Уравнение битти бриджмена для реальных газов

Уравнение битти бриджмена для реальных газов

Поскольку критические константы являются характеристическими свойствами газов, их можно использовать для создания соответствующей относительной шкалы, введя безразмерные приведенные переменные: приведенное давление pr, приведенный объем Vr и приведенную температуру Tr:

Соответственными называются состояния разных веществ, имеющие одинаковые значения приведенных переменных. Согласно закону соответственных состояний, если для рассматриваемых веществ значения двух приведенных переменных одинаковы, должны совпадать и значения третьей приведенной переменной. Таким образом, уравнения состояния различных веществ, записанные в приведенных переменных, должны совпадать. Это утверждение эквивалентно постулату о существовании общего универсального приведенного уравнения состояния

Поскольку это приведенное уравнение не содержит в явном виде индивидуальных постоянных, оно должно быть применимо к любому веществу. Закон соответственных состояний является общим утверждением, не связанным с конкретным видом уравнения состояния. На практике закон соответственных состояний приближенно выполняется для однотипных веществ, что позволяет, например, использовать для реальных газов обобщенные диаграммы сжимаемости (рис. 1.6).

Рис.1.6. Зависимость фактора сжимаемости некоторых газов от приведенного давления при разных приведенных температурах.

Уравнение Ван-дер-Ваальса также согласуется с законом соответственных состояний. Подставляя в исходное уравнение (1.5) постоянные a, b и R, выраженные через критические параметры (уравнения (1.11) – (1.13)), и переходя к приведенным переменным, получим уравнение Ван-дер-Ваальса в приведенной форме:

. (1.24)

Можно показать, что любое уравнение состояния, содержащее три параметра, можно представить в приведенной форме. В таблице 1.4 представлены наиболее известные уравнения состояния. Для тех из них, которые содержат три параметра, представлена также и приведенная форма. Отсутствие универсального уравнения F(pr, Vr, Tr) = 0 говорит не о неверности закона о соответственных состояниях, а о недостаточности двух индивидуальных постоянных и R в уравнении состояния.

В настоящее время понятно, почему в уравнениях состояния реальных газов двух индивидуальных параметров в общем случае не хватает, но в первом приближении этого достаточно. Причиной всех отклонений от уравнения состояния идеального газа являются межмолекулярные взаимодействия в газах. Зависимость потенциала межмолекулярного взаимодействия u от расстояния между частицами r достаточно точно описывается уравнениями, содержащими по меньшей мере четыре параметра – n, m, A и B:

. (1.25)

Статистический расчет показывает, что наличие индивидуальных постоянных в уравнении межмолекулярного взаимодействия всегда приводит к появлению индивидуальных постоянных и в уравнении состояния газов. Поэтому в области значений p, V и T, для которых в реальных газах вклад межмолекулярных взаимодействий достаточно велик, в уравнениях состояния появляются индивидуальные постоянные, зависящие от параметров уравнении межмолекулярного взаимодействия. Вместе с тем для молекул сфероидальной формы довольно хорошие результаты дает уравнение с n = 12 и m = 6. Поэтому в приближенных уравнениях состояния часто оказывается достаточно использовать две индивидуальные постоянные. Если же требуется описать поведение газа с более высокой точностью, необходимо использовать уравнения с бу льшим числом постоянных. Так, например, уравнение Битти – Бриджмена (см. табл. 1.4) содержит пять постоянных кроме R и считается одним из лучших эмпирических уравнений состояния. В течение некоторого времени оно применялось при составлении справочных таблиц реальных газов. В настоящее время для возможно более точного описания свойств газов используют эмпирическое уравнение Бенедикта – Вебба – Рубина ( — плотность газа):

.

Уравнения состояния реальных газов

Все реальные газы являются парами тех или иных жидкостей, причем, чем ближе газ к переходу в жидкое состояние, тем больше его отклонение от свойств идеального газа, состояние которого описывается уравнением Клапейрона. Для качественной оценки особенностей реальных газов рассмотрим область, где будут значительные отступления от уравнения, описывающего поведение идеальных газов.

Если сжимать газ при постоянной температуре, то можно достигнуть состояния насыщения (сжижения газа), соответствующего этой температуре и некоторому определенному давлению. При дальнейшем сжатии пар будет конденсироваться и в определенный момент полностью превратится в жидкость.

Процесс перехода пара в жидкость проходит при постоянных температуре и давлении, так как давление насыщенного пара однозначно определяется температурой. На рu -диаграмме (рисунок 10.1) область двухфазных состояний (пар и жидкость) лежит между кривыми кипящей жидкости и сухого насыщенного пара. При увеличении давления эти кривые сближаются. Сближение происходит потому, что объем пара, уменьшается, а объем жидкости увеличивается.

При некотором определенном для данной жидкости (пара) давлении кривые кипящей жидкости и пара встречаются в так называемой критической точке, которой соответствуют критические параметры: давление ркр, температура Ткр, удельный объем uкр, характеризующие критическое состояние ве­щества.

При критическом состоянии исчезают различия между жидкостью и паром. Оно является предельным физическим состоянием, как для однородного, так и для распавшегося на две фазы вещества.

При температуре более высокой, чем критическая, газ ни при каком давлении не может сконденсироваться, т. е. превратиться в жидкость.

В общем случае все газы в области, близкой к состоянию сжижения, приближенно воспроизводят связь между параметрами состояния по уравнению Клапейрона. Во всех газах с более или менее значительной плотностью нельзя пренебрегать силами сцепления между молекулами, объемом, занимаемым ими, а также ассоциацией молекул в группы.

