Уравнение бернулли для струйки газа

Тема 3. Кинематика и динамика жидкостей и газов, Лекция 11. Уравнение Бернулли и следствия из него

Тема 3. Кинематика и динамика жидкостей и газов

Лекция 11. Уравнение Бернулли и следствия из него

1. Основные положения гидродинамики. Уравнение неразрывности струи.

2. Уравнение Бернулли.

3. Истечение жидкости из отверстия. Принцип реактивного движения.

ОТВОДИМОЕ ВРЕМЯ: 2 часа.

1. Суханов курс физики. — М.: 1996.

2. Савельев общей физики. Том 1. — M: — Наука, 1996. § 72,73,74.

3. Трофимова физики. – М.: Высшая школа, 1999. § 28,29,30.

4. , Детлаф по физике. — М.: Наука, 1996. Отдел III.

Современные летательные аппараты способны выполнять саше разнообразные задачи и осуществлять полет в различных физических условиях. Физическими условиями полета называется совокупность фи­зических свойств атмосферы и физических явлений, возникающих во время полета летательных аппаратов. Физические условия полета оп­ределяются, в первую очередь, назначением летательного аппарата и могут значительно, а порой и быстро, изменяться в процессе полета. Ярким примером являются пилотируемые космические корабли многора­зового использования, способные осуществлять полет как в околозем­ном космическом пространстве, т. е. в практически безвоздушном пространстве, так и в нижних плотных слоях атмосферы.

В безвоздушном пространстве полет летательных аппаратов осно­ван на реактивном принципе движения, т. е. на законах движения тел с переменной массой, вытекающих из основных законов динамики поступательного движения твердых тел.

Полет летательных аппаратов в воздушной среде подчиняется за­конам аэродинамики, начало которой положено трудами русского уче­ного () и его ученика . В основе аэродинамики, как науки, лежит гидродинамика — физическая теория движения несжимаемых жидкостей с твердыми телами.

Основные положения и выводы гидродинамики применимы не только к жидкостям, но и к газам в том случае, когда сжимаемостью их мож­но пренебречь. Соответствующие расчеты показывают, что при движе­нии жидкостей и газов со скоростями меньшими скорости звука, их с достаточной степенью точности можно считать несжимаемыми. Следова­тельно, движение твердых тел, в том числе летательных аппаратов, в воздушной среде при указанных Скоростях подчиняется законам гидро­динамики.

Для выяснения физической сущности процессов, определяющих по­лет летательных аппаратов, необходимо уяснить основные положения гидродинамики.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ ГИДРОДИНАМИКИ. УРАВНЕНИЕ НЕРАЗРЫВНОСТИ СТРУИ

Движение жидкостей называется течением, а совокупность частиц движущейся жидкости потоком. Графически движение жидкостей изображается с помощью линий, которые проводятся так, что касательные к ним совпадают по направлению с вектором скорости жидкости в соответствующих точках пространства (рис. 1).

Линии тока проводятся так, чтобы густота их, характеризуемая отношением числа линий к площади перпендикулярной им площадки, через которую они проходят, была больше там, где больше скорость течения жидкости, и меньше там, где жидкость течет медленнее. Таким образом, по картине линий тока можно судить о направлении и модуле скорости в разных точках пространства, т. е. можно определить состояние движения жидкости. Линии тока в жидкости можно «проявить», например, подмешав в нее какие-либо заметные взвешенные частицы.

Часть жидкости, ограниченную линиями тока, называют трубкой тока.

Течение жидкости называется установившимся (или стационарным), если форма и расположение линий тока, а также значения скоростей в каждой ее точке со временем не изменяются.

Рассмотрим какую-либо трубку тока. Выберем два ее сечения S1 и S2, перпендикулярные направлению скорости (рис. 2).

