Уравнение бернулли идеальной жидкости потока

Уравнение бернулли идеальной жидкости потока

ФГБОУ ВО Ставропольский государственный аграрный университет

Россия, г. Ставрополь

Аннотация: в данной статье мы рассмотрим применение уравнения Бернулли в гидродинамики, подробно рассмотрим вывод уравнения Бернулли для потока идеальной жидкости и для потока реальной жидкости.

Основным уравнением гидродинамики считается полученное в 1738 году уравнение Даниила Бернулли. Данное выражение демонстрирует закон сохранения энергии движущейся жидкости и создает взаимосвязь между средней скоростью υ, давлением P, и пьезометрической высотой z в разных сечениях потока. Многие задачи решаются с помощью этого уравнения.

Ключевые слова: уравнение Бернулли, жидкость, сечение, трубка Пито, энергия.

Рассмотрим трубопровод изменчивого диаметра, который расположен в пространстве под углом β (рис.1).

На данном участке трубопровода подберем произвольно два сечения: сечение 1-1 и сечение 2-2. От первого сечения ко второму ввысь по трубопроводу перемещается жидкость, расход которой равен Q.

Для того, что бы измерить давление жидкости применяются пьезометры — стеклянные трубки с тонкими стенками, в таких трубках жидкость поднимается на высоту .Уровень жидкости в пьезометрах, установленных в каждом из сечений, поднимается на разную высоту.

Рис.1 к выводу уравнения Бернулли для идеальной жидкости

Так же в сечениях 1-1 и 2-2 установлена трубка с загнутым концом. Этот конец направлен навстречу потоку жидкости. Эти трубки получили название трубки Пито. Если мы будем отсчитывать от пьезометрической линии, то жидкость в таких трубках поднимется на разные уровни. Построим пьезометрический отрезок следующим способом: если между заданными сечениями поставить пару подобных пьезометров и провести в них кривую через показания уровней жидкости, то мы получим зигзагообразную линию (рис.1).

Относительно произвольной прямой 0-0, проходящей горизонтально, высота уровней в трубках Пито остается постоянной. Эту прямую назовем плоскостью сечения.

Уровень полной энергии трубопровода показывает горизонтальная линия, которая проведена, через показания уровней жидкости в трубках Пито.

Для сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли запишем в виде:

Так как два сечения подобранны произвольно, то полученное уравнение запишем иначе:

Данное уравнение можно прочесть следующим образом: сумма трех членов уравнения Бернулли для любого сечения потока идеальной жидкости есть величина постоянная. Если рассматривать это уравнение с энергетической точки зрения, то каждый член представляет собой некоторый вид энергии:

z1 и z2 — удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2;

и — удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях;

и — удельные кинетические энергии в тех же сечениях.

Таким образом, опираясь на уравнение Бернулли, мы получим, что в любом сечении полная удельная энергия идеальной жидкости остается постоянной.

Уравнение Бернулли можно объяснить геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Смотря на рис.1 заметим, что z1 и z2 — геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; и — пьезометрические высоты; и — скоростные высоты в указанных сечениях 4.

В данном случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная.

Уравнение Бернулли для потока реальной жидкости и для потока идеальной жидкости немного различны, так как при движении реальной жидкости возникают силы трения, и что бы преодолеть эти силы жидкость тратит энергию. В результате полная удельная энергия жидкости в сечении 2-2 окажется меньше, чем в сечении 1-1, на величину потерянной энергии (рис.2)

Рис.2 к выводу уравнения Бернулли для реальной жидкости

Обозначим потерянную энергию (потерянный напор) за (имеет линейную размерность).

Запишем уравнение Бернулли для реальной жидкости в виде:

Из второго рисунка мы видим, что по мере того, как жидкость движется от первого сечения ко второму потерянный напор (выделен штриховкой) во время всего пути увеличивается. В итоге, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между двумя сечениями 9.