Под ассоциацией понимается механическое соединение двух или нескольких молекул в одну сложную. Уменьшение числа самостоятельных частиц, из которых состоит газ, должно привести к возрастанию среднего молекулярного веса газа и уменьшению его давления. Ассоциация значительно усложняет математическое описание состояния реальных газов.

Рисунок 10.2
Рисунок 10.1

При уменьшении давления и возрастании температуры газа можно пользоваться уравнением состояния идеального газа за иск точением тех случаев, когда в газе под влиянием больших температур наступает изменение химической структуры (например, распад сложных молекул — диссоциация).

Уравнение состояния реальных газов выводится или чисто теоретически на основе гипотетических представлений о структуре газа, или на основании обработки экспериментальных зависимостей между р, u, Т.

Широкое распространение в научных исследованиях получило уравнение Ван-дер-Ваальса, выведенное путем пересмотра некоторых допущений, лежащих в основе уравнения состояния идеального газа. Уравнение состояния реального газа с учетом сил, действующих между молекулами, и их объема для 1 кг газа имеет вид

(10.1)

Это уравнение отличается от уравнения Клапейрона двумя поправками: поправкой на объем самих молекул b и поправкой на так называемое внутреннее давление — определяемое взаимным притяжением молекул газа. Это давление может рассматриваться как сила, действующая со стороны внешних периферийных молекул и направленная внутрь сосуда.

Рассмотрим изменения на изотермах, обусловленных поправками а и b. При температуре выше критической изотермы, построенные по уравнению Ван-дер-Ваальса, представляют собой плавные кривые, отличные от равнобоких гипербол, которые бы дало урав­нение состояния идеального газа. Последние в верхней части на рисунка 9.2 показаны пунктиром.

При температуре ниже критической имеется область объемов, где поправка (уменьшающая давление) играет определяющую роль и давление проходит через максимум в точке С. Для меньших объемов давление падает, проходит через минимум — точка В, а затем резко увеличивается, когда u стремится к значению b.

При критической температуре, максимум и минимум на изотермах сливаются в точке перегиба К, а так как касательная к изотерме в критической точке идет горизонтально, то для критической точки должны выполняться условия

, . (10.2)

Отсюда получаем уравнения

, (10.3)

. (10.4)

Температуру Ткр и объем uкр можно определить из уравнений (10.3) и (10.4), а давление ркр находится затем из уравнения (10.1). В результате получаем

, , (10.5)

Из последних соотношений можно определить индивидуальные константы а и b, зависящие от физических свойств данного газа

, .

Так как процесс перехода от жидкого состояния к газообразному идет при постоянных Т и р, то на рисунке 10.2 этому процессу соответствует линия АD.

Однако участки АВ и СD на изотермах можно воспроизвести экспериментально только при использовании очень чистых жидкостей и газов. Вещество на этих участках находится в виде перегретой жидкости и перенасыщенного (переохлажденного) пара. Такие состояния, когда вещество остается в однофазном состоянии и не распадается на фазы, называются метастабильными.

Главная ценность уравнения Ван-дер-Ваальса состоит в том, что оно качественно правильно описывает непрерывность перехода из жидкого состояния в газообразное и дальнейшее развитие уравнения состояния пошло по пути уточнения расчетов и усовершенствования его теории.

Предпринимались попытки усовершенствования его за счет того, что коэффициенты а и b принимались не постоянными, а зависящими от температуры и объема. Но эти попытки не привели к созданию уравнения состояния, описывающего свойства газа в широком диапазоне изменения параметров.

Неудачи создания общего уравнения состояния привели к появлению целого ряда эмпирических уравнений, которые могли бы с достаточной точностью предсказывать поведение реальных газов в широком диапазоне условий. Наиболее известны из них: уравнение Битти – Бриджмена с пятью эмпирически определяемыми постоянными и уравнение Бенедикта-Вебб-Рубина, содержащее восемь эмпирических постоянных – (а, b, с, d, А0, В0, С0 и т.д.)

Уравнение Битти – Бриджмена, применяемое до давлений порядка 250 бар и плотностей газа, не превышающих 0,5 плотности в критической точке, имеет вид

, (10.7)

а уравнение состояния Бенедикта – Вебб – Рубина имеет вид

(10.8)

Эти уравнения могут предсказать р, u, Т – свойства газа с ошибкой в пределах нескольких десятых процента и, несмотря на их сложность, развитие вычислительной техники стимулирует использование таких уравнений состояния в обычных технических расчетах.

Хорошо согласуется с опытными данными одно из современных уравнений состояния газа — уравнение Вукаловича — Новикова, учитывающее ассоциацию молекул. При учете столкновений двойных молекул это уравнение имеет вид

, (10.9)

где ,

с и m — опытные константы.

В настоящее время теоретически обосновано уравнение состояния, представляющее собой разложение коэффициента сжимаемости z в бесконечный ряд по степеням 1/u

(10.10)

где В, С и Dвторой, третий и четвертый вириальные коэффициенты, учитывающие взаимодействие соответственно двух трех, четырех и т. д. молекул. Вириальные коэффициенты зависят лишь от температуры и определяются, если известна зависимость потенциальной энергии взаимодействия молекул U от расстояния между ними (рисунок 10.3).

Вместо точных аналитических зависимостей Uпот= f(r) практически применяют приближенные выражения, которые называются потенциалами. Широко используется потенциал Леннарда — Джонса, по которому энергия отталкивания пропорциональна двенадцатой степени расстояния между молекулами, а энергия притяжения – шестой

, (10.11)

где r — расстояние между молекулами; s— значение r, при котором Uпот = 0; e – максимальная величина энергии притяжения (глубина потенциальной ямы).