За время Δt через сечение S проходит объем жидкости SvΔt; следовательно, за 1с через S1 пройдет объем жидкости S1v1, где v1 — скорость течения жидкости в месте сечения S1. Через сечение S2 за 1с пройдет объем жидкости S2v2, где v2 — скорость жидкости в месте сечения S2. Здесь предполагается, что скорость жидкости в сечении постоянна. Если жидкость несжимаема (ρ=const), то через сечение S2 пройдет такой же объем жидкости, как и через сечение S1, т. е.

Следовательно, произведение скорости течения несжимаемой жидкости на поперечное сечение трубки тока есть величина постоянная для данной трубки тока. Соотношение 1 называется уравнением неразрывности для несжимаемой жидкости.

2. УРАВНЕНИЕ БЕРНУЛЛИ

Выделим в стационарно текущей идеальной жидкости (физическая абстракция, т. е. воображаемая жидкость, в которой отсутствуют силы внутреннего трения) трубку тока, ограниченную сечениями S1 и S2, по которой слева направо течет жидкость (рис. 3).

Пусть в месте сечения S1 скорость течения v1 давление Р1 и высота, на которой это сечение расположено, h1. Аналогично, в месте сечения S2 скорость течения v2, давление Р2 и высота сечения h2. За малый промежуток времени Δt жидкость перемещается от сечения S1 к сечению S’1, от S2 к S’2.

Согласно закону сохранения энергии, изменение полной энергии E2-E1 идеальной несжимаемой жидкости должно быть равно работе А внешних сил по перемещению массы жидкости:

где E1 и Е2 — полные энергии жидкости массой m в местах сечений S1 и S2 соответственно.

С другой стороны, А — это работа, совершаемая при перемещении всей жидкости, заключенной между сечениями S1 и S2, за рассматриваемый малый промежуток времени Δt. Для перенесения массы m от S1 до S’1 жидкость должна переместиться на расстояние l1 =v1 Δt и от S2 до S’2 — на расстояние l2 =v2 Δt. Отметим, что 11 и 12 настолько малы, что всем точкам объемов, закрашенных на рис. 3, приписывают постоянные значения скорости v, давления Р и высоты h. Следовательно,

где F1=P1S1 и F2=-P2S2 (отрицательна, так как направлена в сторону, противоположную течению жидкости; рис. 3).

Полные энергии Е1 и Е2 будут складываться из кинетической и потенциальной энергий массы m жидкости:

(4)

(5)

Подставляя (4) и (5) в (2) и приравнивая (2) и (3), получим

(6)

Согласно уравнению неразрывности струи для несжимаемой жидкости (1), объем, занимаемый жидкостью, остается постоянным, т. е.

Разделив выражение (6) на , получим

,

где ρ — плотность жидкости. Но так как сечения выбирались произвольно, то можем записать

=const. (7)

Выражение (7) выведено швейцарским физиком Д. Бернулли (1700—1782; опубликовано в 1738 г.) и называется уравнением Бернулли. Как видно из его вывода, уравнение Бернулли — выражение закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Оно хорошо выполняется и для реальныхжидкостей, внутреннее трение которых не очень велико.

Величина Р в формуле (7) называется статическим давлением (давление жидкости поверхность обтекаемого ею тела), величина динамическим давлением. Величина представляет собой гидростатическое давление.

Для горизонтальной трубки тока (h1=h2) выражение (7) принимает вид

=const, (8)

называется полным давлением.

Из уравнения Бернулли (8) для горизонтальной трубки тока и уравнения неразрывности (1) следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а статическое давление больше в более широких местах, т. е. там, где скорость меньше. Это можно продемонстрировать, установив вдоль трубы ряд манометров (рис. 4).

В соответствии с уравнением Бернулли опыт показывает, что в манометрической трубке В, прикрепленной к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С, прикрепленных к широкой части трубы.

Так как динамическое давление связано со скоростью движения жидкости (газа), то уравнение Бернулли позволяет измерять скорость потока жидкости. Для этого применяется трубка Пито — Прандтля (рис. 5).