Коэффициенты и , которые зависят от режима течения жидкости, для ламинарного режима , а для турбулентного режима , называются коэффициентами Кориолиса. Потерянная высота складывается из линейных потерь, вызванных силой трения между слоями жидкости, и потерь, вызванных местными сопротивлениями (изменениями конфигурации потока)

Рассмотрим пример решения задачи с помощью уравнения Бернулли.

В дождевальной установке вода подается сначала по трубе диаметром h 2 =40 мм, которая сужается до h 1 =24 мм. Статическое давление в широкой части трубы равно 250 кПа, скорость равна 14,4 м/с. Определить статическое давление в узкой части трубы. Плотность воды 10 3 кг/м 3 .

Запишем уравнение неразрывности:

;

Получим, что скорость в узкой части трубки будет равна:

Уравнение Бернулли в данной задаче будет иметь вид:

Из этого уравнения выразим статическое давление в узкой части трубы:

Теперь найдем значение этого давления:

Мы получили, что статическое давление в узкой части дождевальной установке равна .

Большая часть задач практической гидродинамики решается с помощью уравнения Бернулли. Для этого выбирают два сечения по длине потока жидкости, таким образом, чтобы для одного из них были известны величины: Р, ρ, g , а для другого сечения одна или две величины подлежали определению. При двух неизвестных для второго сечения используют уравнение постоянства расхода жидкости, которое имеет вид: υ1ω 1 = υ2ω2.

4. Герасимов Е.В., Кисюк В.А., Овсянников С.А. Перспективы утилизации тепловых потерь двигателя // В сборнике: Актуальные проблемы научно-технического прогресса в АПК VII Международная научно-практическая конференция в рамках XIX Международной агропромышленной выставки «Агроуниверсал — 2013». / Ставрополь. – 2013. – С. 69-73.

5. Герасимов Е.В., Кисюк В.А., Алексеенко В.А., Сидельников Д.А. Определение режимных и конструктивных параметров работы обезвоживающего устройства // В сборнике: Актуальные проблемы научно-технического прогресса в АПК Сборник научных статей XII Международной научно-практической конференции, в рамках XVIII Международной агропромышленной выставки «Агроуниверсал — 2016». / Ставрополь. – 2016. – С. 273-277.

6. Любая С.И., Стародубцева Г.П., Афанасьев М.А., Копылова О.С. Практикум для лабораторных работ по физике – Ставрополь, 2015.

Сведения об авторе:

Пантелова Елизавета Михайловна — студентка 2 курса электроэнергетического факультета СтГАУ

Кисюк Василий Адамович — к. с. х. н., доцент кафедры физики СтГАУ

Копылова Оксана Сергеевна — к. ф. м. н., доцент кафедры физики СтГАУ

Кузин Михаил Игоревич студент 4 курса электроэнергетического факультета СтГАУ

BERNOULLI’S EQUATION FOR IDEAL FLUID

Summary: in this article we will discuss the application of Bernoulli’s equation in fluid dynamics, a detailed look at the output of the Bernoulli’s equation for fluid flow and for the flow of a real fluid.

The basic equation of hydrodynamics is deemed to be received in 1738 Daniel Bernoulli equation. This expression demonstrates the law of conservation of energy of a moving fluid and creates a relationship between the average velocity υ, the pressure P, and the piezometric elevation z in the different sections of the stream. Many problems are solved using this equation.

Keywords: Bernoulli’s equation, liquid, section, Pitot’s tube, energy.

1. Afanasyeva V. S., Kopylova O. S., Afanasiev M. A., Kopylov V. B. Design of physics lessons in 8th grade on the topic: «Changing aggregate States of substances» taking into account GEF // Naukar. – 2014. – № 5 (25). – Pp. 2-9.

2. Afanasyev M. A., Gutsevich, A., Kisuk V. A., Hytov, K.-M. V., Yakuba, I. V. Design of the laboratory work on hydrostatic pressure // In book: Physical-technical problems of creation of new technologies in agroindustrial complex / Stavropol. – 2015. – S. 11-15.

