Уравнение биений для колебаний с одинаковой амплитудой

Амплитуда биения. Сложение взаимно перпендикулярных колебаний

Векторная диаграмма.

Векторная диаграмма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов. Векторные диаграммы широко применяются в электротехнике, акустике, оптике, теории колебаний и так далее.

Гармоническое (то есть синусоидальное) колебание может быть представлено графически в виде проекции на некоторую ось (обычно берут ось координат Оx) вектора, вращающегося с постоянной угловой скоростью ω. Длина вектора соответствует амплитуде, угол поворота относительно оси (Ox) — фазе.

Сумма (или разность) двух и более колебаний на векторной диаграмме представлена при этом (геометрической) суммой [1] (или разностью) векторов этих колебаний. Мгновенное значение искомой величины определяется при этом проекцией вектора суммы на ось Оx, амплитуда — длиной этого вектора, а фаза — углом его поворота относительно Ox.

Сложение нескольких гармонических колебаний одного направления.

Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

Пусть совершаются два гармонических колебания одного направления и одинаковой частоты

(4.1)

Уравнение результирующего колебания будет иметь вид

Убедимся в этом, сложив уравнения системы (4.1)

Применив теорему косинусов суммы и сделав алгебраические преобразования:

(4.2)

Можно найти такие величины А и φ0 , чтобы удовлетворялись уравнения

(4.3)

Рассматривая (4.3) как два уравнения с двумя неизвестными А и φ0, найдем, возведя их в квадрат и сложив, а затем разделив второе на первое:

Подставляя (4.3) в (4.2), получим:

Или окончательно, используя теорему косинусов суммы, имеем:

Тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) сгладываемых колебаний.

В зависимости от разности фаз (φ2-φ1):

1) (φ2-φ1) = ±2mπ (m=0, 1, 2, …), тогда A= А1+А2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;

2) (φ2-φ1) = ±(2m+1)π (m=0, 1, 2, …), тогда A= |А1-А2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний

Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биением.

Пусть два колебания мало отличаются по частоте. Тогда амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω намного меньше ω. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:

Результирующее колебание можно рассматривать как гармоническое с частотой ω, амплитуда А, которого изменяется по следующему периодическому закону:

Частота изменения А в два раза больше частоты изменения косинуса. Частота биений равна разности частот складываемых колебаний: ωб = Δω

Биения, Период биения.

Бие́ния — явление, возникающее при наложении двух периодических колебаний, например, гармонических, близких по частоте, выражающееся в периодическом уменьшении и увеличении амплитуды суммарного сигнала.Частота изменения амплитуды суммарного сигнала равна разности частот исходных сигналов.

Период биений Тб — это промежуток между соседними моментами времени, в которые амплитуда обращается в нуль, а фаза изменяется на π.

Амплитуда биения. Сложение взаимно перпендикулярных колебаний.

Допустим, что материальная точка может совершать колебания как вдоль оси х, так и вдоль перпендикулярной к ней оси у. Если возбудить оба колебания, материальная точка будет двигаться по некоторой, вообще говоря, криволинейной траектории, форма которой зависит от разности фаз обоих колебаний.

Выберем начало отсчета времени так, чтобы начальная фаза первого колебания была равна нулю. Тогда уравнения колебаний запишутся следующим образом:

где — разность фаз обоих колебаний.

Выражения (57.1) представляют собой заданное в параметрической форме уравнение траектории, по которой движется тело, участвующее в обоих колебаниях. Чтобы получить уравнение траектории в обычном виде, нужно исключить из уравнений (57.1) параметр t. Из первого уравнения следует, что

Теперь развернем косинус во втором из уравнений (57.1) по формуле для косинуса суммы, подставляя при этом вместо их значения (57.2) и (57.3). В результате получим

Последнее уравнение после несложных преобразований можно привести к виду

Последнее уравнение есть, вообще говоря, уравнение эллипса, оси которого повернуты относительно координатных осей х и у. Ориентация эллипса и величина его полуосей зависят довольно сложным образом от амплитуд а и b и разности фаз

Определим форму траектории для некоторых частных случаев.