Прибор состоит из двух изогнутых под прямым углом трубок, противоположные концы которых присоединены к манометру. I помощью одной из трубок измеряется полное давление (Р0), с помощью другой — статическое (Р). Манометром измеряют разность давлений:

, (9)

где — плотность жидкости в манометре. С другой стороны, согласно уравнению Бернулли, разность полного и статического давлений равна динамическому давлению:

(10)

Из формул (9) и (10) получаем искомую скорость потока жидкости:

Уменьшение статического давления в точках, где скорость потока больше, положено в основу работы водоструйного насоса (рис. 6).

Струя воды подается в трубку, открытую в атмосферу, так что давление на выходе из трубки равно атмосферному. В трубке имеется сужение, по которому вода течет с большей скоростью. В этом месте давление меньше атмосферного. Это давление устанавливается и в откачанном сосуде, который связан с трубкой через разрыв, имеющийся в ее узкой части. Воздух увлекается вытекающей с большой скоростью водой из узкого конца. Таким образом, можно откачивать воздух из сосуда до давления 100 мм рт. ст. (1 мм рт. ст.= 133,32 Па).

Уравнение Бернулли позволяет описать физические явления лежащие в основе работы целого ряда устройств и приборов: карбюратор, пульверизатор (рис. 7) и др.

3. ИСТЕЧЕНИЕ ЖИДКОСТИ ИЗ ОТВЕРСТИЯ. ПРИНЦИП РЕАКТИВНОГО ДВИЖЕНИЯ

Уравнение Бернулли используется для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жидкостью, в боковой стенке которого на некоторой глубине ниже уровня жидкости имеется маленькое отверстие (рис. 8).

Рассмотрим два сечения (на уровне h1 свободной поверхности жидкости в сосуде и на уровне h2 выхода ее из отверстия) и напишем уравнение Бернулли:

Так как давления Р1 и Р2 в жидкости на уровнях первого и второго сечений равны атмосферному, т. е. Р1=Р2 , то уравнение будет иметь вид

.

Из уравнения неразрывности (1) следует, что v1/v2 = S1/S2, где S1 и S2 — площади поперечных сечений сосуда и отверстия. Если S1>>S2, то членом можно пренебречь и

(11)

Это выражение получило название формулы Торричелли (Э. Торричелли (1608 – 1647) – итальянский физик и математик.

Итак, скорость истечения жидкости из отверстия, расположенного на глубине h под открытой поверхностью, совпадает со скоростью, которую приобретает любое тело, падая с высоты h. Следует помнить, что этот результат получен в предположении, что жидкость идеальна. Для реальных жидкостей скорость истечения будет меньше, причем тем сильнее отличается от значения (11), чем больше вязкость жидкости.

Струя жидкости, вытекающая из отверстия в сосуде (рис. 9), уносит с собой за время Δt импульс (— плотность жидкости, S — площадь отверстия, v — скорость истечения струи).

Этот импульс сообщается вытекающей жидкости сосудом. По третьему закону Ньютона сосуд получает, от вытекающей жидкости за время Δt импульс, равный — , т. е. испытывает действие силы

(12)

Эта сила называется реакцией вытекающей струи. Если сосуд поставить на тележку, то под действием силы Fr он придет в движение в направлении, противоположном направлению струи.

Найдем значение силы Fr, воспользовавшись выражением (11) для скорости истечения жидкости из отверстия:

(13)

Если бы, как это может показаться на первый взгляд, сила Fr совпадала по величине с силой гидростатического давления, которое жидкость оказывала бы на пробку, закрывающую отверстие, то Fr была бы равна . На самом деле сила Fr оказывается в 2 раза большей. Это объясняется тем, что возникающее при вытекании струи движение жидкости в сосуде приводит к перераспределению давления, причем давление вблизи стенки, лежащей против отверстия, оказывается несколько большим, чем вблизи стенки, в которой сделано отверстие.