Значения s и e для каждого газа могут быть определены по экспериментальным данным. Кроме потенциала Леннарда – Джонса применяются другие потенциалы, которые могут быть использованы, для определенных групп сходственных веществ.

Рисунок 10.3

При решении целого ряда технических задач рабочими телами могут быть не широко используемые в технике вещества (водяной пар, углекислый газ, азот и некоторые другие), а вещества, термические свойства которых неизвестны.

В этом случае можно воспользоваться для предсказания свойств малоизученных веществ положением о термодинамическом подобии веществ.

Если значения индивидуальных констант а и b подставить в уравнение (10.1), то получим уравнение Ван-дер-Ваальса в функции приведенных параметров

, (10.12)

где , , .

Эти отношения называются приведенными давлением, температурой и объемом. Уравнение (10.12) можно записать в форме

(10.13)

В этой форме приведенное уравнение состояния будет одинаково для всех веществ. Состояния двух или нескольких веществ, в которых они имеют одинаковые приведенные параметры , называются соответственными состояниями, т. е. эти вещества находятся в состояниях, пропорционально удаленных от своего критического состояния.

Если вещества подчиняются одному и тому же приведенному уравнению состояния и имеют два одинаковых приведенных параметра, то у них одинаков и третий приведенный параметр, т. е. вещества, будут находиться в соответственных состояниях. Это положение носит название закона соответственных состояний.

Вещества, подчиняющиеся закону соответственных состояний, называют термодинамически подобными.

Практически закон соответственных состояний наиболее удобно применять в виде зависимости , причем для расчетов можно применить — диаграмму (рисунок 10.4). Эта диаграмма строится по экспериментальным данным дляразличных веществ и может быть использована для расчета термодинамических свойств малоизученных веществ методом термодинамического подобия.

Для этого, зная критические параметры вещества, находят и , а по -диаграмме определяется коэффициент сжимаемости при данных приведенных параметрах. Значение удельного объема можно вычислить по формуле

.

Точность расчета по этому методу не превышает 15%, так как закон соответственных состояний выполняется лишь приближенно. Так, при одинаковых я и т коэффициенты сжимаемости должны быть равны, причем должны быть равны и коэффициенты сжимаемости в критической точке . Но для реальных веществ , следовательно, строго говорить о выполнении закона соответственных состояний можно лишь для узких групп сходственных между собой веществ.

Парообразование при постоянном давлении

Рассмотрим изменение состояния водяного пара (реального газа), имеющего сравнительно высокую критическую температуру. Изме­нение параметров состояния водяного пара удобно проследить на р-u -диаграмме (рис. 9.5).

Положим, что 1 кг воды при 0° С заключен в цилиндре, закры­том свободно движущимся невесомым поршнем, на который действу­ет постоянное внешнее давление. Объем воды при указанных усло­виях обозначим . Если считать жидкость несжимаемой при лю­бых давлениях, то прямая, соединяющая точки l¢, l, l² и параллель­ная оси ординат, будет определять все возможные состояния воды при 0° С. Следует отметить, что для несжимаемой жидкости эта изохора совпадает с изотермой.

Если (при постоянном давлении) подводить к жидкости теплоту, то при достижении температуры кипения tВ начнется превращение воды в пар — точка т. Удельный объем жидкости вследствие нагре­ва увеличивается от до . При более высоком давлении процесс парообразования начнется и при более высокой температуре tн, сле­довательно, объем воды при достижении точки кипения будет больше, чем раньше (точка т).

На р-u -диаграмме геометрическое место точек, определяющих состояние воды, нагретой до температуры кипения, изображается кривой т¢, т, т². Эту кривую называют нижней (левой) пограничной кривой. При дальнейшем подведении теплоты начинается процесс парообразования. При условии постоянства давления, как показы­вает опыт, для всех жидкостей имеет место характерное явление: температура смеси жидкости и пара остается неизменной и равной температуре кипения tH.

Процесс парообразования прекратится в точке n, когда вся жид­кость превратится в пар. Между точками т и п система — двухфаз­ная, пар в этой области — влажный насыщенный.

Влажный насыщенный пар представляет собой смесь пара с жидкостью, причем жидкость может быть сосредоточена в ниж­ней части цилиндра или равномерно распределена в виде мельчайших капель по всему объему.

Пар, полученный при испарении всей жидкости (точка п),сухой насы­щенный. Удельный объем, пара в этой точке обозна­чим через u». При проведе­нии процесса парообразо­вания при другом давле­нии соответственно полу­чим точки n¢, п». Кривая п’ п п» представляет собой верхнюю (правую) пограничную кривую. Пересече­ние верхней и нижней пограничных кривых определяет положение критичес­кой точки К. Для воды критической точке соответствует ркр = 221,048 бар, Ткр = 647,15° К; uкр = 0,0031 м 3 /кг. На рис. 9.5 в области влажного насыщенного пара пунктирными линиями показаны линии постоянной сухости. Степень сухости пара х представляет собой массо­вую долю сухого насыщенного пара во влажном

(9.14)

Для точек, лежащих на нижней пограничной кривой, х = 0, для точек, лежащих на верхней пограничной кривой, х = 1. Если к сухо­му насыщенному пару продолжать подводить теплоту, то удельный объем и температура увеличиваются (un > u», t > tн). Пар в этом состоянии называют перегретым. Начиная с точки п вправо система однофазная.