1. Разность фаз а равна нулю. В этом случае уравнение (57.4) принимает вид

откуда получается уравнение прямой

Результирующее движение является гармоническим колебанием вдоль этой прямой с частотой и амплитудой, равной (рис. 57.1).

2. Разность фаз а равна Уравнение (57.4) имеет вид

откуда получается, что результирующее движение представляет собой гармоническое колебание вдоль прямой (рис. 57.2)

3. При уравнение (57.4) переходит в

т. е. в уравнение эллипса, приведенного к координатным осям, причем полуоси эллипса равны соответствующим амплитудам колебаний.

При равенстве амплитуд а и эллипс вырождается в окружность.

Случаи отличаются направлением движения по эллипсу или по окружности. Если уравнения (57.1) можно записать следующим образом:

В момент тело находится в точке (рис. 57.3). В последующие моменты времени координата х уменьшается, а координата у становится отрицательной. Следовательно, движение совершается по часовой стрелке.

При уравнения колебаний имеют вид

Отсюда можно заключить, что движение происходит против часовой стрелки.

Из сказанного следует, что равномерное движение по окружности радиуса R с угловой скоростью со может быть представлено как сумма двух взаимно перпендикулярных колебаний:

(57.10)

(знак «+» в выражении для у соответствует движению против часовой стрелки, знак «—» — движению по часовой стрелке).

В случае, когда частоты взаимно перпендикулярных колебаний отличаются на очень малую величину их можно рассматривать как колебания одинаковой частоты, но с медленно изменяющейся разностью фаз. В самом деле, уравнения колебаний можно представить следующим образом:

и выражение рассматривать как разность фаз, медленно изменяющуюся со временем по линейному закону.

Результирующее движение в этом случае происходит по медленно видоизменяющейся кривой, которая будет последовательно принимать форму, отвечающую всем значениям разности фаз от до

Если частоты взаимно перпендикулярных колебаний не одинаковы, то траектория результирующего движения имеет вид довольно сложных кривых, называемых фигурами Лиссажу. На рис. 57.4 показана одна из простейших траекторий, получающаяся при отношении частот 1 : 2 и разности фаз Уравнения колебаний имеют вид

За то время, пока вдоль оси х точка успевает переместиться из одного крайнего положения в другое, вдоль оси у, выйдя из нулевого положения, она успевает достигнуть одного крайнего положения, затем другого и вернуться в нулевое положение.

При отношении частот 1:2 и разности фаз, равной нулю, траектория вырождается в незамкнутую кривую (рис. 57.5), по которой точка движется туда и обратно.

Чем ближе к единице рациональная дробь, выражающая отношение частот колебаний, тем сложнее оказывается фигура Лиссажу. На рис. 57.6 для примера показана кривая для отношения частот 3 : 4 и разности фаз .

1.4. Сложение колебаний одного направления

Может случиться так, что осциллятор принимает участие в двух одинаково направленных колебаниях с разными амплитудами, частотами и начальными фазами. Рассмотрим сложение таких колебаний.

Сложение колебаний с одинаковыми частотами

Для простоты рассмотрим сначала случай, когда частоты складываемых колебаний одинаковы. Общие решения складываемых гармонических колебаний имеют вид:

где x1, x2 — переменные, описывающие колебания, A1, A2 — их амплитуды, а , — начальные фазы. Результирующее колебание

удобно найти с помощью векторной диаграммы. Этот метод использует аналогию между вращением и колебательным процессом.

Возьмем общее решение (1.23) для гармонического колебания. Выберем ось 0x. Из точки 0 отложим вектор длиной A, образующий с осью 0x угол . Если привести этот вектор во вращение с угловой скоростью , то проекция конца этого вектора будет перемещаться по оси 0x от +A до –A, причем величина проекции будет изменяться по закону

Таким образом, проекция конца вектора на ось 0x будет совершать гармонические колебания с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени (рис. 1.12).