На реакции вытекающей струи газа основано действие реактивных двигателей и ракет. Реактивное движение, не нуждаясь для своего осуществления в наличии атмосферы, используется для полетов в космическом пространстве.

Основоположником теории межпланетных сообщений является выдающийся русский ученый и изобретатель (1857—1935). Он дал теорию полета ракеты и обосновал возможность применения реактивных аппаратов для межпланетных сообщений. В частности, Циолковским была разработана теория движения составных ракет, в которых каждая последующая ступень вступает в действие после того, как предыдущая ступень, израсходовав полностью топливо, отделится от ракеты. Идеи Циолковского получили дальнейшее развитие и были осуществлены учеными и инженерами для освоения космического пространства.

1 Динамика жидкости и газа Лекционный материал

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Уравнение Бернулли для газа

Рассмотрим поток газа, проходящий по трубопроводу переменно­го се­че­ния (рис. 27). В первом сечении приведённое полное давление ра­вно p пр.п1 . При прохождении по трубе часть p пр.п1 необратимо потеря­ется из-за проявле­ния сил внутреннего трения газа и во втором сечении энергетиче­ская хара­к­теристика уменьшится до p пр.п2 на величину потерь давле­ния D p пот .

Уравнение Бeрнулли для газа в простейшем виде записы­вается так:

p пр.п1 = p пр.п2 + D p пот ,

то есть это уравнение для двух сечений потока в направлении его движения, выраженное через приведённые полные давления и отражающее закон со­хра­нения энергии (часть энергии переходит в потери) при движении газа.

Уравнение Бeрнулли в традиционной записи получим, если в по­следнем ра­венстве раскроем значения приведённых полных давлений p пр.п1 и p пр.п2 :

.

Энергетический смысл уравнения Бeрнулли для газа заключается в том, что оно отражает закон сохранения энергии, а геометрический не рассматривается, так как величины в нём выражаются в единицах дав­ления ( Па ), а не на­пора ( м ).

Разность давлений и потери давления

Особенности терминов «разность давлений» и «поте­ри давле­ния » поясним на примерах.

Движение газа происходит только при наличии разности приве­дённых полных давлений

p пр = p пр.п1 — p пр.п2

от точки с большим давлением p пр.п1 к точке с ме­ньшим p пр.п2 . Например, это является условием работы систем естественной вентиляции зданий: для удаления воз­духа из помещения давление p пр.п внутри должно быть боль­ше, чем снару­жи.

Потери давления p пот отражают потерю полной энергии потока при движении газа. Например, чем длиннее воздуховод, меньше его про­ходное сечение, шероховатее его стенки, тем больше будут потери давления в системе вентиляции, что может ухудшить удаление несвежего воздуха из помещений. В покоящемся газе никаких потерь давле­ния нет.

При установившемся движении газа разность давлений равна потерям давления:

p пр = p пот ,

что является уравнением Бернулли в простейшей записи.

Таким образом, «разность давлений » является причиной движения газа, а «потери давления »- следствием. При движении газа они чис­ленно равны. Измеряются они в одних и тех же единицах СИ: паскалях ( Па ).

Два режима движения жидкости (газа) .

Исследование вопроса о механизме движения жидкости (газа) показывает, что в природе существуют два вида (режима) движения жидкости: во-первых, слоистое, упорядоченное или ламинарное движение, при котором отдельные слои жидкости скользят друг относительно друга, не смешиваясь между собой, и, во-вторых, неупорядоченное или турбулентное движение, при котором частицы жидкости движутся по сложным, постоянно меняющимся траекториям и в потоке происходит интенсивное перемешивание микро- и макромасс жидкости. Основной особенностью турбулентного режима течения является наличие поперечных к основному направлению движения составляющих скоростей, накладывающихся на основную скорость в продольном направлении.

Выяснению условий существования ламинарного или турбулентного режима течения жидкости, влияния физических характеристик жидкости на переход из одного режима в другой были посвящены опыты Рейнольдса.

