Уравнение буссинеска задача о наводнении

Кратко о гидродинамике: сохранение энергии

В очередной раз извиняюсь за медленное написание постов в запланированной серии. В этот раз причина промедления объективна, в виде конференции в Вене, хотя и имеет значимую субъективную составляющую в виде собственного там участия и некоторых бюрократических моментов подготовки и оплаты.

Данный пост рассматривает законы сохранения энергии в идеальной и вязкой жидкости. Они заведомо необходимы для полноты описания движения, однако, в изотермическом случае теплообмена как такового нет, и потому для описания достаточно использовать уравнение Навье-Стокса и уравнение неразрывности. Надеюсь, этот пост будет последним из достаточно абстрактных постов, описывающих общую теорию и не практически привязанных к конкретным постановкам задач.

Постараюсь уменьшить количество выкладок, ибо они, конечно, важны, но результаты в виде конечных уравнений — важнее.

Перенос энергии в идеальной жидкости

Итак, сохранение энергии. Подход к описанию абсолютно стандартный — мы вводим некоторую величину, находим, какие механизмы отвечают за её изменение и пишем закон сохранения сперва в интегральной форме, а затем, сведя все поверхностные интегралы к объёмным по теореме Гаусса — в дифференциальной.

Энергия жидкости в классической гидродинамике, не учитывающей также такой эффект, как электропроводность и соответствующее взаимодействие с внешними и внутренними электромагнитными полями, складывается из внутренней и кинетической энергии. Она равна такому интегралу:

Изменяться в пределах нашего объёма V энергия может за счёт простого её перетекания вместе с потоком жидкости, работы сил давления от внешних элементов жидкости и работы внешних сил (ниже показаны на примере силы тяжести):

В идеальной жидкости нет трения, и потому нет рассеяния энергии за счёт вязкости. Кроме того, здесь пренебрегается и процессами теплопроводности, что так же присуще идеальной жидкости как отсутствие ещё одного механизма диссипации энергии. В дифференциальной форме закон сохранения полной энергии выглядит так:

Однако, его можно благополучно упростить. Воспользовавшись уравнением Эйлера (см. предыдущий пост), скалярно домноженным на скорость, можно выделить из полученного закона сохранения такую часть:

А это уже преобразуется к ещё более простому виду:

Тут уже можно вспомнить термодинамику. Первое начало термодинамики (с пометкой — для удельного объёма жидкости, т.е. объёма, масса которого равна единице):

позволяет вполне очевидным образом связать производные энергии, энтропии и плотности (как обратной объему величины). Используя эту связь дифференциалов величин в уравнении для энергии:

а также закон сохранения массы, получим ещё одно уравнение, которое описывает эволюцию энтропии в жидкости:

В движущейся системе отсчёта, привязанной к тому элементу жидкости, для которого это всё написано, уравнение упрощается ещё сильнее:

То есть, энтропия отдельной произвольной жидкой частицы (в идеальной жидкости) сохраняется. Энтропия просто пассивно переносится потоком, попутно связывая уравнением состояния давление и плотность среды.

Учёт вязкости. Уравнение теплопроводности

Теперь учтём вязкую и теплопроводную диссипацию. В интегральном виде они представляется парой добавочных слагаемых в законе сохранения:

Они описывают работу сил вязкого трения на границе элемента жидкости и тепловой поток через границу. В дифференциальной форме уравнение сохранения полной энергии:

Произведя ряд операций над этим соотношением с применением уравнения переноса импульса в общем виде (для произвольного тензора вязких напряжений) и уравнения неразрывности (а именно — домножив закон сохранения массы на половину квадрата скорости, закон сохранения импульса — на скорость, сложив их между собой и вычтя итог из уравнения для полной энергии), мы избавимся от слагаемых с кинетической энергией:

Здесь возникает диссипативная функция, равная двойной свёртке тензора вязких напряжений и тензора, который условно иногда называют градиентом скорости:

Применив здесь уравнение баланса массы и первое начало термодинамики аналогично тому, как это сделано выше, приходим к уравнению баланса энтропии:

Видно, что оно отличается от уравнения в идеальной жидкости только ненулевой правой частью. Для несжимаемой жидкости мы можем благополучно перейти от энтропии к более осязаемой величине, то бишь — к температуре, используя определение теплоёмкости при постоянном давлении:

Наконец, можно пренебречь диссипативной функцией, т.к. она описывает выделение за счёт внутреннего трения, и потому существенна только в жидкостях с очень большими вязкостями, а для потока тепла воспользоваться законом теплопроводности Фурье, позволяющим выразить его через температуру:

В итоге получается уравнение теплопроводности несжимаемой вязкой жидкости:

Согласно ему, температура элемента жидкости изменяется за счёт непосредственного конвективного переноса с потоком жидкости, а также за счёт вполне обычного механизма молекулярной теплопроводности (правая часть).

Конвекция. Приближение Буссинеска

Собственно, с описания задачи конвекции на хабре и начался весь этот гидродинамический «балаганчик». Итак, мы смотрим на баночку с несжимаемой вязкой жидкостью, например, водой. Движение её в случае неоднородной температуры в объёме описывается тремя уравнениями:

В общем случае в эту систему входит ещё уравнение состояния, связывающее плотность, давление и температуру. Однако тогда жидкость уже нельзя считать несжимаемой. Практика же (да и математика) показывает, что с достаточной точностью можно принять плотность постоянной везде, кроме слагаемого с силой тяжести. Более того, достаточно ограничиться линейным разложением по температуре:

Сразу отметим, что здесь записана уже не абсолютная температура, а уже отклонение от некоторого «нулевого» уровня, при котором плотность равна . Писать так нам позволяет уравнение теплопроводности, благо оно линейное и к таким сдвигам инвариантно. Можно выделить в слагаемом при силе тяжести независимую от температуры часть (гидростатический градиент) и спрятать её в давление:

И тогда мы приходим к уравнениям конвекции в приближении Буссинеска:

Данная модель практически общеупотребительна при изучении конвективных явлений, и на её основе было получено огромное количество самых разных по значимости результатов. В частности, в задачах устойчивости равновесия жидкости и прочих.

Проблема инструментария

Немного отступлю от темы, хотя прекрасно понимаю, что это может только разжечь лишнюю и отвлекающую дискуссию.

Знаете, что удивило в комментариях по предыдущему посту? То, что читатели уделяют много внимания вопросу математической строгости выкладок, которой тут, в общем-то, немного. Гидродинамика создана Эйлером и Навье во времена господства французского материализма, когда строгие результаты аналитической механики описали, казалось, весь мир. Но уровень строгости этих результатов таков, каким он мог быть в те времена, в едва только-только созданном Ньютоном и другими дифференциальном исчислении, и не выше. И таким он остался по сей день, и такой же является математическая строгость гидродинамики. Практически, это последняя классическая область науки, которая ещё имеет нерешённые фундаментальные проблемы. Может быть, не решены они именно потому, что сформулированы на том, старом, не сильно развитом и не богатом значительными средствами языке. Помнится, есть отдельные наработки в математике, где к уравнениям Навье-Стокса применяют аппарат, не к ночи будь помянут, биспиноров и гамма-матриц Дирака (основу квантовой теории поля) или ещё чего похуже. Но они до сих пор отдельные и практически неизвестные.

Лично я предполагаю, что развитие аппарата для решения уравнений Навье-Стокса ещё попросту не состоялось. Ведь, как известно, эти уравнения отлично описывают и упорядоченные ламинарные течения, и хаос турбулентности. А в уравнениях для этого всего-то достаточно изменить один управляющий параметр. Как в нелинейных системах (а-ля система Лоренца), которые тоже не имеют общих аналитических решений, да и, в целом, конкретного детального анализа свойств решений именно как математических функций. Многое на уровне поведения — тут хаос, там упорядочение, там синхронизация, здесь влияние параметра, а переход, по-видимому, происходит вот таким образом. Но ни о гладкости решений, ни об их существовании вопроса в таких задачах нет, в отличие от Навье-Стокса. Ведь мы же до сих пор практически не знаем — существуют ли вообще их общие гладкие решения.