3. Vecher O. V., Khashchenko A. A., Vorob’ev I. N., Afanasyev M. A., Theoretical analysis of rate of evaporation of liquid from the surface of section of two liquid phases // In the book: the Use of modern resource-saving innovative technologies in agriculture III international scientific-practical conference. / Stavropol. – 2013. – P. 29-31.

4. Gerasimov E. V., Kisuk V. A., Ovsyannikov S. A. Prospects of the use of thermal losses of the motor // In collection: Actual problems of scientific-technical progress in agriculture VII international scientific-practical conference in the framework of the XIX International agricultural exhibition «Agrouniversal — 2013». / Stavropol. – 2013. – P. 69-73.

5. Gerasimov E. V., Kisuk V. A., Alekseenko V. A., Sidelnikov D. A. Definition of operating and design parameters of the dewatering device // In collection: Actual problems of scientific-technical progress in agriculture the Collection of scientific articles of the XII International scientific-practical conference in the framework of the XVIII International agricultural exhibition «Agrouniversal — 2016». / Stavropol. – 2016. – Pp. 273-277.

6. Lybaya S. I., Starodubtseva G. P., Afanasyev M. A., Kopylova O. S. Practicum for laboratory works on physics – Stavropol, 2015.

7. Menshikov V. A., Khashchenko A. A., Afanasyev M. A. General description of the process of boiling liquid and its application in modern power system // proceedings: New technologies in agriculture and food industry with the use of electro-physical factors and ozone VII all-Russian scientific-practical conference. / Stavropol. – 2012. – P. 113-115.

8. Khainovskii V. I., Gorokhov A.V., Afanasyev M. A. Methods and accuracy of measurement of surface tension of liquids // In the book: Physical and technical problems of creation of new technologies in agriculture III Russian scientific-practical conference. / Stavropol. – 2005. – S. 227-232.

9. Khashchenko A. A., Menshikov A. V., Afanasyev M. A., Vorob’ev I. N. Experimental study of the value of a superheated layer of liquid at boiling // In the book: New technologies in agriculture and food industry with the use of electro-physical factors and ozone VII all-Russian scientific-practical conference. / Stavropol. – 2012. – S. 111-112.

10. Khashchenko A. A., Menshikov A. V., Afanasyev M. A., Pulia A. V., Korobov Y. A. Experimental study of the processes of evaporation and boiling of liquids // proceedings: New technologies in agriculture and food industry with the use of electro-physical factors and ozone VII all-Russian scientific-practical conference. / Stavropol. – 2012. – P. 108-111.

Уравнение бернулли идеальной жидкости потока

Гидродинамика — раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями.

Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.

Живым сечением ω (м²) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы — круг (рис.3.1, б); живое сечение клапана — кольцо с изменяющимся внутренним диаметром (рис.3.1, б).

Смоченный периметр χ («хи») — часть периметра живого сечения, ограниченное твердыми стенками (рис.3.2, выделен утолщенной линией).

Для круглой трубы

если угол в радианах, или

Расход потока Q — объем жидкости V, протекающей за единицу времени t через живое сечение ω.

Средняя скорость потока υ — скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω

Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

Гидравлический радиус потока R — отношение живого сечения к смоченному периметру

Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени

Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным

Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

Трубка тока — трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой.

Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное — течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.

Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением (рис.3.4). Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q1=Q2= const, откуда

Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:

Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P, средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач.

Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).

Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2. Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q.

Для измерения давления жидкости применяют пьезометры — тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту . В каждом сечении установлены пьезометры, в которых уровень жидкости поднимается на разные высоты.

Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито. Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии.

Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то мы получим ломаную линию (рис.3.5).

Однако высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0, называемой плоскостью сравнения, будет одинакова.

Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода.

Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:

Так как сечения 1-1 и 2-2 взяты произвольно, то полученное уравнение можно переписать иначе:

и прочитать так: сумма трех членов уравнения Бернулли для любого сечения потока идеальной жидкости есть величина постоянная.

С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:

z1 и z2 — удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2;
— удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях;
— удельные кинетические энергии в тех же сечениях.

Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна.

Уравнение Бернулли можно истолковать и чисто геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Глядя на рис.3.5, можно заметить, что z1 и z2 — геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; — пьезометрические высоты; — скоростные высоты в указанных сечениях.

В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная.

Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения

Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).

Потерянная энергия или потерянный напор обозначаются и имеют также линейную размерность.

Уравнение Бернулли для реальной жидкости будет иметь вид:

Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2.

Кроме этого в уравнении появились еще два коэффициента α1 и α2, которые называются коэффициентами Кориолиса и зависят от режима течения жидкости ( α = 2 для ламинарного режима, α = 1 для турбулентного режима ).

Потерянная высота складывается из линейных потерь, вызванных силой трения между слоями жидкости, и потерь, вызванных местными сопротивлениями (изменениями конфигурации потока)

Для измерения скорости в точках потока широко используется работающая на принципе уравнения Бернулли трубка Пито (рис.3.7), загнутый конец которой направлен навстречу потоку. Пусть требуется измерить скорость жидкости в какой-то точке потока. Поместив конец трубки в указанную точку и составив уравнение Бернулли для сечения 1-1 и сечения, проходящего на уровне жидкости в трубке Пито получим

где Н — столб жидкости в трубке Пито.

Для измерения расхода жидкости в трубопроводах часто используют расходомер Вентури, действие которого основано так же на принципе уравнения Бернулли. Расходомер Вентури состоит из двух конических насадков с цилиндрической вставкой между ними (рис.3.7). Если в сечениях I-I и II-II поставить пьезометры, то разность уровней в них будет зависеть от расхода жидкости, протекающей по трубе.

Пренебрегая потерями напора и считая z1 = z2 , напишем уравнение Бернулли для сечений I-I и II-II:

Выражение, стоящее перед , является постоянной величиной, носящей название постоянной водомера Вентури.

Из полученного уравнения видно, что h зависит от расхода Q. Часто эту зависимость строят в виде тарировочной кривой h от Q, которая имеет параболический характер.

Уравнение Бернулли

Уравнение Бернулли для струйки жидкости формулируется следующим образом: для элементарной струйки идеальной жидкости полная удельная энергия, т.е. сумма удельной энергии положения, удельной энергии давления и кинетической удельной энергии – есть величина постоянная во всех сечениях струйки.

Уравнение Бернулли выглядит так:

Подробное описание всех входящих в состав уравнения параметров уже описан в этой статье.

Содержание статьи

Смысл уравнения Бернулли

По существу вывода уравнение Бернулли для струйки идеальной жидкости представляет собой закон сохранения механической энергии, составленный применительно к единице массового расхода жидкости. Это следует из того, что в процессе вывода значения работы сил, приложенных к выделенному объему струйки и значения кинетической энергии этого объема были поделены на величину ρqΔT.

Отсюда вытекает, что поскольку член υ 2 /2 является мерой кинетической энергии единицы массы движущейся жидкости, то сумма членов gz+p/ρ будет мерилом ее потенциальной энергии.

В отношении величины gz это очевидно, ведь если частица жидкости массы m расположена на высоте z относительно некоторой плоскости и находится под действием сил тяжести, то способность ее совершить работу, т.е. её потенциальная энергия относительно этой плоскости равняется mgz. Но если её поделить на массу частиц m, то эта часть потенциальной энергии даст величину gz.

Для более ясного физического представления о том, что потенциальная энергия измеряется величиной p/ρ рассмотрим такую схему: пусть к трубе, заполненной жидкостью с избыточным давлением p, присоединен пьезометр, снабженный на входе в него краном.

Кран сначала закрыт, т.е. пьезометр свободен от жидкости, а элементарный объем жидкости ΔV массой ρ*ΔV перед краном находится под давлением p.

Если затем открыть кран, то жидкость в пьезометре поднимется на некоторую высоту, равную

Таким образом, единица массы, находящейся под давлением p, как бы несет в себе ещё заряд потенциальной энергии, определяемой величиной p/ρ.