Рейнольдс установил, что основными факторами, определяющими характер режима, являются: средняя скорость движения жидкости , диаметр трубопровода , плотность жидкости , абсолютная вязкость , а переход от ламинарного режима к турбулентному происходит при определенной скорости – критической скорости, различной для труб разных диаметров и возрастающей с увеличением вязкости жидкости и уменьшающейся с уменьшением диаметра трубы.

Для характеристики режима движения жидкости Рейнольдсом был выведен безразмерный параметр , учитывающий влияние перечисленных выше факторов и называемый числом (критерием) Рейнольдса

(1.53)

Так как отношение где — коэффициент кинематической вязкости жидкости (газа), то выражение (1.52) можно записать в виде

(1.54)

Границы существования того или иного режима движения жидкости определяются двумя критическими значениями числа Рейнольдса: нижним критическим числом и верхним критическим числом . При значениях чисел Рейнольдса возможен только ламинарный режим, а при — только турбулентный режим; при наблюдается неустойчивое состояние потока. Таким образом, для определения режима течения необходимо в каждом случае вычислять по выражению (1.53 или 1.54) число Рейнольдса и сопоставлять его с критическим значением.

В опытах самого Рейнольдса значение были следующие: . Последующие эксперименты показали, что критические числа Рейнольдса не являются вполне постоянной величиной и что при определенных условиях неустойчивая зона может быть значительно шире. В настоящее время при практических расчетах принято исходить из одного значения критического числа Рейнольдса, равного , считая, что при всегда имеет место ламинарный режим, а при – всегда турбулентный. При этом движение в неустойчивой зоне исключается из рассмотрения, что приводит к некоторому запасу и большей надежности при гидравлических расчетах в том случае, если в этой зоне в действительности имеет место ламинарный режим течения.

Проведенные исследования особенностей различных режимов движения жидкости показывают, что одновременно с переходом от ламинарного режима к турбулентному изменяется характер распределения скоростей по поперечному сечению потока, а также зависимость потерь энергии (напора). Установлено, что для ламинарного режима характерен параболический закон распределения скоростей по поперечному сечению: скорость жидкости равна нулю непосредственно у стенок трубопровода, а при удалении от них плавно и непрерывно возрастает, достигая максимума на оси трубопровода (рис.3а).

Рисунок 3. Характер распределения скоростей по перечному сечению потока при ламинарном (а) и турбулентном (б) режиме движения.

Турбулентному режиму движения присущ более сложный закон распределения скоростей по поперечному сечению: в пределах большей части поперечного сечения скорость весьма незначительно отличается от максимального значения на оси трубопровода, но при этом начинает резко падать вблизи стенок трубопровода (рис.3б).

Причиной такого более равномерного закона распределения скоростей при турбулентном режиме является наличие поперечных составляющих скоростей частиц жидкости. В результате этого частицы жидкости с большими скоростями на оси потока и с меньшими скоростями на удалении от оси непрерывно сталкиваются, что приводит к выравниванию их скоростей. В тоже время вблизи стенок трубопровода такое взаимное перемещение частиц друг относительно другу нейтрализуется наличием твердой границы (стенки трубопровода), что и обуславливает более интенсивное падение скорости жидкости.

Если обеспечить протекание жидкости по трубопроводу с различной скоростью и замерить при этом величину потерь напора, то графическая зависимость будет иметь следующий вид (рис.4).

Уравнение Бернулли для сжимаемого газа

Уравнения аэродинамики больших скоростей

Уравнение Бернулли для сжимаемого газа

Рассмотрим идеальное течение газа без вязкости. Кроме того, будем считать газ легким, следовательно, в нем будут отсутствовать массовые силы.

В потоке газа выделим элементарную струйку, ограниченную трубкой тока (рис.1.1). Здесь нужно вспомнить эти понятия основ аэродинамики и динамики полета.