Изменение агрегатного состояния

В § 2 рассматривался процесс парообразования, т. е. переход из жидкого состояния в парообразное, осуществляемый при постоян­ном давлении. Аналогичный переход из твердого состояния в газо­образное называют возгонкой, или сублимацией, а из твердого со­стояния к жидкому — плавлением.

Состояния вещества при этих превращениях считают устойчивы­ми, стабильными. При этом всякие изменения состояния считаются квазистатическими, как это обычно принято в термодинамике.

Переход из одного агрегат­ного состояния в другое удобно рассматривать на рt — диаграмме (рис. 9.6). На диаграмме кри­вая АК представляет собой зависимость между давлением насыщенного пара и температу­рой кипения, т. е. р = f (tн) (кривая упругости пара).

Кривая равновесия жидкой и газообразной фазы заканчи­вается в критической точке К.

Если от жидкости отбирать теплоту при постоянном давле­нии, то при определенной температуре жидкость переходит в твердое состояние. Темпе­ратура, при которой осуществляется этот переход, на­зывается температурой затвердевания, или плавления tпл, а коли­чество теплоты, отбираемое в этом процессе, называется скрытой те­плотой плавления. При плавлении так же, как и при парообразо­вании, вещество находится в двух фазах. Аналогично кривой АК можно построить кривую AD, которая однозначно определяется за­висимостью р = f(tпл).

Кривая сублимации АВ представляет собой зависимость р = f(tc) для перехода твердого тела в газообразное. Этот переход при тем­пературе сублимации tc происходит вследствие подведения некото­рого количества теплоты, носящего название скрытой теплоты суб­лимации. Точки этой кривой соответствуют двухфазной системе твер­дое тело — газ (например, водяной пар над поверхностью льда).

Все три кривых равновесия (парообразования, плавления и суб­лимации) пересекаются в некоторой характерной для каждого ве­щества точке. Эта точка А называется тройной точкой, а изображае­мое ею состояние — фундаментальным. В этой точке находятся в термодинамическом равновесии три различные фазы вещества: твердая, жидкая и газообразная.

Тройной точке воды соответствуют следующие параметры: дав­ление р = 0,00610 бар, Т =273,16°К.

Рассмотрение описанных процессов показывает, что в состояни­ях, находящихся между кривыми АВ, АЕ и AD, тело будет нахо­диться целиком в одной фазе: правее АВ и АК — область газообраз­ного состояния; левее линий AD и АВ располагается область вещест­ва в твердом состоянии; между линиями AD и АК находится область жидкости.

В состояниях на линии АК, AD и АВ вещество может существо­вать в двух фазах, причем на линии АК в жидкой и газообразной, на AD —твердой и жидкой; а на линии АВ вещество может быть в твердом и газообразном состояниях. Расположение и вид этих трех кривых

зависят от природы вещества и устанавливаются опытным путем.

Параметры состояния воды и водяного пара

Вследствие незначительной сжимаемости воды можно принять, что плотность воды при 0° С и любых давлениях есть величина пос­тоянная, a u’0 = 0,001 м 3 /кг. Начало отсчета внутренней энергии энтальпии и энтропии берется от 0° С и соответствующего давления насыщения р = 0,00610 бар. При этих параметрах энтальпия, энтро­пия, а также внутренняя энергия воды берутся условно равными ну­лю: s’0 = 0, i’0 = 0, и’0 = 0.

В процессе подогрева воды происходит нагревание ее до темпера­туры кипения tн. Удельный объем воды при температуре кипения u’ будет больше объема u’0. Соответствующие значения u’ для воды в функции температуры и давления для состояний, лежащих или на нижней пограничной кривой, или левее ее, даются в справочной ли­тературе.

Количество теплоты, которое нужно сообщать воде, чтобы на­греть ее от 0° С до температуры кипения в процессе р = const, назы­вается теплотой жидкости. Это количество теплоты определяется по формуле

, (9.15)

(9.16)

где — средняя теплоемкость воды в интервале температур от 0° С до tН°С

При низких по сравнению с Ткр температурах можно считать = 4,1865 кдж/(кг·град).

Воспользуемся в изобарном процессе подогрева воды первым за’ коном термодинамики, по которому

(9.17)

где и’ — внутренняя энергия воды при температуре кипения.

Так как при 0° С и¢0 = 0, а работа расширения жидкости

(9.18)

практически заметна только при больших значениях давления, то

(9.19)

Энтальпия воды при температуре кипения определяется по об­щей формуле

(9.20)

Полагая, что , получим

(9.21)

В процессе нагревания жидкости от 0° С до температуры кипе­ния происходит увеличение ее энтропии, которое может быть най­дено по формуле

(9.22)

(9.23)

Как уже было сказано, опытами установлено, что в процессе па­рообразования жидкость, нагретая до температуры кипения при . этой температуре и определенном постоянном давлении, обращается в пар. Количество теплоты, затрачиваемое в процессе при р = const на превращение 1 кг воды при температуре кипения в сухой насы­щенный пар той же температуры, обозначим через г.

Теплота г называется скрытой теплотой парообразования. По первому закону термодинамики

(9.24)

где и²— внутренняя энергия сухого насыщенного пара;

— работа расширения в процессе парообразования.

Разность внутренних энергий и»и¢ затрачиваемая на работу против внутренних сил, называется внутренней теплотой парообра­зования и обозначается буквой r. Теплота, затрачиваемая на работу против внешних сил, равна

(9.25)

и называется внешней теплотой парообразования. Обозначим ее буквой y.

