Уравнение бернулли следствия из него кратко

Тема 3. Кинематика и динамика жидкостей и газов, Лекция 11. Уравнение Бернулли и следствия из него

Тема 3. Кинематика и динамика жидкостей и газов

Лекция 11. Уравнение Бернулли и следствия из него

1. Основные положения гидродинамики. Уравнение неразрывности струи.

2. Уравнение Бернулли.

3. Истечение жидкости из отверстия. Принцип реактивного движения.

ОТВОДИМОЕ ВРЕМЯ: 2 часа.

1. Суханов курс физики. — М.: 1996.

2. Савельев общей физики. Том 1. — M: — Наука, 1996. § 72,73,74.

3. Трофимова физики. – М.: Высшая школа, 1999. § 28,29,30.

4. , Детлаф по физике. — М.: Наука, 1996. Отдел III.

Современные летательные аппараты способны выполнять саше разнообразные задачи и осуществлять полет в различных физических условиях. Физическими условиями полета называется совокупность фи­зических свойств атмосферы и физических явлений, возникающих во время полета летательных аппаратов. Физические условия полета оп­ределяются, в первую очередь, назначением летательного аппарата и могут значительно, а порой и быстро, изменяться в процессе полета. Ярким примером являются пилотируемые космические корабли многора­зового использования, способные осуществлять полет как в околозем­ном космическом пространстве, т. е. в практически безвоздушном пространстве, так и в нижних плотных слоях атмосферы.

В безвоздушном пространстве полет летательных аппаратов осно­ван на реактивном принципе движения, т. е. на законах движения тел с переменной массой, вытекающих из основных законов динамики поступательного движения твердых тел.

Полет летательных аппаратов в воздушной среде подчиняется за­конам аэродинамики, начало которой положено трудами русского уче­ного () и его ученика . В основе аэродинамики, как науки, лежит гидродинамика — физическая теория движения несжимаемых жидкостей с твердыми телами.

Основные положения и выводы гидродинамики применимы не только к жидкостям, но и к газам в том случае, когда сжимаемостью их мож­но пренебречь. Соответствующие расчеты показывают, что при движе­нии жидкостей и газов со скоростями меньшими скорости звука, их с достаточной степенью точности можно считать несжимаемыми. Следова­тельно, движение твердых тел, в том числе летательных аппаратов, в воздушной среде при указанных Скоростях подчиняется законам гидро­динамики.

Для выяснения физической сущности процессов, определяющих по­лет летательных аппаратов, необходимо уяснить основные положения гидродинамики.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ ГИДРОДИНАМИКИ. УРАВНЕНИЕ НЕРАЗРЫВНОСТИ СТРУИ

Движение жидкостей называется течением, а совокупность частиц движущейся жидкости потоком. Графически движение жидкостей изображается с помощью линий, которые проводятся так, что касательные к ним совпадают по направлению с вектором скорости жидкости в соответствующих точках пространства (рис. 1).

Линии тока проводятся так, чтобы густота их, характеризуемая отношением числа линий к площади перпендикулярной им площадки, через которую они проходят, была больше там, где больше скорость течения жидкости, и меньше там, где жидкость течет медленнее. Таким образом, по картине линий тока можно судить о направлении и модуле скорости в разных точках пространства, т. е. можно определить состояние движения жидкости. Линии тока в жидкости можно «проявить», например, подмешав в нее какие-либо заметные взвешенные частицы.

Часть жидкости, ограниченную линиями тока, называют трубкой тока.

Течение жидкости называется установившимся (или стационарным), если форма и расположение линий тока, а также значения скоростей в каждой ее точке со временем не изменяются.

Рассмотрим какую-либо трубку тока. Выберем два ее сечения S1 и S2, перпендикулярные направлению скорости (рис. 2).

За время Δt через сечение S проходит объем жидкости SvΔt; следовательно, за 1с через S1 пройдет объем жидкости S1v1, где v1 — скорость течения жидкости в месте сечения S1. Через сечение S2 за 1с пройдет объем жидкости S2v2, где v2 — скорость жидкости в месте сечения S2. Здесь предполагается, что скорость жидкости в сечении постоянна. Если жидкость несжимаема (ρ=const), то через сечение S2 пройдет такой же объем жидкости, как и через сечение S1, т. е.

Следовательно, произведение скорости течения несжимаемой жидкости на поперечное сечение трубки тока есть величина постоянная для данной трубки тока. Соотношение 1 называется уравнением неразрывности для несжимаемой жидкости.

2. УРАВНЕНИЕ БЕРНУЛЛИ

Выделим в стационарно текущей идеальной жидкости (физическая абстракция, т. е. воображаемая жидкость, в которой отсутствуют силы внутреннего трения) трубку тока, ограниченную сечениями S1 и S2, по которой слева направо течет жидкость (рис. 3).