Линия тока – кривая в потоке газа, в каждой точке которой вектор скорости в данный момент времени направлен по касательной.

Трубка тока – поверхность, образованная линиями тока, проведенными через все точки произвольного замкнутого контура площадью dS. Трубка тока считается непроницаемой для воздушных частиц.

Элементарная струйка – часть потока газа, ограниченная трубкой тока.

В связи с этим можно считать, что поток газа состоит из совокупности элементарных струек.

Рис.1.1 Элементарная струйка в потоке газа

Запишем для элементарной струйки 2-ой закон Ньютона

, (1.1)

который показывает, что произведение массы (газа) на ускорение равно сумме всех сил, действующих на тело (в данном случае – элементарную струйку). Проведем анализ данного уравнения (рис.1.2).

Рис.1.2 К выводу уравнения Бернулли для потока сжимаемого газа

В правой части уравнения (1.1) на элементарную струйку действуют силы давления по площадкам dS1, и dS2 , которые можно считать равными

.

По боковым поверхностям элементарной струйки силами давления пренебрегаем, так как они взаимно уравновешиваются. Силами трения (идеальный газ) и силами тяжести (легкий газ) также пренебрегаем.

или учитывая

,

.

Учитывая и сокращая на dS, имеем

. Перенося – dp в левую часть уравнения, и разделив обе части уравнения на , получим

. (1.2)

Внося скорость V под знак дифференциала, получим

. (1.3)

Уравнения (1.2) и (1.3) являются двумя формами записи уравнения Бернулли для газа в дифференциальном виде. Вспомним, что в основе уравнения Бернулли лежит закон сохранения энергии.

Современные магистральные ВС (Ту-204, Airbus A320 и др.) летают с достаточно большими скоростями. При числах Маха М>0,4 плотность газа начинает изменяться, и движение газа уже нельзя считать движением несжимаемой жидкости.

Чтобы найти конечные величины p и V или связь между этими параметрами в дифференциальном уравнении Бернулли, необходимо проинтегрировать уравнение (1.3)

. (1.4)

Для сжимаемого течения зависимость между p и r (без определения которой нельзя выполнить интегрирование) имеет вид

Для изоэнтропного (энтропия S не меняется), энергоизолированного (над газом не совершается работа) течения вместо показателя политропы n можно подставить k, и тогда интегрирование уравнения (1.4) можно выполнить.

В случае сжимаемого газа, когда плотность газа уже непостоянна, уравнение (1.4) после интегрирования преобразуется к виду

(1.5)

где k – постоянная изоэнтропы (адиабаты) и для воздуха равна 1,4.

Это и есть уравнение Бернулли для потока сжимаемого газа.

Величина в формуле (1.5) учитывает влияние сжимаемости. Для газа как несжимаемой жидкости при М

ПВД измеряют скоростной напор набегающего потока

. (1.7)

Здесь q – скоростной напор,

Dp – перепад давления или разность между полным и статическим давлением,

r – плотность воздуха на данной высоте,

V – скорость воздушного потока.

Однако указатель скорости измеряет не саму скорость, а скоростной напор . Поскольку при изменении высоты и скорости существенно изменяется плотность r, что происходит при полете магистральных ВС, то при измерении скорости полета возникают погрешности.

Воздушная (истинная) скорость полета V не совпадает с той скоростью, которую показывает прибор, т.к. на ПВД оказывает влияние создаваемые самолетом возмущения, а также сжимаемость воздуха. Кроме того, величина воздушной скорости зависит от инструментальной и других поправок.

Градуировка приборов для измерения скорости соответствует лишь полету у земли, когда Н = 0, а (или 1,225 ). При наборе высоты плотность падает и r

Индикаторная скорость в аэродинамике – это идеальная скорость, которую показывает прибор с учетом всех поправок.


источники:

http://gigabaza.ru/doc/195694-p3.html

http://lektsii.org/11-11611.html