(9.26)

Вследствие того, что процесс парообразования идет при постоян­ном давлении,

(9.27)

Величины r и даются в таблицах насыщенного пара, а — легко определяются по приведенным выше формулам.

С возрастанием давления, как видно из рис. 9.7, увеличивается энтальпия жидкости и достигает максимального значения при кри­тическом давлении. Скрытая теплота парообразования уменьшается с ростом давления и равна нулю при критическом давлении (и тем­пературе), потому что в этих условиях различия между жидкостью и ее паром исчезают и процесс парообразования как таковой отсутствует.

Изменение энтропии в про­цессе парообразования при под­ведении к кипящей воде r кдж/кг теплоты равно

(9.28)

(9.29)

или, используя значение из выражения (9.23),

(9.30)

При полном испарении жидкости состояние сухого насыщенного пара определяется одним параметром: давлением или температурой. Поэтому объем, внутренняя энергия и энтальпия определяются по таблицам насыщенного пара по давлению или температуре.

Связь между удельными объемами жидкости и пара на линии на­сыщения u¢ и u² давлением насыщенного пара рН температурой ТН и скрытой теплотой парообразования может быть получена следую­щим образом. При превращении жидкости в пар давление насыщен­ного пара от объема системы не зависит, следовательно, в выраже­нии (8.8) , но так как равновесное превращение жидкости в пар происходит при постоянной температуре (ТН=const), то

где dV представляет изменение объема системы при переходе жидкости в пар. Таким образом,

(9.31)

Изменение объема системы, если испарилась жидкость массой dm, равно

а приращение энтропии в квазистатическом процессе испарения жидкости массой dm по (9.28)

Подставив эти значения в уравнение (9.31), получим

(9.32)

где — производная от давления по температуре на кривой фазового равновесия рН = f (TН).

Уравнение (9.32) называют уравнением КлапейронаКлаузиуса и применяют при исследованиях изменений агрегатного состояния вещества из жидкого состояния в парообразное. Аналогичные урав­нения можно применять и к процессам перехода вещества из твер­дого состояния в жидкое или газообразное.

Параметры влажного насыщенного пара при заданной величине сухости могут быть определены из следующих соотношений.

Удельный объем влажного насыщенного пара

(9.33)

Так как объем воды (1 — х) мал по сравнению с объемом пара, то при невысоких давлениях

(9.34)

Энтальпия влажного насыщенного пара с учетом того, что на превращение в пар х кг жидкости необходимо затратить хr кдж/кг теплоты, равна

(9.35)

Энтропия влажного насыщенного пара

(9.36)

Свойства перегретого пара резко отличаются от свойств насы­щенного пара и приближаются к свойствам газов.

Перегретый пар характеризуется тем, что его температура выше температуры парообразования ТH при том же давлении и удельный объем его больше, чем объем сухого насыщенного пара при том же давлении.

Количество теплоты, необходимое для перевода 1 кг сухого на­сыщенного пара при р = const в перегретый с температурой t, на­зывают теплотой перегрева qпи определяют по формуле

(9.37)

Если срm — средняя массовая теплоемкость перегретого пара при постоянном давлении, то

(9.38)

Значение срm берется для перегретого пара по формуле

Энтальпия перегретого пара

(9.39)

называется полной теплотой перегретого пара. По первому закону термодинамики

(9.40)

где — работа расширения в изобарном процессе перегрева пара;

— изменение внутренней энергии в процессе перегрева.

Изменение энтропии в равновесном изобарном процессе перегрева равно

(9.41)

(9.42)

Свойства перегретых паров будут тем ближе к свойствам идеаль­ного газа, чем больше температура перегрева.

Т—s-диаграмма водяного пара

Для графического изображения процессов, происходящих в паре, удобно пользоваться Т — s-диаграммой, ибо в ней площадь под кри­вой обратимого процесса дает количество теплоты, сообщаемое телу или отнимаемое от него. Так как в системах координат рv и Т—s любая точка изображает определенное состояние тела, то точкам р- диаграммы должны соответствовать определенные точки, Тs диаграммы (рис. 9.8).

Если было принято условно, что энтропия начального состояния воды so = 0, то эта точка лежит на оси ординат на 273° выше абсо­лютного нуля.

Перенося по точкам нижнюю пограничную кривую (х = 0) из системы рv в Т — s-диаграмму, получим соответствующую ей кривую, абсциссами которой являются значения s’. Аналогично на­носится верхняя пограничная кривая (х = 1), абсциссами которой будут значения энтропии сухого насыщенного пара s».

В точке b диаграммы начинается кипение при ТH = const, и энтро­пии в процессе парообразования повышается

Процесс парообразования заканчивается в точке с, где

Так как процесс парообразования идет при Тн = const и р — =const, изотерма b-с является одновременно и изобарой. Дальней­ший подвод теплоты снова сопро­вождается увеличением темпера­туры и энтропии. В процессе пере­грева пара (кривая с-е)

Вследствие того что площади в Т — s-диаграмме изображают количество подведенной (отведен­ной) теплоты, то пл. аbАО — теп­лота в процессе нагрева жидкости от 0° С до температуры кипения; пл. abА0 — теплота, подводи­мая к воде в процессе парообра­зования; пл. сеСВ — теплота, затраченная на перегрев пара.

Учитывая, что количество теплоты в процессе р = const равно разности энтальпий , , площадь, ог­раниченная ординатами, осью абсцисс и изобарой, проходящей че­рез точку, определяет энтальпию в данной точке. Точка пересече­ния в верхней и нижней пограничных кривых является критической точкой К.