Рис. 1.12. Векторная диаграмма для общего решения (1.23)

Применим теперь эту технику к сложению колебаний (1.34). Представим оба колебания с помощью векторов А1 и А2 Возьмем их векторную сумму (рис. 1.13)

Рис. 1.13. Векторная диаграмма для сложения одинаково направленных колебаний одинаковой частоты

Проекция вектора А1 на ось 0x равна сумме проекций соответствующих векторов

Таким образом, вектор А представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью , так что результирующее движение будет гармоническим колебанием с частотой , амплитудой A и начальной фазой a. Согласно теореме косинусов:

В частности, если фазы складываемых колебаний равны или отличаются на величину, кратную (то есть ), то амплитуда результирующего колебания равна сумме амплитуд

Если же складываемые колебания находятся в противофазе (то есть ), то


Биения

В этом разделе мы рассмотрим случай сложения одинаково направленных гармонических колебаний с разными частотами. На практике особый интерес представляет случай, когда складываемые колебания мало отличаются по частоте. Как мы увидим, в результате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой, называемые биениями.

Биения — это периодическое изменение амплитуды колебаний, возникающее при сложении двух гармонических колебаний с близкими частотами.

Для простоты рассмотрим случай, когда амплитуды складываемых колебаний равны A, а начальные фазы обоих колебаний равны нулю. Частоты складываемых колебаний равны, соответственно, и . Итак,

Складываем эти выражения и учитываем известную формулу тригонометрии:

Если то в аргументе второго косинуса мы можем пренебречь сдвигом частоты:

Кроме того, множитель в скобках меняется медленно по сравнению с . Поэтому результирующее колебание x можно рассматривать как модулированное гармоническое колебание с частотой w, эффективная амплитуда которого изменяется со временем по закону (1.40) (рис. 1.14):

Подчеркнем, что в строгом смысле такое колебание не является гармоническим, и еще раз напомним, что, согласно определению, колебание гармоническое, если оно происходит по закону , причем все три его параметра: строго постоянны во времени.

Рис. 1.14. Биения при сложении колебаний с близкими частотами

Частота пульсаций амплитуды (ее называют частотой биений) равна разности частот складываемых колебаний. Период биений равен


Колебания двух связанных осцилляторов

Приведем поучительный пример системы, в которой возникают биения. Рассмотрим два груза массой m, которые могут колебаться под действием двух одинаковых пружин с коэффициентами жесткости k. Пусть грузы соединены также мягкой пружиной с коэффициентом жесткости K<. Будем полагать длины всех пружин в нерастянутом состоянии одинаковыми и равными 2L (рис. 1.15).

Рис. 1.15. Пример связанных осцилляторов.
Колебания происходят вдоль оси 0х, сила тяжести не учитывается

Тогда в положении равновесия координаты грузов равны

При колебаниях координаты равны, соответственно, x1(t), x2(t). Удлинения пружин записываются как

Мы имеем дело с системой с двумя степенями свободы. Составим уравнения движения. На первый груз действуют сила со стороны пружины k, равная

и сила со стороны пружины K, равная

На второй груз действуют аналогичные силы

Соответственно, уравнения движения имеют вид

Эти уравнения не слишком похожи на первый взгляд на уравнения гармонических колебаний, потому что на колебания x1 оказывают влияния колебания x2 и наоборот. Поэтому преобразуем уравнения к новым переменным, уравнения для которых были бы независимыми (такие переменные называют нормальными координатами, а соответствующие им колебания — нормальными колебаниями (модами)). Именно, введем новые переменные x1 и x2:

Как легко убедиться, положениям равновесия соответствуют нулевые значения этих координат

В этих переменных уравнения (1.42) принимают вид:

Складывая и вычитая эти уравнения, приходим к паре независимых уравнений для введенных нормальных координат:

Первое уравнение описывает гармонические колебания с частотой

совпадающей с частотой колебаний пружинных маятников в отсутствие соединительной пружины К. Второе уравнение описывает колебания со сдвинутой частотой

Соответственно, мы получаем общее решение системы уравнений:

Общее решение для координат х1 и х2 колеблющихся точек следуют из (1.47) и (1.43):

Для примера рассмотрим случай, когда первая масса смещается на расстояние от положения равновесия и отпускается с нулевой начальной скоростью, а вторая масса остается в положении равновесия:

Этому соответствуют следующие начальные значения нормальных координат:

Такие начальные условия уже рассматривались выше. Соответствующие им решения имеют вид

Подставляя найденные амплитуды и начальные фазы в (1.48), получаем решения, описывающие колебания рассматриваемых масс около их положений равновесия:

Графики функций x1(t), x2(t) показаны на рис. 1.16. Видна характерная картина биений.

Рис. 1.16. Биения в системе двух связанных осцилляторов

В начальный момент времени колеблется лишь первый груз. Затем начинает колебаться второй, а амплитуда колебаний первого уменьшается. Через время первый груз останавливается, а второй колеблется с максимально возможной амплитудой. Произошла «перекачка» энергии от первого маятника ко второму. Затем процесс «перекачки» энергии идет в обратном направлении и к моменту первый маятник колеблется с максимальной амплитудой, а второй покоится.

На рис. 1.17 демонстрируются биения в системе двух связанных математических маятников.

Рис. 1.17. Биения в системе связанных маятников

Выясним теперь физический смысл нормальных мод, соответствующих чисто гармоническим колебаниям системы. Если возбуждены колебания только первой из них (x1), то A2 = 0 и, как следует из общего решения (1.48),

Из (1.53) видно, что первая нормальная мода соответствует такому колебанию, когда оба груза смещаются на одинаковые расстояния от их положений равновесия, но в противоположные стороны, другими словами — они колеблются в противофазе. Скорости движения грузов также равны по величине и противоположны по направлению, так что центр масс грузов остается неподвижным. Колебания происходят под действием пружин с жесткостью k, к которым добавляется соединительная пружина с жесткостью К. Как следствие, частота таких колебаний больше частоты колебаний несвязанных осцилляторов

Возбуждение только второй (x2) нормальной моды означает, что A1 = 0:

В этом случае грузы смещаются из положения равновесия в одну сторону на одинаковые расстояния, другими словами – они колеблются синфазно. Скорости их также одинаковы по величине и направлению. Соединительная пружина колеблется вместе с грузами, но остается не растянутой и потому не оказывает влияния, так что частота колебаний совпадает с частотой колебаний несвязанных маятников.

В разобранном случае мы познакомились с нормальными модами и выяснили, что их частоты сдвигаются по сравнению с частотами колебаний несвязанных маятников. Любое другое колебательное движение системы можно представить как суперпозицию нормальных мод. Аналогичным образом можно рассмотреть цепочку из множества связанных друг с другом осцилляторов и изучить их нормальные колебания. Такая система представляет собой модель кристаллической решетки.

Электронная библиотека

Колеблющееся тело может одновременно участвовать в нескольких колебательных процессах:

Сложение гармонических колебаний одного направления и одинаковой частоты производится методом вращающегося вектора амплитуды.

Векторные диаграммы этих колебаний изображены на рис. 3.5. Так как векторы и вращаются с одинаковой угловой скоростью w0, то разность фаз (j1 – j2) между ними остается постоянной. Уравнение результирующего колебания будет иметь вид:

где амплитуда результирующего колебания определяется по формуле: ; начальная фаза результирующего колебания равна: .

Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (j2 – j1) складываемых колебаний:

Для практики особый интерес представляет случай, когда два складываемых колебания одинакового направления мало отличаются по частоте.

В результате сложения этих колебаний получаются колебания с периодически изменяющейся амплиту дой – биения.

Уравнения двух колебаний с амплитудами А и близкими частотами w и w + Dw, причем Dw Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00


источники:

http://online.mephi.ru/courses/physics/optics/data/course/1/1.4.html

http://libraryno.ru/3-2-6-slozhenie-garmonicheskih-kolebaniy-odnogo-napravleniya-i-odinakovoy-chastoty-bieniya-2013_fiz_electro/