Пусть в месте сечения S1 скорость течения v1 давление Р1 и высота, на которой это сечение расположено, h1. Аналогично, в месте сечения S2 скорость течения v2, давление Р2 и высота сечения h2. За малый промежуток времени Δt жидкость перемещается от сечения S1 к сечению S’1, от S2 к S’2.

Согласно закону сохранения энергии, изменение полной энергии E2-E1 идеальной несжимаемой жидкости должно быть равно работе А внешних сил по перемещению массы жидкости:

где E1 и Е2 — полные энергии жидкости массой m в местах сечений S1 и S2 соответственно.

С другой стороны, А — это работа, совершаемая при перемещении всей жидкости, заключенной между сечениями S1 и S2, за рассматриваемый малый промежуток времени Δt. Для перенесения массы m от S1 до S’1 жидкость должна переместиться на расстояние l1 =v1 Δt и от S2 до S’2 — на расстояние l2 =v2 Δt. Отметим, что 11 и 12 настолько малы, что всем точкам объемов, закрашенных на рис. 3, приписывают постоянные значения скорости v, давления Р и высоты h. Следовательно,

где F1=P1S1 и F2=-P2S2 (отрицательна, так как направлена в сторону, противоположную течению жидкости; рис. 3).

Полные энергии Е1 и Е2 будут складываться из кинетической и потенциальной энергий массы m жидкости:

(4)

(5)

Подставляя (4) и (5) в (2) и приравнивая (2) и (3), получим

(6)

Согласно уравнению неразрывности струи для несжимаемой жидкости (1), объем, занимаемый жидкостью, остается постоянным, т. е.

Разделив выражение (6) на , получим

,

где ρ — плотность жидкости. Но так как сечения выбирались произвольно, то можем записать

=const. (7)

Выражение (7) выведено швейцарским физиком Д. Бернулли (1700—1782; опубликовано в 1738 г.) и называется уравнением Бернулли. Как видно из его вывода, уравнение Бернулли — выражение закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Оно хорошо выполняется и для реальныхжидкостей, внутреннее трение которых не очень велико.

Величина Р в формуле (7) называется статическим давлением (давление жидкости поверхность обтекаемого ею тела), величина динамическим давлением. Величина представляет собой гидростатическое давление.

Для горизонтальной трубки тока (h1=h2) выражение (7) принимает вид

=const, (8)

называется полным давлением.

Из уравнения Бернулли (8) для горизонтальной трубки тока и уравнения неразрывности (1) следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а статическое давление больше в более широких местах, т. е. там, где скорость меньше. Это можно продемонстрировать, установив вдоль трубы ряд манометров (рис. 4).

В соответствии с уравнением Бернулли опыт показывает, что в манометрической трубке В, прикрепленной к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С, прикрепленных к широкой части трубы.

Так как динамическое давление связано со скоростью движения жидкости (газа), то уравнение Бернулли позволяет измерять скорость потока жидкости. Для этого применяется трубка Пито — Прандтля (рис. 5).

Прибор состоит из двух изогнутых под прямым углом трубок, противоположные концы которых присоединены к манометру. I помощью одной из трубок измеряется полное давление (Р0), с помощью другой — статическое (Р). Манометром измеряют разность давлений:

, (9)

где — плотность жидкости в манометре. С другой стороны, согласно уравнению Бернулли, разность полного и статического давлений равна динамическому давлению:

(10)

Из формул (9) и (10) получаем искомую скорость потока жидкости:

Уменьшение статического давления в точках, где скорость потока больше, положено в основу работы водоструйного насоса (рис. 6).

Струя воды подается в трубку, открытую в атмосферу, так что давление на выходе из трубки равно атмосферному. В трубке имеется сужение, по которому вода течет с большей скоростью. В этом месте давление меньше атмосферного. Это давление устанавливается и в откачанном сосуде, который связан с трубкой через разрыв, имеющийся в ее узкой части. Воздух увлекается вытекающей с большой скоростью водой из узкого конца. Таким образом, можно откачивать воздух из сосуда до давления 100 мм рт. ст. (1 мм рт. ст.= 133,32 Па).

Уравнение Бернулли позволяет описать физические явления лежащие в основе работы целого ряда устройств и приборов: карбюратор, пульверизатор (рис. 7) и др.

3. ИСТЕЧЕНИЕ ЖИДКОСТИ ИЗ ОТВЕРСТИЯ. ПРИНЦИП РЕАКТИВНОГО ДВИЖЕНИЯ

Уравнение Бернулли используется для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жидкостью, в боковой стенке которого на некоторой глубине ниже уровня жидкости имеется маленькое отверстие (рис. 8).