Область, лежащая между кривыми аК и сK, — это область влаж­ного насыщенного пара. Область, лежащая правее верхней погра­ничной кривой, — область перегретого пара.

Исследования паровых процессов и расчеты существенно облег­чаются при наличии подробной Т — s-диаграммы, в которой нане­сены обе пограничные кривые, сетка изобар и изохор, а также кривые постоянной сухости х = const, которые на рис. 9.8 показа­ны пунктирными линиями.

§ 6. i—s-диаграмма водяного пара

Для изучения и расчетов различных термодинамических процес­сов, в которых рабочим телом является насыщенный и перегретый пар, особо удобна i — s-диаграмма (рис. 9.9).

В системе координат i — s наносятся пограничные кривые, изо­бары и изотермы. Нижняя пограничная кривая и верхняя погранич­ная кривая строятся по известным значениям , , , и сливаются в критической точке К. В области влажного насыщенного пара нано­сятся линии постоянной сухости (пунктирные кривые). В этой диа­грамме теплоты жидкостей, парообразование и перегрев изображаются линейными отрезками, а не площадями. Теплота парообразования по данной изобаре

равна разности ординат точек пересечения изобары с пра­вой и левой пограничными кривыми.

Для процесса парообразо­вания, происходящего при р = const,

т.е.

Следовательно, в области влажного насыщенного па­ра изобары, являясь одно­временно и изотермами, представляют собой прямые линии с угловым коэффициентом, равным Tн; из диаграммы видно, что изобары пересекают пограничные кривые без излома. Изохоры, изобары и изотермы в области перегретого пара строятся по точкам. Изобары и изохоры в области перегрева — слабо вогнутые логариф­мические кривые; изотермы в области перегретого пара — выпуклые кривые, поднимающиеся слева вверх направо. Вид изотерм опре­деляется температурой, которой они соответствуют. Чем больше тем­пература, тем выше располагается изотерма. Чем дальше от погра­ничной кривой (х = 1) проходит изотерма, тем больше она прибли­жается к горизонтали i = const, так как в области идеального газа энтальпия однозначно определяется температурой. На рис. 9.9 точ­ки A, В, С изображают соответственно состояния влажного, сухого и перегретого пара. Причем точка А лежит на пересечении изобары (изотермы) и линии постоянной сухости, точка В лежит на пересе­чении изобары и верхней пограничной кривой, точка С находится на пересечении изобары и изотермы. По положению точки, соответ­ствующей некоторому состоянию пара, можно определить на i — s-диаграмме числовые значения всех параметров в этой точке.

Большинство газов, применяемых в технике, содержит пары тех или иных жидкостей. Наиболее распространенными являются смесь воздуха или какого-либо другого газа с водяным паром, смесь воз­духа с парами бензина, керосина и т. п.

Характер изменения параметров парогазовой смеси имеет важ­ное значение в расчетах процесса сушки, кондиционирования воз­духа, сверхзвуковых аэродинамических труб, обледенения самоле­тов, процесса испарения топлива в двигателях и форсировании их впрыском жидкостей и т.д.

Смесь, состоящая из сухого газа и перегретого пара, называется ненасыщенным влажным газом, а смесь из сухого газа и насыщенного пара — насыщенным влажным газом.

При охлаждении влажного газа до определенной температуры (температуры точки росы) пар становится насыщенным, а в дальней­шем может и сконденсироваться.

Состояние парогазовой смеси определяется сравнительно узким диапазоном температуры и давления. Значительное повышение тем­пературы или понижение давления приводит к тому, что влажный газ превращается в простую газовую смесь (гл. 11, § 4).

Полагая, что перегретый пар любой жидкости, входящий в сос­тав влажного газа, приближается по своим свойствам к газам, можно рассматривать влажный газ как газовую смесь.

По закону Дальтона давление смеси идеальных газов р равно сумме парциальных давлений

. (9.43)

где pv — парциальное давление сухого газа; рп — парциальное дав­ление пара.

Равным образом можно записать

(9.44)

Равенство (9.44) показывает, что плотность влажного газа выше плотности сухого тогда, когда давление влажного газа по урав­нению (9.43) выше сухого.

Основными характеристиками влажного состояния газа являют­ся:

относительная влажность j, которая определяет степень насыщения газа паром

(9.45)

где рп и рн — плотности перегретого и насыщенного пара;

и — соответствующие парциальные давления.

Соотношение (9.45) справедливо только тогда, когда можно считать, что пар жидкости является идеальным газом вплоть до состояния насыщения. При этом

; ,

где Rп = Rн — газовая постоянная пара;

абсолютная влажность D, определяющая массу пара, содержащегося в 1 м 3 газа,

кг/м 3

влагосодержание d — это масса пара, содержащегося в 1 кг сухого газа,

или, определяя рп и рг из уравнения состояния, получим

(9.46)

Рассматривая влажный газ как газовую смесь, выведем соотно­шения, связывающие параметры влажного газа. Пусть состояние, влажного газа определяется его давлением р, температурой t, плот­ностью r и относительной влажностьюj. По таблицам сухого на­сыщенного пара определяем для данной температуры значения rн и рн.