В гидравлике для характеристики удельной энергии обычно используется понятие напор, под которым понимают энергию жидкости, отнесенную к единице силы тяжести, а не её массы. В соответствии с этим уравнение Бернулли записанное в начале этой статьи примет вид

Такое уравнение Бернулли для элементарной струйки идеальной жидкости в другой форме, весьма удобно для гидравлических расчетов и может быть сформулировано следующим образом.

Для элементарной струйки идеальной жидкости полный напор, т.е. сумма геометрического, пьезометрического и скоростного напоров, есть величина постоянная во всех её сечениях.

Отсюда следует, что между напором и удельной энергией существует очень простая зависимость

где э – удельная энергия

Уравнение Бернулли для элементарной струйки реальной жидкости

Если вместо идеальной жидкости рассматривать жидкость реальную, то уравнение Бернулли для реальной жидкости должно принять несколько другой вид.

При движении идеальной жидкости её полная удельная энергия или напор сохраняет постоянное значение по длине струйки, а при движении реальной жидкости эта энергия будет убывать по направлению движения. Причиной этого являются затраты энергии на преодоление сопротивлений движению, обусловленные внутренним трением в вязкой жидкости.

Если же мы рассмотрим два сечения для струйки идеальной жидкости: 1-1 в начале и 2-2 в конце струйки, то полная удельная энергия будет

Полная удельная энергия для сечения 1-1 всегда будет больше, чем полная удельная энергия для сечения 2-2 на некоторую величину потерь, и уравнение Бернулли в этом случае получается

Величина Э1-2 представляет собой меру энергии, потерянную единицей массы жидкости на преодоление сопротивлений при её движениями между указанными сечениями.

Соответствующий этой потере удельной энергии напор называют потерей напора между сечениями 1-1 и 2-2 и обозначают h1-2 . Поэтому уравнение Бернулли для элементарной струйки реальной жидкости можно представить в виде

Уравнение Бернулли для потока реальной жидкости

Уравнение Бернулли для струйки реальной жидкости это еще только половина дела, ведь в при решении различных практических вопросов о движении жидкостей приходится иметь дело с потоками конечных размеров. Уравнение Бернулли в этом случае может быть получено, исходя из рассмотрения потока как совокупности множества элементарных струек.

Учитывая, что все струйки движутся с одной и той же средней скоростью форма записи уравнения Бернулли для потока идеальной жидкости становится идентичной его записи для элементарной струйки.

В таком виде уравнение Бернулли обычно и применяется при решении практических задач для потоков однородной несжимаемой жидкости при установившемся движении, происходящем под действием одной силы тяжести.

Такое уравнение составляется для различных живых сечений потока, вблизи которых движение жидкости должно удовлетворять условиям медленно изменяющегося движения, хотя на пути между этими сечениями движение может и не удовлетворять указанным условиям.

Слагаемое h1-2 в этом уравнении показывает потери напора на преодоление сопротивлений движению жидкости. При этом в гидравлике различают два основных вида сопротивлений:
— hлп — линейные потери — сопротивления, проявляющиеся по всей длине потока, обусловленные силами трения частиц жидкости друг о друга и о стенки, ограничивающие поток.
— hмп — местные потери – местные сопротивления, обусловленные различного рода препятствиями, устанавливаемыми в потоке (задвижка, кран, колено), приводящими к изменениям величины или направления скорости течения жидкости

Поэтому полная потеря напора между двумя сечениями потока при наличии сопротивлений обоих видов будет

Видео по теме

Уравнение Бернулли подходит и для газов. Явление уменьшения давления при повышении скорости потока является основой работы различных приборов для измерения расхода. Закон Бернулли справедлив и для жидкостей вязкость которых равна нулю. При описании течения таких жидкостей используют уравнение Бернулли с добавлением слагаемых учитывающих потери на местные сопротивления.


источники:

http://gidravl.narod.ru/osnovdin.html

http://www.nektonnasos.ru/article/gidravlika/uravnenie-bernulli/