Рассмотрим два сечения (на уровне h1 свободной поверхности жидкости в сосуде и на уровне h2 выхода ее из отверстия) и напишем уравнение Бернулли:

Так как давления Р1 и Р2 в жидкости на уровнях первого и второго сечений равны атмосферному, т. е. Р1=Р2 , то уравнение будет иметь вид

.

Из уравнения неразрывности (1) следует, что v1/v2 = S1/S2, где S1 и S2 — площади поперечных сечений сосуда и отверстия. Если S1>>S2, то членом можно пренебречь и

(11)

Это выражение получило название формулы Торричелли (Э. Торричелли (1608 – 1647) – итальянский физик и математик.

Итак, скорость истечения жидкости из отверстия, расположенного на глубине h под открытой поверхностью, совпадает со скоростью, которую приобретает любое тело, падая с высоты h. Следует помнить, что этот результат получен в предположении, что жидкость идеальна. Для реальных жидкостей скорость истечения будет меньше, причем тем сильнее отличается от значения (11), чем больше вязкость жидкости.

Струя жидкости, вытекающая из отверстия в сосуде (рис. 9), уносит с собой за время Δt импульс (— плотность жидкости, S — площадь отверстия, v — скорость истечения струи).

Этот импульс сообщается вытекающей жидкости сосудом. По третьему закону Ньютона сосуд получает, от вытекающей жидкости за время Δt импульс, равный — , т. е. испытывает действие силы

(12)

Эта сила называется реакцией вытекающей струи. Если сосуд поставить на тележку, то под действием силы Fr он придет в движение в направлении, противоположном направлению струи.

Найдем значение силы Fr, воспользовавшись выражением (11) для скорости истечения жидкости из отверстия:

(13)

Если бы, как это может показаться на первый взгляд, сила Fr совпадала по величине с силой гидростатического давления, которое жидкость оказывала бы на пробку, закрывающую отверстие, то Fr была бы равна . На самом деле сила Fr оказывается в 2 раза большей. Это объясняется тем, что возникающее при вытекании струи движение жидкости в сосуде приводит к перераспределению давления, причем давление вблизи стенки, лежащей против отверстия, оказывается несколько большим, чем вблизи стенки, в которой сделано отверстие.

На реакции вытекающей струи газа основано действие реактивных двигателей и ракет. Реактивное движение, не нуждаясь для своего осуществления в наличии атмосферы, используется для полетов в космическом пространстве.

Основоположником теории межпланетных сообщений является выдающийся русский ученый и изобретатель (1857—1935). Он дал теорию полета ракеты и обосновал возможность применения реактивных аппаратов для межпланетных сообщений. В частности, Циолковским была разработана теория движения составных ракет, в которых каждая последующая ступень вступает в действие после того, как предыдущая ступень, израсходовав полностью топливо, отделится от ракеты. Идеи Циолковского получили дальнейшее развитие и были осуществлены учеными и инженерами для освоения космического пространства.

Уравнение бернулли следствия из него кратко

Документальные учебные фильмы. Серия «Физика».

Даниил Бернулли (Daniel Bernoulli; 29 января (8 февраля) 1700 — 17 марта 1782), швейцарский физик-универсал, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Академик и иностранный почётный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750). Сын Иоганна Бернулли.

Закон (уравнение) Бернулли является (в простейших случаях) следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

— плотность жидкости, — скорость потока, — высота, на которой находится рассматриваемый элемент жидкости, — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, — ускорение свободного падения.

Уравнение Бернулли также может быть выведено как следствие уравнения Эйлера, выражающего баланс импульса для движущейся жидкости.

В научной литературе закон Бернулли, как правило, называется уравнением Бернулли(не следует путать с дифференциальным уравнением Бернулли), теоремой Бернулли или интегралом Бернулли.

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых — единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии («энергии давления»).

Соотношение, близкое к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли. В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Для горизонтальной трубы высота постоянна и уравнение Бернулли принимает вид: .

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности : .

Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Полное давление состоит из весового , статического и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины — гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для приближённого описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Известны обобщения интеграла Бернулли для некоторых классов течений вязкой жидкости (например, для плоскопараллельных течений), в магнитной гидродинамике, феррогидродинамике.

В статье были спользованны материалы Wikipedia

Уравнение Бернулли и следствия из него

Выделим в стационарно текущей идеаль­ной жидкости (физическая абстракция, т. е. воображаемая жидкость, в которой от­сутствуют силы внутреннего трения) труб­ку тока, ограниченную сечениями S1и S2, по которой слева направо течет жидкость (рис.6.3). Пусть в месте сечения S1 ско­рость течения v1, давление р1и высота, на которой это сечение расположено, h1. Ана­логично, в месте сечения S2скорость течения v2, давление p2 и высота сечения h2. За малый промежуток времени Δt жид­кость перемещается от сечений S1 и S2 к сечениям S′1 и S′2.