Плотность пара в смеси по уравнению (9.45) равна

а плотность сухого газа

(9.47)

Парциальное давление сухого газа можно определить из урав­нения состояния

Парциальное давление пара в смеси

Если заданы для влажного газа р, t, , а плотность его неизвест­на, то, найдя по таблицам насыщенного пара рн и для данной тем­пературы, определим

Парциальные давления пара и сухого газа вычислим по формулам

,

Плотность сухого газа найдем из уравнения состояния

(9.48)

а плотность влажного газа вычислим по формуле (9.44). Влагосодержание на 1 м 3 и на 1 кг сухого газа определяют по формулам:

;

(9.49)

Если газ насыщен паром, то j = 1 и

, а (9.50)

Массовые доли сухого газа и пара во влажном газе соответствен­но равны:

(9.51)

Используя обычное выражение газовой постоянной для смеси газов (гл. 11, § 4), получим

(9.52)

Теплоемкость влажного газа можно определить, зная массовый состав его и теплоемкости сухого газа и пара,

(9.53)

Так же, как и теплоемкость, энтальпия влажного газа равна сумме энтальпий сухого газа и пара. Следовательно,

(9.54)

Энтальпия 1 кг сухого газа

Энтальпия водяного пара, который находится в перегретом сос­тоянии, определяется по формуле

(9.55)

где i0+ctн — энтальпия сухого насыщенного пара в газе (tн— тем­пература кипения при определенном парциальном давлении); срт — средняя теплоемкость перегретого пара.

Для водяного пара iп может быть взята из таблиц водяного пара. Таким образом, энтальпия влажного насыщенного пара равна

( 9.56)

Тепловые процессы парогазовой смеси имеют ряд особенностей, их можно разделить на:

процессы, идущие без фазовых превращений, в этом случае отно­сительная влажность j р2 > р3 и т. д.), изохоры 1 > u2 > u3 и т. д.), изотермы (t1

Дата добавления: 2015-04-03 ; просмотров: 3330 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнения состояния реальных газов

Уравнения состояния реальных газов

  • Все реальные газы являются парами определенной жидкости, и чем ближе газ находится к переходу в жидкое состояние, тем больше отклонение от характеристик идеального газа, а идеальное газовое состояние описывается уравнением Кура-Пейрона. Для качественной оценки свойств экзистенциального газа рассмотрим области со значительными отклонениями от уравнения, объясняющие идеальное поведение Если сжать газ при постоянной температуре, то можно добиться насыщения (сжижения газа), которое соответствует этой температуре и определенному давлению. При дальнейшем сжатии, пар конденсируется и в определенный момент полностью превращается в жидкость.

Давление насыщенного пара однозначно определяется его температурой, поэтому процесс перехода пара в жидкость происходит при определенной температуре и давлении. р — » на рис. 9.1 область 2-фазового состояния (пар и жидкость) лежит между кривой кипящей жидкости и сухой насыщенной vapor. As давление возрастает, эти кривые сближаются. Разрыв происходит из-за уменьшения объема пара и увеличения объема liquid. At при определенном давлении, определяемом для конкретной жидкости (пара), кривая кипения жидкости и пара совпадает в так называемой критической точке, которая совпадает с критическим параметром.

Настоящая глава посвящена почти исключительно процессам теплообмена при стационарном режиме. Людмила Фирмаль

Давление crc, температура tcr, удельный объем cr, характеризующие критическое состояние matter. In критическое состояние, разница между жидкостью и паром disappears. It это физическое состояние, которое ограничивает как однородное вещество, так и вещество, которое распалось на 2 phases. At температура выше критической, газ не может конденсироваться при любом давлении. То есть она становится жидкой. В этом случае все газы в области, близкой к сжиженному состоянию, практически воспроизводят соотношение между параметрами состояния по уравнению Клапейрона.

Для всех газов с более или менее значительной плотностью сцеплением между молекулами, объемом, занимаемым ими, и связыванием с группой молекул тоже нельзя пренебрегать. Связывание означает механическое соединение 2 или более молекул с 1 комплексом. Уменьшение числа независимых частиц, составляющих газ, должно привести к увеличению средней молекулярной массы газа и снижению его давления. Эта ассоциация существенно усложняет математическое описание состояния реального газа.

Если понизить давление и увеличить температуру газа, то можно использовать уравнение состояния идеального газа, за исключением газов, находящихся под воздействием высокой температуры. Происходят изменения в химической структуре (например, распад сложных молекул-диссоциация). Уравнение состояния экзистенциального газа выводится чисто теоретически на основе гипотез о структуре газа или на основе обработки экспериментальных зависимостей между p, V, T. Уравнение ван-дер-Ваальса, полученное путем модификации нескольких предположений, лежащих в основе идеального уравнения состояния, широко используется в научных исследованиях.

Эта формула отличается от формулы Клапейрона двумя способами: коррекцией объема самой молекулы L и коррекцией так называемого внутреннего давления, которое определяется взаимным притяжением молекул газа. Это давление действует на стороны внешней периферической молекулы и может рассматриваться как сила, направленная к кровеносному сосуду. Рассмотрим изменение Изотерм с поправкой а и B. At температура выше критической изотермы, построенной по уравнению ван-дер-Ваальса, становится гладкой кривой, отличной от биссектрисной гиперболы, дающей уравнение состояния идеального газа. Последний пункт 9.2 в верхней части рисунка обозначен пунктиром.

Температуры ниже критической температуры, поправка играет решающую роль, есть область объема, в которой давление проходит через максимальное значение в точке C. In в случае малого объема давление уменьшается, проходя через минимальное значение-точку B, и по мере приближения к этому значению оно резко возрастает.