Увидев в комментариях вещи навроде «набла — это 1-форма», сперва сильно задумался, не упустил ли чего в своём образовании. Да, про разного рода n-формы у меня в курсах упоминалось (но не более) в одном семестровом спецкурсе под названием теории групп в физике, из которого, правда, много вынести не удалось ввиду отсутствия серьёзной структурированности изложения. Но рассуждать о том, набла — вектор или же нет, никогда не приходится. В физике, не касающейся значительно математизированных проблем уровня, скажем, общей теории относительности и неотъемлемо нужной для неё дифференциальной геометрии, набла всегда была практически вектором. Конечно, не совсем обычным, не коммутирующим с ними и обладающим рядом иных свойств. Простой, в общем-то даже обычный оператор, который показывает, какую компоненту вектора и каким образом мы будем дифференцировать. Просто инструмент, которым мы умеем пользоваться в заданных пределах и осознаём, что нужно проверить его пригодность при выходе за границу привычной области, даже, например, при переходе от декартовых координат к тем же сферическим.

Иногда можно потратить излишне много времени на понимание устройства молотка, но так толком и не научиться забивать им гвозди. Например, почему он имеет такую форму, почему разные молоты имеют разную форму, а затем начать копать глубже — почему блестит металл, а деревянная ручка — нет, и др. Но от этого понимания сущность наиболее частого применения молотка не поменяется. Им будут забивать гвозди, выравнивать металл по оправке и т.д. — им всё равно будут стучать, желательно, не по пальцам.

На таком уровне находится моё личное знакомство с аппаратом квантовой электродинамики. По принципу — помню, что-то проходил. Более того, даже методичку в прошлом году издали с преподавателем этого предмета, но как-то оно всё равно в стороне — не занимаюсь этим.

Далее

Следующий пост будет посвящён проблемам устойчивости для равновесия и стационарного течения. Там в очередной раз мы увидим, что даже простейшие задачи гидродинамики не могут быть решены аналитически в полном виде, и потому приходится применять множество различных, на первый взгляд весьма спорных, но в то же время прекрасно работающих и обоснованных методик. Надеюсь, что уже удастся перейти от абстрактности к более осязаемым вещам.

О некоторых свойствах уравнения Буссинеска.

Дата добавления: 2013-12-23 ; просмотров: 1429 ; Нарушение авторских прав

Замыкание закона сохранения массы.

Уравнение (8) содержит три неизвестных величины — . Следовательно, для замыкания модели необходимо привлечь какие-то дополнительные соображения о характере процесса. Их дает полуэмпирический закон Дарси:

где — давление жидкости, — коэффициент, определяемый свойствами грунта. Согласно закону Дарси компоненты скорости течения жидкости пропорциональны соответствующим компонентам градиента давления. Замети, что по своему физическому смыслу градиент давления – это сила (отнесенная к единицы объема). В т же время согласно закону Ньютона действующая на тело сила пропорционально его ускорению, а не скорости, как в законе Дарси. Однако данное противоречие кажущееся, как при течении через грунт (фильтрации) жидкость преодолевает сопротивление его частиц, в отличие от свободного течения (уравнение движения жидкости).

В формуле (9) имеется новая неизвестная величина – давление жидкости. Ее связь с уже введенными величинами нетрудно найти, приняв предложение о медленном и почти горизонтальном течении воды. Тогда динамической составляющей давления можно пренебречь и вычислить его по чисто гидростатическому закону как давление, создаваемое столбом жидкости:

где – давление на поверхности жидкости (например, атмосферное), — ускорение свободного падения. Подставляя последнюю формулу в (9) получаем

и, используя (10) в уравнении неразрывности (8), окончательно приходим к уравнению движения грунтовых вод

или, к уравнению Буссинеска, содержащему лишь одну неизвестную функцию .