Согласно закону сохранения энергии, изменение полной энергии W2– W1 идеаль­ной несжимаемой жидкости должно быть равно работе А внешних сил по перемеще­нию массы т жидкости:

С другой стороны, А — это работа, совершаемая при перемещении всей жид­кости, заключенной между сечениями S1и S2,за рассматриваемый малый проме­жуток времени Δt. Для перенесения массы т от S1 до S’1жидкость должна переме­ститься на расстояние l1 = υ1Δt и от S2 до S’2 на расстояние l2 = υ2Δt. Отметим, что l1и l2настолько малы, что всем точкам объемов, закрашенных на рис.6.3, припи­сывают постоянные значения скоро­сти υ, давления р и высоты h. Следова­тельно,

Полные энергии W1и W2будут склады­ваться из кинетической и потенциальной энергий массы т жидкости:

Подставляя (6.5) и (6.6) в (6.3) и приравнивая (6.3) и (6.4), получим

Согласно уравнению неразрывности для несжимаемой жидкости (6.2), объем, занимаемый жидкостью, остается посто­янным, т. е.

Разделив выражение (6.5) на ΔV, по­лучим

где ρ — плотность жидкости. Но так как сечения выбирались произвольно, то мо­жем записать

ρυ 2 /2 + ρgh + p = const. (6.8)

Выражение (6.8) называется уравне­нием Бернулли.Как видно из его вывода, уравнение Бернулли — выражение закона сохранения энергии применительно к уста­новившемуся течению идеальной жидко­сти. Оно хорошо выполняется и для реаль­ных жидкостей, внутреннее трение кото­рых не очень велико.

Величина р в формуле (6.8) называ­ется статическим давлением(давление жидкости на поверхность обтекаемого ею тела), величина ρυ 2 /2 — динамическим давлением.Как уже указывалось выше, величина ρgh представляет со­бой гидростатическое давление.

Для горизонтальной трубки тока (h1= h2) выражение (6.8) принимает вид

где p + ρυ 2 /2называется полным давле­нием.

Из уравнения Бернулли (6.9) для горизонтальной трубки тока и уравнения неразрывности (6.2) следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а ста­тическое давление больше в более широ­ких местах, т. е. там, где скорость меньше. Это можно продемонстрировать, устано­вив вдоль трубы ряд манометров(рис.6.4). В соответствии с уравнением Бернулли опыт показывает, что в мано­метрической трубке В, прикрепленной к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С, прикрепленных к широкой части трубы.

Так как динамическое давление связа­но со скоростью движения жидкости (га­за), то уравнение Бернулли позволяет из­мерять скорость потока жидкости. Для этого применяется трубка Пито — Прандтля (рис.6.5). Прибор состоит из двух изогнутых под прямым углом трубок, про­тивоположные концы которых присоедине­ны к манометру. С помощью одной из трубок измеряется полное давление (р0), с помощью другой — статическое (р). Ма­нометром измеряется разность давлений:

где ρ0 плотность жидкости в манометре. С другой стороны, согласно уравнению Бернулли, разность полного и статическо­го давлений равна динамическому давле­нию:

Из формул (6.10) и (6.11) получаем иско­мую скорость потока жидкости:

υ = . (6.12)

Уменьшение статического давления в точках, где скорость потока больше, положено в основу работы водоструйного насоса(рис.6.6). Струя воды подается в трубку, открытую в атмосферу, так что давление на выходе из трубки равно ат­мосферному. В трубке имеется сужение, по которому вода течет с большей скоро­стью. В этом месте давление меньше ат­мосферного. Это давление устанавливает­ся и в откачанном сосуде, который связан с трубкой через разрыв, имеющийся в ее узкой части. Воздух увлекается вытекаю­щей с большой скоростью водой из узкого конца. Таким образом можно откачивать воздух из сосуда до давления 100 мм.рт.ст.

Уравнение Бернулли используется для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жид­костью, в боковой стенке которого на не­которой глубине ниже уровня жидкости имеется маленькое отверстие (рис.6.7).

Рассмотрим два сечения (на уровне h1 свободной поверхности жидкости в сосуде на уровне h2 выхода ее из отверстия). Напишем для них уравнение Бернулли:

Так как давления р1и р2в жидкости на уровнях первого и второго сечений равны атмосферному, т. е. p1 = p2, то уравнение будет иметь вид
υ1 2 /2 + gh1 = υ2 2 /2 + gh2.

υ2 = . (6.13)

Это выражение получило название форму­лы Торричелли.


источники:

http://forkettle.ru/vidioteka/estestvoznanie/47-fizika/gidravlika/109-uravnenie-bernulli

http://helpiks.org/6-65743.html