При критической температуре максимальные и минимальные значения Изотерм объединяются в точке перегиба K, а касательные Изотерм в критической точке являются горизонтальными, поэтому они должны соответствовать условиям критической точки Получить уравнение отсюда (9.2) (9.3) (9.4) Температура Tvr и объем o r могут быть определены из уравнений (9.3) и (9.4), а давление rvr может быть определено из уравнения (9.1). в результате、 Тр = _〜_. о= 36. «Р etda, СГ’ — «о, 27б’ (9.5) Из последнего соотношения можно определить индивидуальные константы a и f, зависящие от физических характеристик конкретного газа.

  • Этот процесс выполняется последовательно, так как переход из жидкого состояния в газообразное протекает при постоянном T и p. It поддерживает 40. Однако сечения AB и CO на изотерме могут быть воспроизведены экспериментально только при использовании очень чистых жидкостей и газов. Вещества в этих областях имеют вид перегретой жидкости и пересыщенного (переохлажденного) пара. Такое состояние называется метастабильным, если вещество остается в водной фазе и не разлагается на фазу.

Основное значение уравнения ван-дер-Ваальса состоит в том, чтобы качественно и точно описать непрерывность перехода из жидкого состояния в газообразное, а дальнейшее развитие уравнения состояния привело к уточнению расчетов и совершенствованию теории. Коэффициент Li6 предполагался нестабильным, но в связи с тем, что он зависит от температуры и объема, были предприняты попытки его улучшить. Однако эти попытки не привели к созданию уравнения состояния, описывающего свойства газов в широком диапазоне параметров.

Разработаны также некоторые характерные соотношения, которые будут обсуждаться в следующей главе. Людмила Фирмаль

Неспособность создать общее уравнение состояния привела к появлению многих эмпирических уравнений, которые могли бы предсказать поведение реального газа с достаточной точностью при различных условиях. Наиболее известными из них являются: 5 эмпирически определенных уравнений Битти-бридмана Константа и уравнение Бенедикта-Уэбба-Рубина, содержащее 8 эмпирических констант — (a, b, d, Ao, Bn, Co и др.).

Вид уравнения Битти-Бриджмена, которое применяется к давлению порядка 250 бар и плотности газа, не превышающей 0,5 в критической точке Рог= это Уравнение состояния Бенедикта-Уэбба-Рубина Эти уравнения позволяют прогнозировать свойства p, V и T-газов с погрешностью в несколько десятков процентов, и, несмотря на их сложность, развитие вычислительной техники облегчит использование таких уравнений состояния в обычных технических расчетах 1. уравнение Вукаловича-Новикова, являющееся одним из самых современных уравнений газовых состояний, учитывает связывание молекул и хорошо согласуется с экспериментальными данными.

Принимая во внимание столкновение бинарных молекул, это уравнение принимает вид Здесь сито является экспериментальной константой. В настоящее время уравнение состояния теоретически обосновано. Это разложение степени сжатия r в бесконечный ряд степеней 1 / O. (9.10)) Где B, C и O-2-й, 3-й и 4-й вириальные коэффициенты соответственно, учитывающие взаимодействие таких молекул, как 2, 3 и 4.Коэффициент вириала зависит Если зависимость известна, то она определяется только при температуре 1 Тл Потенциальная энергия и молекулярные взаимодействия 1 / oot Встаньте между ними (рис.

Вместо точной аналитической зависимости (7PST = / ® ) фактически используется приближенная формула, называемая потенциалом. Широко используется потенциал Леонарда Джонса, энергия отскока пропорциональна 2 Степень расстояния между молекулами и энергия притяжения равна 6-й (9.Я) g r g-расстояние между молекулами. a-величина r, где Upot = 0, e-максимум энергии притяжения (глубина потенциальной ямы). Значения A и b для каждого газа можно определить по экспериментальным данным. Помимо потенциала Леппарда-Джонса, используются и другие потенциалы, которые могут быть использованы для конкретной группы аналогов.

При решении некоторых технических задач рабочим телом является вещество, которое не находит широкого применения в технике (водяной пар, углекислый газ, азот и др.), но имеет неизвестный тепловой properties. In в этом случае, благодаря термодинамическому сходству веществ, они могут быть использованы для прогнозирования свойств веществ, которые слабо изучены. Если визуальная константа постоянна и b подставляется в уравнение (9.1): функция уравнения Вая-дер-Вааля приведенного параметра Эти отношения называются уменьшением давления, температуры и объема. Выражение (9.12) может быть записано в следующем виде: /(Л, Р ₽)= 0.

В таком виде данное уравнение состояния будет одинаковым для всех веществ. Состояние 2 или более веществ с одинаковыми параметрами восстановления n, m, p называется соответствующим состоянием. То есть эти вещества находятся в состоянии, пропорционально отделенном от критического состояния. Если вещество следует одному и тому же уравнению состояния восстановления и имеет 2 идентичных параметра восстановления, то они имеют один и тот же 3-й параметр восстановления. То есть субстанция становится соответствующим состоянием. Это положение называется законом каждого государства. Вещества, подчиняющиеся законам соответствующего состояния, называются термодинамически similar.

Факт, закон Удобнее всего использовать эти состояния в виде зависимости r = 1 (n, r), а для расчета можно использовать (R-^ -диаграмма (рис.9.4)).Зная важные параметры вещества, найдены l = — D-и m =, коэффициент сжатия этих параметров определяется из диаграммы R-l, соотношение которых вычисляется по формуле. Закон соответствующего состояния практически только соблюдается, поэтому точность расчетов по этому методу не превышает 15%.Поэтому для идентичных литов коэффициент сжатия должен быть равен, а коэффициент сжатия в критической точке rcr = — * 1*должен быть равен.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://helpiks.org/3-2548.html

http://lfirmal.com/uravneniya-sostoyaniya-realnyh-gazov/