Уравнение (11) нестационарное (искомая функция зависит от ), двумерное ( зависит от ), относящееся к параболическому типу. Оно не однородное, так как функция зависит от , и нелинейное, поскольку в его правой части присутствуют члены вида и . В сравнении с уравнением (1) уравнение Буссинеска – гораздо более сложный математический объект. В силу нелинейности его общее решение не может быть найдено аналитически, однако относительно нетрудно получить некоторые вполне содержательные частные решения, которые служат также тестами при разработке численных методов. Для построения завершенной модели движения грунтовых вод необходимо знать входные данные: форму подстилающей поверхности , коэффициент и краевые условия, задающие функцию в начальный момент времени и на границах пласта (и, быть может, в некоторых выделенных областях пласта, например на артезианской скважине). Простейшим вариантом формулировки краевых условий для уравнения (11) является задание лишь начального условия – функции в момент :

Такая подстановка отвечает задаче Коши для уравнения (11), решаемого, естественно, также в области , . В задаче Коши по известному распределению уровня грунтовых вод находится функция для всех .

Рассмотрение пласта бесконечных размеров, конечно же, идеализация. Однако если изучается течение в небольшой центральной области пласта на относительно небольшом промежутке времени, то влиянием границ пласта можно пренебречь, и решение задачи Коши носит вполне реальный процесс. Нужно также отметить, что краевые условия были фактически неявно введены в модель при выводе модели Буссинеска. Предположение о непроницаемости пласта было использовано при получении уравнении баланса, а без предположения 5) о «зазоре» между поверхностью земли и поверхностью грунтовых вод (т.е. когда вся жидкость находится в пористой среде) нельзя было бы использовать закон Дарси во всей рассматриваемой области. Разумеется, выполнение этих и других предположений должно контролироваться при изучении данного объекта на основе построенной модели.

При введении дополнительных предположений общая модель упрощается. Так если по каким-то причинам решение не зависит от времени (стационарный процесс), то приходим к эллиптическому уравнению

для решения которого, естественно, не требуется задание функции в начальный момент. В простейшем случае (12) превращается уравнение Лапласа. Если подстилающая поверхность горизонтальна ( ), то уравнение Буссинеска становится однородным:

При дополнительном предположении об одномерности течения, когда искомое решение зависит лишь от одной пространственной переменной, например, координаты , приходим к уравнению

называемому также однородным уравнением типа нелинейной теплопроводности или одномерным уравнением изотермический фильтрации. Одномерными, например, являются течения в пластах, сильно вытянутых по одному из направлений, так что изменением величин вдоль поперечного сечения пласта можно пренебречь (если через ограничивающее его в поперечных направлениях поверхности жидкость не протекает). Наконец, самая простая модель течения грунтовых вод дается уравнением теплопроводности (или уравнением диффузии вещества)

получающимся при условии , т.е. для малых изменений уровня жидкости по сравнению с толщиной пласта. Последние три уравнения относятся к параболическому типу, причем уравнение (14) линейное и существуют хорошо известные методы получения его общего решения. Разумеется, кроме перечисленных возможны и другие упрощения исходной модели, например двумерное уравнение (13). Из Уравнения Буссинеска нетрудно получить и более сложные модели, когда неверны некоторые из сформулированных предположений.

В частности, во многих случаях грунт неоднороден, т.е. и , и необходимо учесть поступление жидкости в пласт в результате осадков. Тогда обобщение уравнения Буссинеска имеет вид

где характеризует мощность осадков в точке в момент времени .


источники:

http://life-prog.ru/1_3185_o-nekotorih-svoystvah-uravneniya-bussineska.html