19 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 570 772 материала в базе

Материал подходит для УМК

«Физика. Механика (углублённый уровень)», Мякишев Г.Я., Синяков А.З.

§ 9.11. Уравнение Бернулли

Другие материалы

  • 22.12.2020
  • 304
  • 5
  • 22.12.2020
  • 176
  • 3

  • 22.12.2020
  • 777
  • 30
  • 22.12.2020
  • 154
  • 2

  • 22.12.2020
  • 153
  • 4

  • 22.12.2020
  • 133
  • 3

  • 22.12.2020
  • 799
  • 45

  • 22.12.2020
  • 121
  • 4

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 22.12.2020 382
  • PPTX 524.5 кбайт
  • 42 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Усманов Шамиль Нуруллович. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 5 лет и 5 месяцев
  • Подписчики: 1
  • Всего просмотров: 32542
  • Всего материалов: 28

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Профессия педагога на третьем месте по популярности среди абитуриентов

Время чтения: 1 минута

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

Количество бюджетных мест в вузах по IT-программам вырастет до 160 тыс.

Время чтения: 2 минуты

В Ленобласти школьники 5-11-х классов вернутся к очному обучению с 21 февраля

Время чтения: 1 минута

В школах Хабаровского края введут уроки спортивной борьбы

Время чтения: 1 минута

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Презентация на тему: «Движение жидкости. Уравнение Бернулли».

План-конспект урока

Урок № 20 Дата Класс 10

Тема урока: Движение жидкости. Уравнение Бернулли.

Цель урока: Дать представление о понятиях: ламинарное и турбулентное движение жидкости, линии тока, уравнение непрерывности уравнение Бернулли.

Задачи: образовательная: выявление связи теплового движения молекул и температуры тела, углубление представлений о них.

развивающая: развитие умений выделять главное, существенное в материале, искать связь между температурой и тепловым явлением

воспитательная: воспитание, аккуратности, бережного отношения к проборам.

Тип урока: изучение нового материала.

Методы: словастный, наглядный, практический.

Технологии: разноуровневая дифференциация.

Форма проведения: фронтальная.

Оборудование: картинки, фотографии.

Методическое обеспечение: мультимедийный проектор.

Ход урока

II Домашнее задание.

III Изучение нового материала.

IV Закрепление пройденного материала.

Обеспечить благоприятную обстановку на уроке, психологически подготовить учащихся к обучению.

П 2.8 (вопросы для самоконтроля).

Записать число и тему урока «Движение жидкости. Уравнение Бернулли»

статистическое давление.

— плотность потенциальной энергии.

— плотность кинетической энергии.

Давление = сила / площадь опоры.

Давление в паскалях (Па)

Давление в жидкостях измеряют в атмосферах (1 атм.= при t=0, 760 мм.рт.ст = 105Па)

Домашнее задание.

Итоги урока.

Просмотр содержимого документа
«Презентация на тему: «Движение жидкости. Уравнение Бернулли».»

Движение жидкости. Уравнение Бернулли.

При небольших скоростях жидкость (газ) течет как бы разделенной на слои , которые скользят друг относительно друга не перемешиваясь. Такое течение называют ламинарным.

При увеличении скорости характер течения жидкости изменяется. Слои жидкости начинают беспорядочно перемешиваться , возникают завихрения. Такое течение называют турбулентным.

Через все сечения трубы проходят одинаковые объемы жидкости V 1 = V 2 = V 3 =…..V n

Скорость течения жидкости в трубе переменного сечения обратно пропорциональна площади поперечного сечения трубы.

Давление жидкости, текущей в трубе , больше в тех частях трубы , где скорость её движения меньше , и наоборот.

Сумма давления и плотностей кинетической и потенциальной энергий при стационарном течении идеальной жидкости остается постоянной для любого сечения потока.

Даниил родился в Гронингене (Голландия) 29 января (8 февраля) 1700, где его отец тогда преподавал математику в университете. С юных лет увлёкся математикой, вначале учился у отца и брата Николая, параллельно изучая медицину. После возвращения в Швейцарию подружился с Эйлером.

1725: вместе с братом Николаем уезжает по приглашению в Петербург, где по императорскому указу учреждена Петербургская академия наук.

1738: как результат многолетних трудов выходит фундаментальный труд «Гидродинамика». Среди прочего там основополагающий «закон Бернулли». Дифференциальных уравнений движения жидкости в книге ещё нет (их установил Эйлер в 1750-е годы).

1750: перешёл на кафедру физики Базельского университета, где и трудился до кончины в 1782 году. Дважды был избран ректором. Умер за рабочим столом весной 1782 года

Физик-универсал, он основательно обогатил кинетическую теорию газов, гидродинамику и аэродинамику, теорию упругости и т. д. Он первый выступил с утверждением, что причиной давления газа является тепловое движение молекул. В своей классической «Гидродинамике» он вывел уравнение стационарного течения несжимаемой жидкости (уравнение Бернулли), лежащее в основе динамики жидкостей и газов. С точки зрения молекулярной теории он объяснил закон Бойля-Мариотта.

Бернулли принадлежит одна из первых формулировок закона сохранения энергии (живой силы, как тогда говорили), а также (одновременно с Эйлером) первая формулировка закона сохранения момента количества движения (1746). Он много лет изучал и математически моделировал упругие колебания, ввёл понятие гармонического колебания, дал принцип суперпозиции колебаний


источники:

http://infourok.ru/uravnenie-bernulli-dlya-idealnoj-zhidkosti-4683760.html

http://kopilkaurokov.ru/fizika/presentacii/priezientatsiia-na-tiemu-dvizhieniie-zhidkosti-uravnieniie-biernulli